Bacteriocins Nature, Function and Structure

Embed Size (px)

Citation preview

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    1/13

    ~ ) Pergamon

    PII: S0968-4328 96)00028-5

    Micron

    Vol, 27, No. 6, pp. 467 479. 1996

    I 1997 Published by Elsevier Science Lid

    All rights reserved. Printed in Great Britain

    0968 4328/96 S32.00+0,00

    Bacterioc ins: N atur e F un ct ion and Structure

    MOHAMED A. DAW* and FREDRICK R. FALKINER+

    *D epa r tm en t q f M ed ic a l M icrob io logy , Facu l O' oJ M ed ic ine , A ( fa teh Un i t 'e r s i t v ~[ Med ic a l Sc iences , P .O. Bo .v ,~;2668, Tr ipo l i.

    L ib ) 'a

    + D e p a r t me n t o f C l in i c a / Mi c r o b i o l o g y , Du b l h l U n i v e r si t y , Du b li n, R e p u b l i c q f h e h m d

    b s t r a c t Bacteriocins are extracellular substances produced by different types of bacteria, including both Gram positive and

    Gr am negat ive species. They can be produc ed sp onta neou sly or induced by certain chemicals such as mitomy cin C. They arc

    biologically one of the importa nt substances, and have been found to be useful in membrane studies and also in typing pathogenic

    microorga nisms causing serious nosocomial infections. Bacteriocins are a heterogeneous group o f particles with different

    morphological and biochemical entities. They range from a simple protein to a high molecular weight complex: the active moiety

    of each molecule in all cases seems to be protein in nature. The genetic determinant s of most of the bacteriocins are located on the

    plasmids, ap art from few which are chrom osom al[ y encoded. The se bactericidal particles are species specific. They exert their lethal

    activity through adsorbtion to specific receptors located on the external surface of sensitive bacteria, followed by metabolic,

    biological and morphological changes resulting in the killing of such bacteria. This review summarises the classification,

    biochemical nature, mor pholog y and mode of action o f bacleriocins as well as their genetic determinants and the microbiological

    relevance of these bactericidal agents, i , 1997 Publishe d by Elsevier Science Ltd

    Key words: Bacteriocins. bacte rophag e, bacterium-l ike inhibit ory substances, relaxed forms, contracte d forms, pyocins, cloacins.

    bacterium typing.

    CONTENTS

    1. In tr oduc ti on ........................................................................................................................................................................................................... 467

    A. Bac kgr ound ..................................................................................................................................................................................................... 467

    B. Classi ficati on of bacter iocins ......................................................................................................................................................................... 468

    C. Biochemi cal na tu re of bac terioci ns ............................................................................................................................................................... 468

    D. Bac teriocinogeny and lysogeny .................................................................................................................................................................... 469

    II. Ultrastructural study of bac terioci ns ................................................................................................................................................................ 470

    A. General structure ...........................................................................................................................................................................................70

    B. Morpho lo gy of active fo rms ....................................................................................................................................................................... 471

    C. Mod e of action ................................................................................................................................................................................................ 472

    D. Morpho log ica l changes associat ed with bacteriocin activity .................................................................................................................... 472

    I11. Molecular bio logy of bacteri oci ns ...................................................................................................................................................................... 475

    A. Genetic

    determinants

    of bac terioci ns ........................................................................................................................................................... 475

    B. Mic robiol ogical relevance of bac terio cins ................................................................................................................................................... 476

    IV. Con cl usions .......................................................................................................................................................................................................... 476

    Acknowledgements .............................................................................................................................................................................................. 477

    References .............................................................................................................................................................................................................. 477

    I. INTRODUCTION

    A . B a c k g r o u n d

    Bacteriocins are bactericidal, antibiotic-like sub-

    stances, apparently protein in nature, which are pro-

    duced by many bacteria and have a killing action on

    strains of the same or closely related species. The narrow

    specificity of their action and their protein nature distin-

    guish them from other classical) antibiotics Reeves,

    1965; Daw, 1989: Grat ia and Grenier, 1992; Laukova

    and Marekova, 1993). The first discovery was reported

    by Gratia in 1925 of a highly specific antib iotic principe

    V) produced by a strain of

    E s c h e r i c h i a c o l i

    and active

    against other strains of the same species. This activity

    was found to be produced by various species of Entero-

    bacteriaceae and for which the generic name colicine)

    was proposed. With the discovery that the production of

    apparently similar agents is not limited to Enterobacteri-

    aceae, Jacob

    et al .

    1952) proposed that the general

    name bacteriocine) should be used for highly specific

    antibacterial proteins, produced by certain strains of

    bacteria and active mainly against strains of the same

    species. This defini tion still holds, although colicin e)

    and bacteriocin e) are now spelt with out the final e.

    Since the discovery of the bacteriocins, most of the

    studies established in this field have been descriptive

    Fredericq, 1957, 1963), and the basic methods of detec-

    tions, assay and the bacteriocin typing of bacterial

    strains have been established. Genetic studies of coli-

    cinogeny and its transfer from one cell to another were

    also pionered by Fredericq and his collaborators. Fur-

    ther studies on the molecular biology of the bacteriocins

    followed, with emphases on biosynthesis, liberation and

    the mode of action of these agents Davies and Reeves,

    1975a,b; Geli and Lazdunski, 1992a,b; Lakey e t a l .

    1993). These led to interesting use of the bacteriocins as

    a biochemical tools in cellular physiology Libertin

    e t a l . 1992; Farkas-Himsley e t a l . 1992; Becker e t a l .

    1993). Bacteriocins have since gained new attention,

    467

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    2/13

    468 M.A. Daw and F. R. Falkiner

    particularly in the epidemiology of nosocomial infec-

    tions; they have been found to be very useful in typing

    organisms particularly those which are difficult to type

    by the usual methods (Pitt, 1980; Daw et al . , 1992;

    Siragusa, 1992; Unlman et a l . , 1992; Lebek et a l . , 1993).

    Our knowledge on bacteriocins leans heavily on re-

    sults obtained by electron microscope studies describing

    the morphology and the killing process of the bacteri-

    ocin particles. Due to the vast expansion of research in

    this area, we will devote most of this review to the

    classification, biochemical nature and mode of action of

    bacteriocins as well as the molecular biology and the

    microbiological relevance of these bactericidal agents.

    B. C lass i f ica t ion o f bac ter ioc ins

    The classification, and thus the nomenclature of

    bacteriocins, has changed rapidly since early this cen-

    tury. The main classification was done on colicins; they

    are usually classified by the scheme devised by Fredericq

    (1957), according to the specificity of their adsorption

    and are further classified into subgroups according to

    the specificity of their immunity. For example, colicin

    El, E2 and E3 differ from each other in their immunity

    pattern, but are classified as E group, because all of

    them apparently adsorb to the same receptor. Similarly,

    colicin Ia and Ib apparently share a common receptor

    and belong to group I, but can be distinguished from

    each other by their immunity specificity. Many bacterio-

    cins have been studied in detail and they necessarily have

    to be subdivided according to their spectrum of resist-

    ance (Reeves, 1965). As a result o f this, a code of

    nomenclature was established. The number of producer

    strain is followed by original letter, for instance colicin

    CA23 D is a type D colicin produced by

    E. coli

    strain

    CA 23 (Fredericq, 1963; Ohno

    et al . ,

    1977).

    Reeves (1965) listed sixteen classes of bacteriocins

    named on the basis of the species that produce them.

    Due, perhaps, to the high degree of specificity of bac-

    teriocins, the name is the almost always based on the

    specific rather than generic name of the host organism.

    Therefore colicins are bacteriocins of E. coli, pyocin of

    Pseudomonas aeruginosa (formerly p y o c y n ia , cloacin of

    Enterobac ter c loacae ,

    pestisin of

    Yers in ia pes t i s ,

    monocin

    of Lis te r ia monocy togenes , cerecin of Bacillus cereus, and

    staphylococcin of Staphy lococcus . These vernacular

    names used for bacteriocins are based, not on the spec-

    trum activity, but the producing organism. The fact that

    they are produced by specific species of bacteria means

    that their host association is immediately apparent.

