32
Fire Behaviour of Steel and Composite Floor Systems Background of simple design method Olivier VASSART - Bin ZHAO Dec. 2010

Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

Fire Behaviour of Steel and Composite Floor Systems

Background of simple design method

Olivier VASSART - Bin ZHAO Dec. 2010

Page 2: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

2Dec. 2010 Background of simple design method

• Mechanical behaviour of composite floors in a fire situation• Simple design method of reinforced concrete slabs at 20 °C

– Floor slab model– Failure modes

• Simple design method of composite floors at elevatedtemperatures– Resistance of concrete slab with plastic yield lines– Membrane effect at elevated temperatures– Enhancement in presence of supporting steel beams

Content of presentation

Page 3: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

3Dec. 2010 Background of simple design method

Existing design methods assume isolated members will perform in a similar way in actual buildings

Fire compartment

Column Beam

Protected beams

Floor

• Traditional design method

Mechanical

behaviour of

composite floors

Simple design

method of

reinforced

concrete slabs at

20°C

Simple design

method of

composite floors at

elevated

temperatures

Mechanical behaviour of composite floors

Page 4: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

4Dec. 2010 Background of simple design method

• Real behaviour in case of composite floor with strong reinforcing steel mesh in concrete slab

Temperature increase during fire

Simple bending Membrane effect behaviour

(a) (b) (c) (d)

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Mechanical behaviour of composite floors

Page 5: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

5Dec. 2010 Background of simple design method

• Floor slab model with 4 vertically restrained sides (Plastic yield lines)

Yield lines

Simple supporton 4 edges

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 6: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

6Dec. 2010 Background of simple design method

• Floor slab model– Membrane effect enhancing yield lines resistance

Yield lines

Simply supported on 4 edges

Region of tension

Compression across yield line

Tension across yield line

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 7: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

7Dec. 2010 Background of simple design method

• Membrane forces along yield lines (1)

k b K T0 C

T2

C

T2

b K T0

SS

Element 2

T1

Element 1

E

F

A

BC

D

L

nL

Element 1

Element 2

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 8: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

8Dec. 2010 Background of simple design method

• Membrane forces along yield lines (2)

Simple design method of reinforced concrete slabs at 20 °C

k, b are parameters defining magnitude ofmembrane forces,

n is a factor deduced from yield line theory,

K is the ratio of the reinforcement in theshorter span to the reinforcement in thelonger span,

T0 is the reinforcement per unit width in thelonger span,

T1, T2, C, S are resulting membrane forces along yieldlines.

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 9: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

9Dec. 2010 Background of simple design method

• Contribution of membrane action (1)– Element 1

In-plane view of the resulting membrane forces

Side-view of the resulting membrane forces under a

deflection equal to w

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 10: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

10Dec. 2010 Background of simple design method

In-plane view of the resulting membrane forces

Side-view of the resulting membrane forces under a

deflection equal to w

• Contribution of membrane action (2)– Element 2

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 11: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

11Dec. 2010 Background of simple design method

where:μ is the coefficient of orthotropy of the reinforcementa is the aspect ratio of the slab = L/ℓ

ei, i=1,2 =eim : moment resistance of element i about the support

eib : moment resistance of element i yield lines+

221

1 a21eeee

• Contribution of membrane action (3)

– Enhancement factor for each element

– Overall enhancement

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 12: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

12Dec. 2010 Background of simple design method

Enhancement factor due to membrane forces for a given displacement (w1 )

w1

Load capacity based on yield line theory

Load bearing capacity based membrane action

Displacement (w)

Res

ista

nce

• Contribution of membrane action (4)

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 13: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

13Dec. 2010 Background of simple design method

• Failure modes (tensile failure of reinforcement)

Full depth crack Compression failure of concrete

Edge of slab moves towards centreof slab and 'relieves' the strains thereinforcement in the short span

Yield-line pattern

Reinforcement in longer span fractures

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 14: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

14Dec. 2010 Background of simple design method

• Failure modes (compressive failure of concrete)– More likely to occur in case of strong reinforcement

mesh

Yield-line pattern

Concrete crushing due to in-plane stresses

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 15: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