    Bradely (1967) designed a taxonomic criterion for the

    classification of the bacteriocins, based on the natural

    division of these agents. The bacteriocins were divided

    into two distinct groups designated as low and high

    molecular weight forms. The first is a small molecule

    which is usually thermostable, cannot be sedimented

    in the ultracentrifugation and cannot be resolved by

    the electron microscope. The second group is a larger

    molecule, easily sedimented, thermolabile, trypsin resist-

    ant and can be resolved by the electron microscope. This

    classification allows us to include within it bactericidal

    particles such as those produced by the Bac i l lus species,

    since they are unable to multiply within sensitive cells.

    The only morphological difference between them and

    the bacteriocin of high molecular weight is that they are

    closer to phage particles (Bradley, 1966). The term

    bacteriocin usually refers to the colicin-type of protein,

    generally restricted to the strains of Enterobacteriaceae.

    Most of the bacteriocins produced by Gram positive

    bacteria do not fit into the classical definition of bac-

    teriocins in that they are (1) more broadly active against

    Gram positive species, (2) their action is mediated by

    specific receptors and (3) their release is enhanced by

    lysins. Furthermore, the absence of the outer membrane

    in Gram positive bacteria and the difference in the level

    of immunity of the producing strain to its own bacterio-

    cins, indicates that those bacteriocins of Gram positive

    bacteria should be grouped differently (Tagg

    et al . ,

    1976;

    Strasser de-Saad and Hanea de-Nadra, 1993; Havarstein

    et al . ,

    1994). Tagg (1992) suggested that the term bac-

    teriocin should be redefined either to take into account

    the non-colicin-like characteristics of many of the more

    recently described particles, or the original definition

    should be retained and those particles which are broadly

    similar to the colicins should be referred to as bacteriocin-

    like inhibitory substances (BLIS). The prevalence of BLIS

    production among Gram positive bacteria was found to

    be high. A survey conducted in the 1970s concluded that

    all the tested strains representing most of the Gram posi-

    tive bacteria could be found to produce BLIS (Tagg

    et al. ,

    1976; Tagg, 1992) and the incidence may closely approach

    100 .

    Electron microscopic studies have been particularly

    useful for the identification and classification of bac-

    teriocins. Negative contrast methods, which have been

    described for the purpose of studying viral structure,

    were equally employed for bacteriocins (Bradely, 1966;

    Govan , 1974a,b; Daw, 1989) . Uranyl acetate and

    potassium phosphotungstate have usually been used as

    negative stains. These were mixed with equal volumes

    of bacteriocin preparations and allowed to dry onto

    electron microscope specimen grids covered with carbon

    film, then studied using electron microscopy. These

    ultrastructure studies revealed that only the large

    bacteriocin particles were visible by electron microscopy.

    The mode of action and the killing process of these

    bacteriocins were also studied by the negative staining

    (Daw, 1989; Daw and Falkiner, 1993).

    C. Biochemical na ture o f bac ter ioc ins

    Bacteriocins have been erroneously considered as the

    only proteins secreted by bacteria. Indeed, those intially

    described were isolated and identified from the extra-

    cellular state of the producing species. Nowadays, other

    extracellular products have also been found. Freely

    secreted bacteriocins constitute a peculiar group of

    exported proteins in that their export relies on the

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    3/13

    Bacteriocins 469

    e x p r e s s i o n o f o n l y o n e g e n e c o d i n g f o r a b a c t e r i o c i n

    r e l e a se p r o t e i n ( B R P ) ; a l so c a l l e d t h e l y s is o r k i ll p r o t e i n .

    I n c o m p a r i s o n , e x p o r t o f o t h e r s e c r e t e d p r o t e i n s r el ie s

    o n t h e a c t i v i ty o f a t l e a s t t h r e e p r o t e i n s ( W a n d e r s m a n

    a n d D e l e p e l i a r e , 1 9 9 0 ; H a v a r s t e i n e t a l . 1 9 9 4 ) . H o w -

    e v e r , t h e y a r e e x p o r t e d l a t e a f t e r s y n t h e s i s a n d a c c u m u -

    l a t e i n t h e c y t o p l a s m i n a s o l u b l e f o r m b e f o r e t h e y a r e

    r e l e a s e d . T h e c o l i c i n l y s i s p r o t e i n s h a v e b e e n t h e m o s t

    e x t e n s i v e ly s t u d i e d a n d , t o g e t h e r w i t h t h e B R P e n c o d e d

    b y t h e C o l D F 1 3 p l a s m i d , t h e y s h a r e m a n y p r o p e r t i e s

    i n c l u d i n g t h e i r g e n e t i c o r g a n i s a t i o n , t r a n s c r i p t i o n , s y n -

    t h e s i s , a s s e m b l y a n d f u n c t i o n ( H o w a r d s e t a l . 1989;

    C a v a r d a n d O u d e g a , 1 9 9 2 ) .

    T h e p r o t e i n n a t u r e o f b a c t er i o c in s w a s d e t e r m i n e d

    e a r ly b y t h e d e g r a d a t i o n o f c r u d e p r e p a r a t io n s b y p r o -

    t e o ly t ic e n z y m e s a n d t h e ir a p p r o x i m a t e m o l e c u l a r

    w e i g h t w a s d e t e r m i n e d b y t h e d i f f u s i b i li t y o f t h e l y sa t e s

    t h r o u g h a g a r o r s e m i p e rm e a b l e m e m b r a n e s . S u c h

    m e t h o d s w e r e f o u n d t o b e u s e f u l i n t h e i n i t i a l c h a r -

    a c t e r i s a t io n o f b a c t e r i o c i n s ( L o y o l a - R o d r i g u e z

    e t a l .

    1 9 9 2 ) . D u e t o m o r e a d v a n c e d p u r i f i c a t i o n , s e v e r a l b a c -

    t e r i o c i n s h a v e b e e n d e s c r i b e d a n d t h e i r c h e m i c a l

    a n d p h y s i c a l p r o p e r t i e s a r e k n o w n ( S t i l e s e t a l . 1994;

    H a s t i n g s e t a l . 1995).

    D i f f e r e n t s tu d i e s h a v e s h o w n t h a t t h e b a c t e r i o c i n s a r e

    p r o t e i n m o l e c u l e s w i th t r a c e s o f c a r b o h y d r a t e s ( l e ss t h a n

    1 ) a n d p h o s p h o r u s ( le s s t h a n 0 . 1 ) ( K i n g s b u r y , 1 96 6;

    R e e v e s , 1 9 7 2; D a w a n d F a l k i n e r , 1 9 93 ). T h e n o t a b l e

    d i f fe r e n c e s b e t w e e n t h e m w e r e f o u n d t o b e a s s o c i a t ed

    w i t h a m i n o a c i d c o m p o s i t i o n . D i f f e r e n t s e q u e n c e s o r

    c r os s c o m p o s i t i o n o f a m i n o a c i ds w e r e fo u n d a m o n g t h e

    b a c t e r i o c i n m o l e c u l e s v a r y i n g f r o m o n e b a c t e r i o c i n t o

    a n o t h e r , e v e n a m o n g t h e s a m e g r o u p o f b a ct e r io c i n

    ( K o n i s k y a n d R i c h a r d s , 1 97 0; H o w a r d e t a L 1989:

    N i e t o - L a z a n o

    e t a l .

    1 9 92 ; K o e b i n k a n d B r a u n , 1 9 93 ).

    I n d e e d c o l i c i n E i s n o w d i v i d e d i n t o t h r e e su b c l a s se s

    u s i n g S D S g e l e l e c t r o p h o r e s i s : c o l i c i n E l , E 2 a n d

    E 3 . T h e m a i n d i f f e r e n c e s b e t w e e n t h e se su b c l a s se s i s

    a s s o c i a t e d w i t h a m i n o a c i d t e r m i n a l s e q u e n c e .

    T h e e a r l y d e t a i l e d w o r k o n t h e b i o c h e m i c a l n a t u r e o f

    b a c t e r i o c i n s w a s d o n e o n c o l i c in s a n d h a s b e e n d i s c u ss e d

    b y s e v e r a l i n v e s t i g a t o r s ( I v a n o v i c s , 1 9 6 2 ; K o n i sk y , 1 9 7 3 ;

    L a k e y e t a l . 1 9 9 2 : B r a u n e t a l . 1 9 9 4 ) . T w o d i f f e r e n t

    p u r i f i e d c o l i c i n s w e r e o b t a i n e d ; o n e i s a l i p o p o l y sa c -

    c h a r i d e p r o t e i n c o m p l e x a s s o c i a t e d w i t h t h e O s o m a t i c

    a n t i g e n o f t h e p r o d u c i n g E . c o l i s u c h a s c o l i ci n K - K 2 3 5 ,

    a n d f o l l o w i n g i t s d i s a s so c i a t i o n t h e a c t i v i t y w a s a s so c i -

    a t e d w i t h t h e c a r b o x y a l m o i e t y ( C H O ) ( V i e j o e t a l .

    1 9 9 1 ; M i r a n d a

    e t a L

    1 9 93 ). T h e o t h e r g r o u p o f c o li c i n s

    w a s f o u n d t o b e a p r o t e i n c o n t a i n i n g l i t t l e o r n o c a r b o -

    h y d r a t e , s u c h a s c o l i c i n E 2 - P 9 , w h i c h w a s f o u n d t o b e a

    p r o t e in w i t h a m o l e c u l a r m a s s o f a b o u t 6 0 k D a . O t h e r

    r e l a t e d c o l i c i n s , E 2 - C A 4 2 a n d c o l i c i n A , w e r e a l so

    p u r i f ie d a n d s h o w n t o b e a p r o t e i n w i t h l o w c a r b o -

    h y d r a t e c o n t e n t ( a b o u t 1 0 ) . T h e s e t w o w e r e d i f f e re n t

    f r o m t h e c o l i c i n K - K 2 3 5 ( G o o r m a g h t i g h

    e t a l .

    1991;

    G o n z a l e z - M a n a s e t a l . 1992).

    T h e b i o c h e m i ca l n a t u r e o f o t h e r b a c t e r io c i n g r o u p s

    h a v e a ls o b e e n d e t e r m i n ed : t y p e - R P y o c i n s p r o d u c e d b y

    P . a e r u g i n o s a w e r e p u r i f i e d b y K a g e y a m a a n d E g a m i

    Fig. 1. Transmission electron micrograph of a bacteriocin

    part ic les obtained from Enterobac te r c loacae negativelly

    stained w ith sod ium silicotungstate 2 '7,, w/v. The bacteriocins at

    field (A) are seen as bu llet-like particles possessing a base plate.

    A flagellum (F) is al so see n across the field. Scale marker

    indicates 0.1 nm.

    ( 1 9 6 2) a n d s h o w n t o b e p r o t e i n p a r t ic l e s t Ye e o f c a r b o -

    h y d r a t e a n d n u c l ei c a c id . T h e s y n t h e s i s o f t h is p y o c i n i s

    i n d u c i b l e a n d a c c o m p a n i e d b y c e l l l y s i s . A n o t h e r g r o u p

    o f p y o c i n s , a l so c a l l e d S p y o c i n s , w a s p u r i f i e d f r o m

    m i t o m y c i n C - i n d u c e d l y s a t e o f P . a e r u g i n o s a . T h e s e

    w e r e d i s t i n g u i s h e d f r o m t h e R t y p e p y o c i n s b y t h e i r

    d i f f u s i o n r a t e t h r o u g h a g a r , t h e i r s e n s i t i v i t y t o p r o t e a se

    d i g e s t i o n a n d b y t h e f a c t t h a t t h e y a r e n o t n e u t r a l i s e d

    w i t h a n t i s e r u m a g a i n s t a n y t y p e R p y o c i n s ( S a n o

    e t a l .

    1 9 9 3 ) . C l o a c i n C 5 , o n t h e o t h e r h a n d , i s a m a c r o m o l -

    e c u l e s i m i l a r t o R p y o c i n ( D a w , 1 9 8 9 ) . A l l b a c t e r i o c i n s

    a p p e a r t o r e p r e s e n t a h e t e r o g e n e o u s g r o u p o f s u b s ta n c e s

    r a n g i n g f r o m a s m a l l p r o t e i n t o a h i g h m o l e c u l a r w e i g h t

    p a r t ic l e w i th c o m p l e x s t r u c t u r e a n d c o m p o s i t i o n , b u t t h e

    p a r t r e sp o n s i b l e f o r k i l li n g a c t i v i ty s e e m s t o b e p r o t e i n i n

    e v e r y c a se .

    D . B a c t e r i o c i n o g e n y a n d ly s o g e n y

    T h e a n a l o g y b e t w e e n b a c t e r i o c i n p r o d u c t i o n a n d

    b a c t e r i o p h a g e l i b e r a t i o n w a s n o t e d f o l l o w i n g th e d i s c o v -

    e r y o f b a c t e r io c i n s , l n t i a l s t u d ie s c o n d u c t e d b y G r a t i a

    ( 1 9 2 5 ) e s t a b l ish e d t h e d i f f e r e n c e s b e t w e e n c o l i c i n s a n d

    b a c t e r i o p h a g e s , n o t a b l y t h e a b s e n c e o f b a c t e r i o p h a g e -

    l i k e m u l t i p l i c a t i o n o f c o l i c in s . L a t e r i n v e s t i g a t i o n r e -

    e s t a b l i s h e d c e r t a i n c o n n e c t i o n s , p a r t i c u l a r l y b e t w e e n

    t h o s e b a c t e r i o p h a g e s a n d c o l i c i n s t h a t a t t a c h t o t h e

    sa m e r e c e p t o r s ( A l a t o s s a v a , 1 9 94 ). U l t r a s t r u c t u r a l

    s t u d i e s s h o w e d a c e r t a i n a n a l o g y b e t w e e n t h e s e t w o

    b a c t e r i c i d a l a g e n t s ( D a w , 1 9 89 ; D a w a n d F a l k i n e r ,

    1 9 9 3 ) . B a c t e r i o c i n s w e r e c o n s i d e r e d t o b e i n c o m p l e t e

    p h a g e s . T h i s w a s e v i d e n t i n su c h s t u d i e s , a s sh o w n i n

    F i g s 1 a n d 2 . A r e l a x e d f o r m o f a b a c t e r i o c i n i so l a t e d

    f r o m E . c l o a c a e i s sh o w n ( F i g . 1 ) a n d a b a c t e r i o p h a g e

    i so l a t e d f r o m t h e s a m e s t r a i n ( F i g . 2 ) . T h e p h a g e i s

    c o m p o s e d o f p o l y h e d r a l h e a d a n d t ai l w i t h c o n t r a c t i l e

    sh e a t h a n d c o r e , a s w e l l a s t a i l f i b r e s ( D a w . 1 9 8 8 ) . B y

    c o m p a r i s i o m t h e s e t w o f i g u r e s s h o w a c o n s i d e r a b l e

    r e se m b l a n c e o f p h a g e t a i ls t o t h e b a c t e r i o c i n p a r t i c l e s .

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    4/13

    4 7 0 M . A . D a w a n d F . R . F a l k i n e r

    F i g . 2 . A m i c r o g r a p h o f b a c t e r i o p h a g e i s o l a te d f r o m t h e s a m e

    s t r a i n o f Enterobacter cloacae f o r m e d f ro m h e a d H ) , p h a g e

    ta i l T) a nd t a i l f ib re s TF) . The pha g e t a il Y) r e se m ble s the

    ba c te r ioc in pa r t i c le s A) . Sc a le m a rke r ind ic a te s 0 .1 nm .

    P h a g e P S 3

    o

    160 70 150

    I n t a c t S h r u n k I n t a c t

    P y o c i n R 4

    180

    7 0

    S h r u n k

    F ig . 3 . M o r p h o l o g i c a l c o m p a r i s o n o f p h a g e P S 3 a n d R - t y p e

    p y o c i n o f Pseudomonas aeruginosa. The pha ge t a i l i s s l igh t ly

    l a r g e r t h a n t h e b a c t e r i o c i n p a r t i c l e . D i m e n s i o n s a r e s h o w n

    in A .

    The bacteriocin seems to be headless phage. This empha-

    sised the striking structural resemblance between bacte-

    riocin and bacteriophage tail. Indeed, one of the earliest

    technical problems was to make the distinction between

    these two structures. This was further complicated if

    these two anti-bacterial agents were produced by the

    same bacterial strain. Both agents are adsorbed by

    specific receptors of the cell wall and kill the sensitive

    bacteria. In some cases receptors are common for certain

    bacteriocins and phages, such as colicin K and phage T6

    or colicin E and phage BF23 Ito e t a l . 1970). Both

    bacteriocinogenic bacteria and lysogenic bacteria are

    immune to the agents they produce. Bacteriocinogeny

    and lysogeny are both potential characters and the

    production of bacteriocin and bacteriophage is often

    enhanced by some treatments, e.g. UV irridiation.