15Dec. 2010 Background of simple design method

• Failure modes (experimental evidences)

Tensile failure of reinforcement

Compressive failure of concrete

Simple design method of reinforced concrete slabs at 20 °C

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 16: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

16Dec. 2010 Background of simple design method

Simple design method at elevated temperatures

• Floor slab model at elevated temperatures (1)– On the basis of the same model at room temperature– Account for thermal bowing of the slab due to

temperature gradient in depth which equals to:

h2.19)TT(w

212

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures where:h is the effective depth of the slab

is the shorter span of the slab

Page 17: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

17Dec. 2010 Background of simple design method

• Floor slab model at elevated temperatures (2)

and: is the coefficient of thermal expansion for concrete

For LW concrete, EN 1994-1-2 value is takenLWC = 0.8 × 10-5 °K-1

For NW concrete, a conservative value is takenNWC = 1.2 × 10-5 °K-1 < 1.8 × 10-5 °K-1 (EN 1994-1-2 value)

T2 is the temperature of the slab bottom side (fire-exposed side)

T1 is the temperature of the slab top side (unexposed side)

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 18: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

18Dec. 2010 Background of simple design method

where:Es is the elastic modulus of the reinforcement at 20°Cfsy is the yield strength of the reinforcement at 20°CL is the longer span of the slab

308L3

Ef5.0

w2

s

sy

– Assuming mechanical average strain at a stress equal tohalf the yield stress at room temperature

– Deflection of slab on the basis of a parabolic deflectedshape of the slab due to transverse loading:

• Floor slab model at elevated temperatures (3)

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 19: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

19Dec. 2010 Background of simple design method

– However, the maximum deflection of the floor slab islimited to:

8L3

Ef5.0

h2.19)TT(w

2

s

sy2

12

30Lw

• Floor slab model at elevated temperatures (4)

– Hence, the maximum deflection of the floor slab is:

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 20: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

20Dec. 2010 Background of simple design method

• Conservativeness of the floor slab model at elevatedtemperatures– The estimated vertical displacements due to thermal

curvature are underestimated compared to theoreticalvalues

– The thermal curvature is calculated based on the shorterspan of the slab

– Any additional vertical displacements induced by therestrained thermal expansion when the slab is in a postbuckled state are ignored

– Any contribution from the steel decking is ignored– The increase of the mesh ductility with the temperature

increase is ignored

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 21: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

21Dec. 2010 Background of simple design method

• Load bearing capacity of the floor slab model enhanced inpresence of unprotected steel beams (1)

– Catenary action of unprotected beams is neglected

– The bending moment resistance of unprotected beamsis taken into account with following assumptions:

Simple support at both ends

Heating of the steel cross-section calculatedaccording to EN1994-1-2 4.3.4.2, consideringshadow effect

Thermal and mechanical properties for both steeland concrete given in EN 1994-1-2

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 22: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

22Dec. 2010 Background of simple design method

where:nub is the number of unprotected beamsMRd,fi is the moment resistance of each unprotected

composite beam

ub

2fi,Rd

ub

ub2

ub

fi,Rd n1L

M8Bn

L

M8

• Load bearing capacity of the floor slab model enhanced inpresence of unprotected steel beams (2)

– Enhancement of load bearing capacity fromunprotected beams is:

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Bub

Lub

Page 23: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

23Dec. 2010 Background of simple design method

• Temperature calculation of composite slab

– On the basis of advanced calculation models

2D finite difference method

Material thermal properties from EN 1994-1-2 for both steeland concrete

Shadow effect is taken into account for composite slabs

b1

y Li

x

Element i

top

=1.0

Element ih2

p

side

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 24: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

24Dec. 2010 Background of simple design method

• Load bearing capacity of protected perimeter beams

– Load level ηfi,t

Additional load on secondary beams

– Critical temperature method

Composite beams (EN 1994-1-2)