    Each phenomenon, however, is a lethal process for the

    bacterium. Studies on pyocins found that some had

    structures very similar to phage tails, and they were

    categorised as R type pyocins Ito and Kageyama, 1970;

    Govan, 1974a,b). Morphologically, the tail of the phage

    PS3 is similar but not identical to R type pyocins; the

    phage tail is slightly bigger. The dimension of the phage

    is schematically illustrated in Fig. 3. The tail of the

    phage closely resembles R type, except that the size of

    the tail is a little longer than that of the pyocins. The

    fact that antiserum against R pyocins can neutralize

    the phage activity to a considerable extent, suggests

    that there are some common or very similar antigenic

    component s) in their structure.

    The similarity between prophage induction and of

    bacteriocin synthesis suggests that a similar mechanism

    is responsible for both events. Many treatments which

    inhibit DNA synthesis bring about prophage induction

    and also induce the synthesis of bacteriocins Hardy and

    Meynell, 1972a,b; Issacson and Konisky, 1974: Hardy,

    1975; Boemare e t a l . 1992). Unlike prophage induction,

    induction of bacteriocin synthesis is not necessarily

    accompanied by enhanced replication of the Col factor.

    In P r o t e u s m i r a b i l i s the increase in ColE1-K30 after

    mitomycin C treatment parallels the increase in bacterio-

    cin titer, but in E . c o l i the extensive replication is not a

    necessary condition for increased titers of colicins after

    induction Durkacz and Sherratt, 1973; Schiess and

    Goebel, 1974).

    The initial studies Ito and Kageyama, 1970) estab-

    lished the important differences between bacteriocins

    and bacteriophages as the latter is self reproducible in

    the sensitive bacteria, while the former is not. Some

    studies Daw, 1989) indicated that bacteriophages, on

    dilution, would show a decreasing number of discrete

    phage plaques; a bacteriocin on the other hand would

    show a diffuse thinning of growth becoming less marked

    with increasing dilution of the supernatant. When a

    culture with a high percentage of lacuna-forming cells

    LFC) is diluted and maintained at a constant density,

    the number of LFC remains constant for several gener-

    ations. Cells releasing bacteriocin exist for several hours,

    but they do not divide to produce LFC, while spon-

    taneous induction of prophages varies similarly in batch

    cultures. Although bacteriocins and bacteriophages lend

    themselves to obvious comparisons, there is no indi-

    cation for the existence of any direct relationship

    between the two antibacterial agents, such as a colicin

    being the product of incomplete phage development. In

    particular, no case has as yet been found of antigenic

    similarities between bacteriocins and bacteriophages.

    Even when the same bacterial strain is lysogenic and

    bacteriocinogenic, no connection between bacteriocin

    and bacteriophage can be demonstrated. Neither has

    any instance of conversion from the lysogenic to the

    bacteriocinogenic state been observed. One must, there-

    fore, conclude that in spite of many remarkable simi-

    larities between lysogeny and bacteriocinogeny, there is

    no compelling reason to believe that they are in any way

    connected.

    II. ULTRASTRUCTURAL STUDY OF

    B C T E R I O C I N S

    A . G e n e r a l s t r u c t u re

    Little work has been done on the physical structure

    of bacteriocins. Early electron microscope studies of

    clocins ML, E, V and K did not produce any definitive

    results concerning their morphology Konisky, 1982).

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    5/13

    Ba c te r ioc ins 471

    C o l i c i n E 3

    N - t e r m i n u s C - t e r m i n u s

    3 5 k D a 1 5 k D a

    T r a n s l o c a t i o n c a p a c i t y R N a s e a c t i v i t y

    i n t o t h e c e l l b i n d i n g o f I P

    F ig . 4 . Co l ic in E 3 o f

    Esherichi~l coli

    u n d e r p r o t e a s e d i g e s t i o n

    y i e l d s t w o f r a g m e n t s : 5 3 k D a a m i n o t e r m i n a l f r a g m e n t a n d a

    1 5 k D a c a r b o x y t e r m i n a l f r a g m e n t .

    F u r t h e r s t u d ie s s u g g e s t e d t h a t b a c t e r i o c i n s c a n f it

    i n t o t w o g r o u p s : t h o s e t h a t c a n n o t b e r e s o l v e d b y t h e

    e l e c t r o n m i c r o s c o p e s u c h a s E , V , K a n d p y o c i n S a n d

    o t h e r s t h a t h a v e a d e f i n i t e s t r u c t u r e , su c h a s c l o a c i n C 5

    a n d R p y o c i n . C o l i c i n E 3 r e p r e s e n t s a n e x a m p l e o f t h e

    f i rs t g r o u p . P r o t e o l y t i c d i g e s t i o n o f c o l ic i n E 3 w i t h

    t r y p s i n u n d e r m i l d c o n d i t i o n s y i e l d s t w o f r a g m e n t s , a

    3 5 k D a a m i n o - t e r m i n a l f ra g m e n t a n d a 1 5 k D a c a r b o x y -

    t e r m i n a l f r a g m e n t i n c o m p l e x w i th t h e i m m u n i t y p r o t e i n

    a s s h o w n i n F i g . 4 , w h i c h s u g g e s t e d a d o m a i n s t r u c t u r e

    f o r c o li c in E 3 ( O h n o et al . 1 9 7 7 ; S o h a m a n d D j e b l i ,

    1992; Ya j ima et al . 1992).

    M o s t o f th e s t u di es c o n c e r n i n g t h e m o r p h o l o g y

    o f b a c t e r io c i n s w e r e p e r f o r m e d o n p a r t ic l e s o b t a i n e d

    f r o m p y o c i n o g e n i c st ra i n s o f P. aeruginosa. E l e c t r o n

    m i c r o s c o p y o f p y o c i n p r e p a r a t i o n r e v e a l e d t h e p r e s e n c e

    o f n u m e r o u s s t r u c t u r e s r e s e m b l i n g t h e p h a g e t a il c o m -

    p o n e n t s a s s h o w n i n F i g . 5 . C o n t r a c t e d p a r t i c l e s ( F i g .

    5 a ) c o n s i s t o f a c o r e p a r t ia l l y s u r r o u n d e d b y a s h e a t h . I n

    m o s t p a r t i c l e s t h e c o r e a p p e a r s e m p t y , b u t o c c a s i o n a l l y

    c o r e s c a n b e s e e n t o c o n t a i n m a t e r ia l . U n c o n t r a c t e d

    p a r t i c l e s ( F i g . 5 b ) r e se m b l e d b u l l e t s a n d a b a se - p l a t e

    w a s v i s i b l e a t b r o a d e r e n d . H o o k - l i k e p i n s e x t e n d f r o m

    t h e l o w e r e n d s o f c o n t r a c t e d s h e a t h s a n d o c c a s i o n a l l y

    se v e r a l f i b r e s w e r e s e e n a t t a c h e d t o t h e b a se p l a t e .

    I s o l a t e d c o n t r a c t e d s h e a t h s w e r e o b s e r v e d a n d l o n g

    s h e a t h - li k e s t r u c t u r e s w e r e s e e n c o m p o s e d o f n u m e r o u s

    c o n t r a c t e d s h e a t h s . H o l l o w r i n g le t s a n d m i n u t e c o g -

    w h e e l s a r e a ls o o b s e r v e d . T h e m a j o r i t y o f p a r t ic l e s ,

    r e g a r d le s s o t t h e p y o c i n o g e n i c s tr a i n u s e d , m e a s u r e d

    a p p r o x i m a t e l y 1 00 x 1 5 n m i n t h e u n c o n t r a c t e d s t a te ;

    c o n t r a c t e d p a r t ic l e s c o n s i s t o f a h o l l o w t a il p i ec e , a p -

    p r o x i m a t e l y 1 0 0 x 7 n m , p a r t i a l l y e n c l o se d i n a sh e a t h

    m e a s u r i n g a b o u t 4 5 x 17 n m ( G o v a n , 1 9 7 4a ). T h e m o r -

    p h o l o g y o f th e s e b a c t e r i o c i n s c a n b e c h a n g e d b y f r e e z i n g

    a n d t h a w i n g w h i c h m a y r e n d e r t h e s e p a r t i c l e s i n a c t i v e .

    H o w e v e r , w h e n p u r i f i e d p y o c i n p r e p a r a t i o n s i n T r i s -

    H C I b u f f e r ar e s u b m i t t e d t o a f a s t f r ee z e i n a n a c e t o n e -

    d r y i c e b a t h , t h e p a r t i c l e s f o r m r o se t t e c l u s t e r s .

    A s c h e m a t i c d i a g r a m o f t h e v a r i o u s m o r p h o l o g i c a l

    f o r m s a n d s t r u c t u r e s s e e n i n e l e c t r o n m i c r o g r a p h s o f

    p y o c i n s i s p r e se n t e d i n F i g . 6 : t h e se c o n s i s t o f a c o n -

    t r a c t e d p a r t i c l e , a l o c k - w a sh e r r i n g l e t ( F i g . 6 a ) a n d t w o

    f o r m s o f r e l a x e d p a r t i c l e s d i f f e r i n g i n s i z e a n d s t r i a t i o n

    ( F i g . 6 b a n d c ) . T h e s e t w o f o r m s a r e f r e q u e n t l y s e e n

    t o g e t h e r i n t h e s a m e p r e p a r a t i o n ( H i g e r d et al . 1969;

    G o v a n , 1 9 7 4 a: D a w , 1 9 89 ). I n g e n e r a l t h e y a r e a ll

    m o r p h o l o g i c a l l y i d e n t ic a l e x c e p t f o r m i n o r d i f f er e n c e s i n

    d i m e n s i o n s ; t h e c h i e f fe a t u r e b e i n g t h a t t h e y r e s e m b l e

    h e a d l e s s p h a g e s .

    F i g . 5. E l e c t r o n m i c r o g r a p h s o f t w o d i f f e r e n t f o r m s o f p y o c i n

    o b t a i n e d f r o m s t r a i n s o f

    Pseudomonas aeruginosa

    C o n t r a c t e d

    p y o c i n p a r t i c l e s c o n s i s t e d o f c o r e p a r t i al l y s u r r o u n d e d b y a

    s h e a t h a ) a n d t h e u n c o n t r a c t e d r e l a x e d ) p y o c i n f o r m r e s e m b l e

    b u l l e t s w i t h a p l a t e a t t h e b r o a d e r e n d b ) . N e g a t i v e l y st a i n e d .

    Sc a le m a r ke r s ind ic a te I011 nm .

    F i g . 6. A s c h e m a t i c d i a g r a m s h o w i n g b a c t e r io c i n m o r p h o l o g y .

    T h e c o n t r a c t e d b a c t e r i o c i n p y o c i n ) p a r t i c l e a ) r e s e m b l e s a

    l o c k - w a s h e r r i n g l et a n d t w o r e l a x e d p y o c i n p a r t i c l e s b . c) s h o w

    d i f f e r e n t a p p e a r a n c e s .

    B . M o r p h o l o g y o / a c ti ve j b r m s

    P r e v i o u s l y , i t w a s n o t k n o w n w h e t h e r b a c t e r i c i d a l

    a c t i v i t y o f t h e b a c t e r i o c i n s w a s a s so c i a t e d w i t h a d i s c r e t e

    m o r p h o l o g y o r n o t , o r w h e t h e r t h e a c ti v i ty w a s c o n -

    f i n e d t o t h e r e l a x e d o r c o n t r a c t e d f o r m s ( B r a d l e y a n d

    R o b e r t s o n , 1 9 68 ). F u r t h e r s t u d ie s f o u n d a d i re c t c o r r e -

    l a t io n b e t w e e n t h e p e r c e n t a g e o f r e la x e d p a r t i c le s a n d

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    6/13

    4 7 2 M . A . D a w a n d F . R . F a l k i n e r

    t he reduc t ion in ac t iv i ty dur ing convers ion to the con-

    t rac t ed s t a t e (Higerd

    e t a l .

    1 9 6 9 ; G o v a n , 1 97 4b ; D a w ,

    1989) . I t was conc luded tha t , once con t rac t ion occurs ,

    there appears to be l i t t l e o r no increase in ac t iv i ty upon

    subsequen t re l axa t ion .

    I n a n a t t e mp t t o u n d e r s t a n d t h e b i o l o g i c a l n a t u r e o f

    c o n t r a c t e d f o r ms o f b a c t e r io c i n , H i g e r d

    et al .

    (1969)

    adde d a so lu t ion o f pyoc ins to pur i f ied ce ll wal l p repa r -

    a t ions o f sens it ive s t ra ins o f

    P . a e r u g i n o s a .

    A d s o r p t i o n

    to the ce l l wal l o f the sens i tive s t ra ins occu r red a t t he

    f l a tt e n e d e n d o f t h e b a c t e r i o c in w i t h i n o n e m i n u t e a f t e r

    adso rp t ion o f the re l axed par t i c l es to the cel l wal l s and a

    c o n t r a c t i o n o f th e o u t e r s h e a t h w a s o b s e r v e d . E a r l y

    s tud ies on

    P r o t e u s v u l g a r i s

    b y C o e t z ee

    et al .

    (1968) also

    s h o w e d t h a t a h i g h t i t e r o f b a c t e r io c i n p r e p a r a t i o n s

    t rea t ed wi th

    H 2 0 2

    a n d e t h a n o l a n d t h e n a d s o r b e d w i t h a

    s u s p e n s i o n o f s u s c e p t i b l e s t r a i n s , h a d ma n y c o n t r a c t e d

    ta i l - l i ke s t ruc tu res in the superna tan t f lu id and very few

    a r o u n d t h e s u s c e p t i b le o r g a n is m. T h i s s u g g e s te d t h a t t h e

    r e la x e d f o r m o f t h e p a r ti c l e ma y b e t h e n a t i v e s t a te o f

    the bac te r ioc in , s ince ac t iv i ty and ce l l wal l adsorp t ion

    w e r e d e mo n s t r a b l e o n l y w i t h p a r t i c l e s i n t h e r e l a x e d

    state.

    C . M o d e o f a ct io n

    M o s t o f t h e i n f o r ma t i o n r e g a r d i n g t h e mo d e o f a c t i o n

    o f b a c t e r i o c i n s h a s b e e n b a s e d o n s t u di e s o f s e v e ra l

    b a c t e r i o c i n s p e r f o r me d b y N o mu r a a n d h i s c o l l e a g u e s

    (Nomura , 1967) . Bac ter ioc ins exer t t he i r b io log ica l

    ac t ion th rough adsorp t ion to the i r spec i f i c recep to rs ,

    loca ted a t t he ex te rna l su r face o f sens i tive cel ls , and a re

    then t ra ns loca ted to the i r spec if i c t a rge t s w i th in these

    cel ls (Parker

    e t a l .

    1989) . Kine t i c da ta ind ica te tha t

    bac te r ioc ins behave as par t i cu la t e l e tha l agen t s , k i l l i ng

    sens i t ive ce l l s i n what amount s to a s ing le h i t p rocess .

    Th i s to the so ca l l ed qu an ta l k i ll i ng ra ther than

    m ola r coo pera t ive k i ll i ng ac t ion o f c l as s ica l an t i -

    b i o t i c s ( Ma y r - H a r t i n g

    e t a l .

    1972).

    T h e m o d e o f a c t io n o f b a ct e ri o c in s m a y v a r y f r o m o n e

    t y p e t o a n o t h e r ( B r a u n

    e t a l .

    1 9 9 4 ; Mo n t v i l l e a n d

    Br u n o , 1 9 9 5 ) . E a r l y e x p e r i me n t s d e mo n s t r a t e d t h a t c o -

    l icin E3 led to specif ic inhibi t ion of prote in syn thesis

    (Schwar tz and Hel insk i , 1971) . Co l i c in E2 l eads to

    s p ec i fi c i n h i bi t io n o f D N A s y n t h e si s a n d i n d u c e s D N A

    d e g r a d a t i o n . O t h e r s t u d i e s i mp l i c a t e d t h e c y t o p l a s mi c

    me m b r a n e a s p r i ma r y t a r g e t o f c o l ic i n A , E l , K , I a , a n d

    Ib . These bac te r ioc ins and o ther re l a t ed co l i c ins c rea te

    d i s r u p t i o n o f a c ti v e t r a n s p o r t a n d p r o d u c e l e a k a g e o f

    i o n s b y f o r mi n g v o l t a g e - d e p e n d e n t c h a n n e l s i n p h o s -

    p h o l i p i d b i l a y e r me mb r a n e s , t h e r e b y d e s t r o y i n g t h e

    ce l l ' s po ten t i a l (Sche in

    et al .