R30

Other fire resistance ratings

Steel beams (EN 1993-1-2)2,1ii,b,Rd

i,b,fi,Rd

ay

cr,ayt,fi M

Mf

f9.0

2,1ii,b,Rd

i,b,fi,Rd

ay

cr,ayt,fi M

Mf

f

2,1ii,b,Rd

i,b,fi,Rd

ay

cr,ayt,fi M

Mf

f

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 25: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

25Dec. 2010 Background of simple design method

• Load bearing capacity of protected perimeter beams on thebasis of global plastic mechanism– Primary beams and secondary beams are designed

separately– For both primary and secondary beams

An alternative single yield line pattern linking the plastichinges is considered

The required moment resistance MRd,fi,b is the same on allparallel perimeter beams, regardless of their actual cross-section

2 cases are studied

2 edge beams

at least 1 internal beam

The principle of virtual work is applied

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 26: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

26Dec. 2010 Background of simple design method

• Load bearing capacity of primary beams (1)

o

o

o

o

MRd,fi,b,1

Axis of rotation

l

L LFloor design zone

l

MRd,fi,b,1 MRd,fi,b,1

Yield line

MRd,fi

MRd,fi

MRd,fi

MRd,fi

2 edge beams 1 internal beam

o

o

o

o

MRd,fi,b,1

MRd,fi

Edge of slab

Edge of slab

Yield line

Axis of rotation

Axis of rotation

MRd,fi

MRd,fi,b,1

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 27: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

27Dec. 2010 Background of simple design method

• Load bearing capacity of primary beams (2)– 2 edge beams

– At least one internal beam

where:

p is the maximum of the applied load and thefloor loadbearing capacity

16LM8pL

M eff02

1,b,fi,Rd

12LM8pL

M eff02

1,b,fi,Rd

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 28: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

28Dec. 2010 Background of simple design method

• Load bearing capacity of primary beams (3)and:

Leff is the effective length of the yield line

2 edge steel beams

only 1 composite beam

2 composite beams

LLeff

8;

2LminLLeff

8;

2Lmin2LLeff

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 29: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

29Dec. 2010 Background of simple design method

• Load bearing capacity of protected secondary beams (1)

o

o

o

o

MRd,fi,b,2

MRd,fi

MRd,fi

Axis of rotationZero verticaldisplacement

Axis of rotation

Yield line

MRd,fi,b,2

o

o

o

o

MRd,fi,b,2Floor design zone

MRd,fi

MRd,fi

MRd,fi,b,2

MRd,fi

MRd,fi

MRd,fi,b,2

l

L L

l

2 edge beams 1 internal beam

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 30: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

30Dec. 2010 Background of simple design method

• Load bearing capacity of protected secondary beams (2)– 2 edge beams

– At least one internal beam

where:p is the maximum of the applied load and the floor

loadbearing capacity

16

MnM8pLM fi,Rdubeff0

2

2,b,fi,Rd

12

MnM8pLM fi,Rdubeff0

2

2,b,fi,Rd

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 31: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

31Dec. 2010 Background of simple design method

• Load bearing capacity of protected secondary beams (3)and:eff is the effective length of the yield line

2 edge steel beams

only 1 composite beam

2 composite beams

4L;

n1min

21n

ububeff

4L;

n1min1n

ububeff

4L;

n1minn

ububeff

Simple design method at elevated temperatures

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

method at

elevated

temperatures

Page 32: Background of simple design method - cvut.czfire.fsv.cvut.cz/fracof/en/04_FRACOF_background.pdf · 2011. 2. 1. · Dec. 2010 Background of simple design method 8 • Membrane forces

32Dec. 2010 Background of simple design method

• Johansen, K.W. Yield-line formulae for slabs. Cement andConcrete Association. London: Taylor & Francis, 1972.

• Bailey, C.G. Membrane action of slab/beam composite floorsystems in fire. Engineering Structures, October 2004, Vol.26, Issue 12, pp. 1691-1703.

• EN 1994-1-2 : Eurocode 4 : Design of composite steel andconcrete structures – Part 1-2 : General rules – Structural firedesign, CEN.

• Fire Resistance Assessment of partially protected COmpositeFloors (FRACOF): Engineering background. Technical Report,CTICM, SCI, 2009.

References