    1978). This resul ted in the

    inh ib i t ion o f p ro te in a nd nuc le i c ac id b iosyn thes i s and

    u n c o u p l e d e l e c t r o n t r a n s p o r t f r o m a c t i v e t r a n s p o r t o f

    t h i o me t h y l - f l - D - g a l a c t o s i d e a n d p o t a s s i u m ( L u s k a n d

    Nel son , 1972) . T rea ted ce l l s l eaked po tas s ium and mag-

    nes ium ions . The los s o f such ions has been imp l i ca t ed as

    the p r ima ry cause o f ce ll dea th (Ko ni sky , 1982) . Neve r -

    the less , each o f these co li c ins has i ts own imm uni ty

    P e r i p l a s m

    I m m u n i t y p r o t e i n P o r e - f o r m i n g d o m a i n

    N L2 C

    C y t o p l a s m

    Fig . 7 . The h ydrop hi l i c a -he l i c e s of c o l i c in A o f Esherichia col l

    A p o r e f o r m i n g d o m a i n a - h e li c e s 8 a n d 9 ) a re r e s p o n s i b le f o r

    r e c o g n i t i o n o f t h e i m m u n i t y p r o t e i n .

    p r o t e i n s ( W e a v e r

    e t a l .

    1981a ,b ; Van der Goo t

    e t a l .

    1991) . I t i s mo re l ike ly tha t imm uni ty p ro te ins inac t iva te

    the i r co r respo nd ing co l i c ins by d i rec t in t e rac t ion . Di f fe r -

    e n t s tu d i e s ( Ma n k o v i c h

    e t a l .

    1 9 8 4 ; Sh o h a m a n d D j e b li ,

    1992) , us ing a cons t ruc t ion o f hybr id p ro te ins b e twee n

    co l i c ins Ia , Ib , A and E1 have shown tha t t he C- t e rmina l

    pore- fo rming domain was respons ib le fo r the reCog-

    n i t ion o f immu ni ty p ro te in by pore fo rm ing co l ic ins .

    M o s t i n v e s ti g a to r s ( T o k u d a a n d K o n i s k y , 1 9 7 8; W e a v e r

    e t a l .

    1981b ; Gel i and L azdunsk i , 1992a) conc luded tha t

    imm uni ty p ro te ins o f pore fo rm ing co l ic ins in t e rac t

    w i t h t h e p o r e - f o r mi n g d o m a i n s o f t h e ir c o r r e s p o n d i n g

    co l i c ins a t t he level o f the inner me m bran e and thus the i r

    a c t i o n s h o u l d p r e v e n t t h e f o r ma t i o n o f th e p o r e .

    A p p a r e n t l y t h e i n se r ti o n o f p o r e f o r mi n g b a c t e r io c i n s

    i s t r i g g e r e d b y s p o n t a n e o u s p e n e t r a t i o n i n t h e b i o l a y e r

    o f a h y d r o p h o b i c h e l ic a l h a ir p i n n o r ma l l y b u r i e d i n

    t h e w a t e r - s o l u b l e p r o t e i n s . T h e ma j o r d e t e r mi n a n t f o r

    immuni ty spec i f i c i ty o f such co l i c in i s l oca ted be tween

    a-he l ices 8 and 9 , as shown in F ig . 7 . Gel i and Lazdu nsk i

    (1992b) , repor t ed tha t co l i c in A recogn i ses i t s immuni ty

    p r o t e i n t h r o u g h i t s h y d r o p h o b i c H 2 , H 3 a n d H 4

    a-he l i ces , i n add i t ion to the per ip l asmic loop . On the

    o t h e r h a n d , t h e ma c r o mo l e c u l a r b a c t e r i o c i n s s u c h a s R

    pyocin and c loac in C5 adsorb to sens i t ive ce l l s and exer t

    the i r b io log ica l ac t iv i ty . Kazi ro and Tanaka (1965a) and

    K a z i r o a n d T a n a k a ( 1 9 6 5 b ) r e p o r t e d t h a t t h e a d d i t i o n

    o f R p y o c in , p r o d u c e d b y

    P . a e r u g i n o s a

    t o g r o w i n g

    cu l tu re o f the sens i tive s tra in , caused a rap id and c om -

    p le t e cessa t ion and inh ib i t ion o f the syn thes i s o f RNA,

    DNA and p ro te in in the sens i t ive ce l l s . Th i s was found

    due to inac t iva t ion o f the r ibosom es . The k i l l ing ac t ion

    of these bac te r ioc ins i s t herefo re remin i scen t o f the

    ac t ion o f v i ru l en t phages on the hos t ce ll s (Coetzee

    e t a l .

    1968) . The e l ec t ron microscop ic s tud ies on the

    mo r p h o l o g i c a l c h a n g e s o f th e s e n s it iv e b a c t e r ia ma y l e a d

    t o f u r t h e r u n d e r s t a n d i n g t o t h e mo d e o f a c t io n o f t h e s e

    bac te r ioc ins .

    D . M o r p h o l o g i c a l c h a n g e s a s s o c i a t e d w i t h b a c te r i o c in

    a c t i v i t y

    The k il li ng o f suscep t ib l e bac te r i a by a b ac te r ioc in i s a

    k ine t i c p rocess . The ac t ion o f those bac te r ioc ins which

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    7/13

    B a c t e r i o c i n s 4 7 3

    a r e s h o w n t o h a v e a d e f i n i te s t r u c t u r e h a s b e e n s t u d i e d

    i n a p r e l i m i n a r y m a n n e r u s i n g t h e e l e c t r o n m i c r o s c o p e .

    T h e m o d e o f b a c t e r i o c i n a c t i o n i s a s s o c i a te d w i t h d i ff e r-

    e n t m o r p h o l o g i c a l c h a n g e s o f b o th , t h e s h a p e o f t h e

    b a c t e r i o c i n s a n d t h e m o r p h o l o g y o f th e s u s c e p t ib l e

    b a c t e r i a . T h e r e h a v e b e e n r e l a ti v e l y f e w r e p o r t s o n t h e

    n a t u r e o f th e m o r p h o l o g i c a l c h a n g e s p r o d u c e d i n su s -

    c e p t i b le c e ll s o n t r e a t m e n t w i t h b a c t e r i o c i n s , p a r t i c u l a r l y

    G r a m p o s i t i v e b a c t e r i a , d u e t o t h e f a c t t h a t m o s t o f

    t h e s e b a c t e r i o c i n s a r e n o t r e s o l v a b l e b y e l e c t r o n m i c r o -

    s c o p e ( V l a e m y n c k et al . 1 9 9 5 ) . E x t e n s i v e s t r u c t u r a l

    c h a n g e s o c c u r r e d i n g r o u p A S t r e p t o c o c c u s s t r a i n a f t e r

    e x p o s u r e t o s t a p h y l o c o c c o c i n C 55 ( C l a w s o n a n d D a j a n i ,

    1970; E l l i son et al . 1 9 7 1 ) . T h e se c h a n g e s i n c l u d e t h e

    c o n d e n s a t i o n o f n u c l e a r m a t e r i a l , l o ss o f r ib o s o m e s ,

    m o d i f i c a t i o n o f m e s o s o m e s a n d d i s s o l u t i o n o f ce ll c o n -

    t e n t s . S i m i l a r c h a n g e s w e r e a l so o b se r v e d i n s e n s i t i v e

    s t r a i n o f S t r e p t o c o c c u s p y o g e n e s ( T a g g et al . 1973)

    t r e a t e d w i t h s t r e p t o c i n A . T h e s e c h a n g e s r a n g e d f r o m

    t h e n o r m a l a p p e a r a n c e o f t h e S t r e p t o c o c c i t o t h o s e w i th

    a c o n d e n s a t i o n o f n u c l e a r m a t e r i a l w i t h a n i n c r e a s e in

    t h e p e r i n u c l e a r s p a c e .

    O n t h e o t h e r h a n d , m o r p h o l o g i c a l s t u di e s c o n c e r n i n g

    t h e b a c t e r i o c i n s o f G r a m n e g a t i v e b a ci ll i w e re d o n e

    u s i n g p y o c i n p a r t i c le s a n d m o r e r e c e n t l y w i t h c l o a ci n C 5

    o f E n t e r o b a c t e r c l o a c a e ( G o v a n , 1 9 7 4 a , b ; D a w , 1 9 8 9 :

    D a w a n d F a l k i n e r , 1 9 9 3) . T h e s e g r o u p s c o n d u c t e d

    d e t a i l e d s t u d i e s o n a d s o r p t i o n a n d i n h i b i t o r y a c t i o n o f

    p y o c i n 2 1 o n s e n s i t i v e c e l l s o f P. aeruginosa a n d c l o a c i n

    C 5 o f E. c loacae u s i n g e l e c t r o n m i c r o s c o p y . T h e u n c o n -

    t r a c t e d p a r t i c l e s ( t h e a c t iv e f o r m s o f b a c t e r i o c i n s , F i g s 1

    a n d 5 b ) a t t a c h e d r a p i d l y b y t h e b r o a d e r o r b a s e p l a t e

    e n d t o s e n s i t i v e b a c t e r i a a n d n o i m m e d i a t e a d s o r p t i o n

    o f t h e b a c t e r i o c i n u s u a l l y o c c u r s a s s h o w n i n F i g . 8

    ( G o v a n . 1 9 7 4 a) ; w i t h a P . aeruginosa i n d i c a t o r s t r a i n

    a f t e r o n e m i n u t e c o n t a c t w i t h i n d u c e d p y o c i n 2 1 . T h e

    b a c t e r i a l s u r f a c e i s h e a v i l y s u r r o u n d e d b y p y o c i n

    p a r t ic l e s a n d n o c o n t r a c t i o n o f a d s o r b e d p a r t ic l e s is

    s h o w n . C o n s e q u e n t l y , a f t e r a d s o r p t i o n , c o n t r a c t i o n o c -

    c u r s a n d t h e b a c t e r i o c i n s s t a r t t o e x e r t t h e i r a c t i o n s a s

    sh o w n i n F ig . 9 ( D a w a n d F a l k i n e r , 1 99 3 ); E. c loacae

    s t r a in s e n s it iv e t o c l o a c i n C 5 a f t e r f o u r m i n u t e s c o n t a c t .

    T h e c o n t r a c t e d b a c t e r i o c i n s c a n b e s e e n a d s o r b e d t o t h e

    b a c t e r i a l su r f a c e a n d i n t h e v i c i n i t y o f t h e b a c t e r i a l c e ll .

    F i g u r e 1 0 ( G o v a n , 1 9 7 4 a) a ls o s h o w s t h e s a m e f o r a

    P. aeruginosa s t r a in a f t e r f iv e m i n u t e s c o n t a c t w i t h

    se n s i t i v e p y o c i n s . T h e b a c t e r i a l c e l l i s a l so su r r o u n d e d

    b y c o n t r a c t e d b a c t e r i o c i n s .

    A f t e r t h e a d d i t i o n o f b a c t e r i o c i n s t o s e n s i ti v e b a c te r i a

    f o r a l o n g e r p e r i o d , a v a r i e t y o f c h a n g e s h a v e b e e n

    o b s e r v e d . T h e e n t i r e s u r f a c e o f t h e s e n s it iv e b a c t e r i u m

    a p p e a r s c o v e r e d w i t h r o d l i k e p a r t i c l e s , w i t h a n i m m i -

    n e n t d i s r u p t i o n o f t h e b a c t e r i a l c e ll a s sh o w n i n F i g s 11

    a n d 1 2 ( D a w a n d F a l k i n e r , 1 9 93 ; D a w , 1 9 89 ; G o v a n ,

    1 9 7 4 a ) . T h e b a c t e r i a l c e l l s , a t t h i s s t a g e , w e r e d e a d a n d ,

    i n d e e d , a l t e r t w o h o u r s i n c u b a t i o n w i t h t h e b a c t e r i o c i n

    p r e p e r a t i o n s , m o r e t h a n 9 0 7 ,, o f t h e b a c t e r i a w e r e s e e n

    t o b e c o m p l e t e l y d i s r u p t e d . T h i s , h o w e v e r , r e s u l t e d i n

    t h e k i l l in g o f s e n s i t iv e b a c t e r i a w i t h o u t l y s is . O n t h e

    o t h e r h a n d . w h e n b a c t e r i o c i n s w e r e m i x e d w i t h r e s i s ta n t

    Fig. 8 . Pseudomonas aerughu~sa s t r a i n a f t e r o n e r a i n c o n t a c l a t

    3 7 ° C w i t h p y o c i n p a r t i c l e s . T h e b a c t e r i a l s u r f a c e i s s u r r o u n d e d

    b y m a n y u n c o n t r a c t e d b a c t e r i o c i n p a r ti c l es . N e g a t i v e l y s t a i n e d

    w i t h p o t a s s i u m p h o s p h o t u n g s t a t e 2 , ~ , w / v . S c al e m a r k e r

    i n d i c a t es 2 0 0 n m

    ii L

    Fig. 9 .

    nterobacter cloacae

    a f t e r 4 r a i n c o n t a c t w i t h c l o a c i n a t

    3 1 ° C . F e w u n c o n t r a c t e d p a r t i c l e s (U ) a r e v i s ib l e c l o s e t o t h e

    b a c t e ri a l s u r F ac e a n d m a n y c o n t r a c t e d ( C ) p a r t ic l e s c a n b e s e e n

    a d s o r b e d t o t h e b a c t e r i a l s u r f a c e a n d i n t h e v i c i n i ty o f t h e

    b a c t e r i u m . S c a l e m a r k e r i n d i c a t e s 1 0 (I n m .

    s t r ai n s , n o n e o f t h e a b o v e - m e n t i o n e d k i l l in g p r o -

    c e s s e s o c c u r r e d . T h e e l e c t r o n m i c r o g r a p h s s h o w n o

    a t t a c h m e n t o f b a c t e r io c i n p a r t i c le s t o t h e s u r f a c e o f

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    8/13

    474 M .A . Daw and F. R. Falkiner

    Fig. 10.

    Pseudomonas aeruginosa

    after 5 min contact at 37°C

    with pyocin. The bacterial cell is surrounded by contracted

    particles which can be se en adsorbed to the bacterial surfaces

    and in the v icinity of the bacterium. S cale marker indicates

    200 nm.

    t h e r e s is t a n t b a c t e r i a , a n d m o s t o f t h e p a r ti c le s r e m a i n e d

    u n c o n t r a c t e d a n d s o m e d is t a n c e f r o m t h e b a c t e r i a l

    c e l l, a s s h o w n i n F i g . 1 2 ; E cloacae s t a i n r e s i s t a n t t o

    c l o a c i n C 5 a f t e r 3 0 m i n c o n t a c t . T h e b a c t e r i o c i n

    p a r t i c l e s d i d n o t a t t a c h t o t h e s u r f a c e o f t h e r e s i s ta n t

    b a c t e ri a a n d m o s t o f t h e m r e m a i n e d u n c o n t r a c t e d ( D a w ,

    1989) .

    D e s p i te t h e a m b i g u i t y o f th e e l e c tr o n m i c r o s c o p e

    e v i d e n c e c o n c e r n i n g t h e c h a n g e s a s s o c i a t e d w i th b a c -

    t e r i o c i n p a r t i c l e s d u r i n g t h e k i l l i n g p r o c e s s , i t s e e m s t h e y

    a ls o g o th r o u g h m o r p h o l o g i c a l a n d c o n f o r m a t i o n a l

    c h a n g e s d u r i n g t h e i r a c t i v i t y . O n l y r e l a x e d f o r m s a d s o r b

    t o t h e s u s c ep t i b le s t r a in . W h e n t r ig g e r e d , a c o n t r a c t e d

    t a i M i k e s t r u c t u r e c a n n o t b i n d . D i f f e r e n t a g e n t s c a n

    e f f ec t t h i s a c t i v i ty . G o v a n ( 1 9 7 4 a ) f o u n d t h a t t h e a c t i v i t y

    o f t h e p y o c i n w a s d e s t r o y e d a f t e r t r e a t m e n t w i t h 0 . 0 2

    S D S a n d t h a t t h e p y o c i n s l o s t t h e ir o u t e r c o n t r a c t i l e

    s h e a t h a n d d i d n o t a d s o r b o n t h e s e n s i t i v e b a c t e r i a l c e l l s .

    T h i s a c t i v i t y w a s n o t a f f e c t e d w h e n S D S w a s u s e d a t a

    c o n c e n t r a t i o n l e ss t h a n 0 . 0 1 .

    D i f f e r e n t s t u d ie s ( K r i m m a n d A n d e r s o n , 1 9 67 ;

    M o o d y , 1 9 6 7 a ,b ; B r a u n , 1 9 94 ), s u g g e s t e d th a t t h e

    m e c h a n i s m o f c o n t r a c t io n o f th e t ai l s h ea t h o f T 4

    b a c t e r i o p h a g e i n v o lv e s a c o n f o r m a t i o n a l c h a n g e i n t h e

    p r o t e i n s u b u n i t , in d i c a t i n g c o n f o r m a t i o n a l c h a n g e s in

    t h e d o m a i n r e q u i r e d f o r th e i n f e c ti v i ty p r o c e s s o f t h e

    b a c t e r i o p h a g e . B a c t e r i o c i n s re s e m b l e c o n t r a c t i le b a c -

    t e r i o p h a g e s i n m a n y r e s p ec t s , t h o u g h t h e y d o n o t

    (a)

    Fig. 11. Enterobacter cloacae sensitive to cloacin C5 (a) and

    Pseudomonas aeruginosa

    sensitive to pyocin (b) after 30 min

    contact at 37 0C w ith the bacteriocin particles. In both con-

    ditions, the bacterial surfa ce appears con voluted and c overed

    with many bacteriocin part icles contracted (C) and uncon-

    tracted (U). E mpty sheaths (E) were also seen in the vicini ty of

    the sensitive bacterium. Scale markers indicate 200 nm.

    Fig. 12. Enterobacter cloacae strain resistant to bacteriocin C5.

    The bacteriocin part icles ha ve not at tached to the bacterial

    surface and most o f the bacteriocins have rem ained uncon-

    tracted. Scale marker indicates 200 nm.

    r e p l i c a t e in s e n s i ti v e h o s t b a c t e r i a . I n m o r p h o l o g i c a l

    t e r m s , t h e i r l a c k o f a n y s t r u c t u r e r e s e m b l i n g a b a c t e r i o -

    p h a g e h e a d i n d i c a t e s a c o n c o m i t a n t l a c k o f t h e m a i n

    r e s e r v o i r f o r n u c l e i c a c i d .

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    9/13

    B a c t e r i o c i n s 4 7 5

    P c o l >

    c e a l

    P i m m > E 9

    i m m l y s

    D N A - 0 -

    P r o t e i n s

    C o l i c i n

    c o m p l e x

    ( l l l l l ' l l l [ l l l [ l i l l i ' l l l )

    C o l i c i n E 9 I m m u n i t y L y s i s

    p r o t e i n p r o t e i n

    F i g . 1 3 . G e n e t i c o r g a n i s a t i o n o f c o l i c i n E9 o p e r o n o f

    E s h e r i c h i a

    coli P c o l is a n S O S - i n d u c i b l e p r o m o t e r ceal C o l i c i n E 9

    s t r u ct u r a l g e n e P i m m i m m u n i t y g en e p r o m o t e r . E 9 i m m :

    i m m u n i t y p r o t e i n g e n e l v s ; l y s i s g e n e i n v o l v e d i n s e c r e t i o n o f

    t h e c o l i c i n c o m p l e x .

    I I I M O L E C U L A R B I O L O G Y O F B A C T E R I O C I N S

    A . G e n e t i c d e t e r m i n a n t s o J b a c t e r i o c i n s

    The production of bacteriocins seems to be a heredi-

    tary feature associated with cytoplasmic genes (i.e

    bacteriocinogenic factors). The genetic determinants of

    colicins (colicinogenic factors) have been the most com-

    monly studied (Reeves, 1972; Nieto-Lozano e t a l . , 1992;

    Schved e t a l . , 1993; Braun et al . 1994). Most of the

    genetic determinants of the bacteriocins are plasmid-

    borne with few exceptions, including pneumocin and

    pyocins, which are found to be chromosomally located

    (Kageyama, 1975: Quirantes

    e t a l . ,

    1994). Bacteriocino-

    genic genes may determine, not only the chemical com-

    position of the bacteriocin, but also the regulation of its

    biosynthesis, its release from the cell and the host cell

    immunity to its own bacteriocin. Plasmid-encoded bac-

    teriocins could be easily transferred from bacteriocino-

    genic bacteria to compatible recipient strains either by

    conjugation or transduction. The transfer of such a

    plasmid emparts to the recipeint strains all the features

    encoded. Transfer of bacteriocinogenic activity has

    been demons trat ed with many colicins. E colicins are

    plasmid-encoded proteins produced by E . c o i l , which kill

    the sensitive cells by binding to the btuB-encoded cell

    surface receptor (Di Masi e t a l . , 1973). The E colicin

    plasmid also codes for the production of a specific

    immunity protein which, upon synthesis, binds to the C

    terminal domain of its cognate. James e t a l . (1992)

    studied the genetic determinant of the interaction be-

    tween colicin E9 and its immunity proteins. ColE9-J

    plasmid encodes the colicin structural and immunity

    genes in an operon (Chak and James, 1986). The pro-

    moter of

    E 9 i m m

    genes is located within the colicin E9

    structural gene. Transcription from such a promoter

    allows constitutive expression of the immunity protein

    and provides immunity to colicin E9. Transcription

    from the inducible promotor results in the expression of

    the genes of the operon, as shown in Fig. 13 and leads to

    the synthesis and secretion of the colicin/immunity

    protein complex.

    Plasmid elimination curing can be accelerated by

    exposing the host strains to certain agents such as the

    intercalating dye acridine orange and ethidium bromide

    or by growing the bacteriocinogenic cells at an elevated

    temperature (Tolmasky

    e t a l . ,

    1993). Such agents could

    eliminate the plasmids encoded for the bacterJocins.

    Bacteriocinogenic factors from

    S t a p h y h , c o c c o u s a u r e u s ,

    and

    C o l i s t r i d i u m p e r f e r i n g e s

    have been cured by such

    methods (Gagl iano and Hinsdill, 1970; Ionesco and

    Bouanchaud, 1973). Dajani and Taube (1974) noted that

    the curing of bacteriocin production in staphylococci

    resulted in alteration the resistance of producer cells to

    the action of the staphylococcin. Where staphylococcin

    producer strains were unable to adsorb the bacteriocin

    and were naturally resistant to its killing effect, cured

    strains adsorbed the staphylococcin and were rapidly

    killed by it. This makes the bacteriocinogenic strains

    whose bacteriocins were plasmid-encoded readily lose

    their bacteriocinogenic activity, in comparison to those

    strains possessing chromosomal borne bacteriocins.

    Pyocins on the other hand have peculiar features since

    their genetic determinants are all located at definte sites

    on the chromosome. This is in sharp contrast to the case

    for many other bacteriocins such as colicins, which are

    of plasmid origin. Thus, the loci of pyocins types R and

    F are between alteration of t r p C D and tlT~E (Kageyama,

    1975; Shinomiya e t a l . , 1983), the locus for pyocin AP41

    is between @ s ' - 9 0 1 5 and a r g F and the locus for pyocin S

    is close to fl a Y (Sano and Kageyama, 1984: Sano

    e t a l . ,

    1990) on the chromosome of the producer strains. Sano

    et al .

    (1990) studied the pyocin genes in detail and cloned

    them on appropriate plasmids. The genes governing

    pyocins AP41, S1 and $2 were found to each encode two

    proteins, large and small, transcribed in the same direc-

    tion; AP41, 83.6 and 10 kDa; SI, 64.6 and 10 kDa and

    $2, 74 and 10 kDa. Striking homology in the amino acid

    sequences found among these pyocins and colicins,

    particularly the C-terminal amino acids, the central

    region of the pyocins and the peptides stretching

    between the N-terminal and the central parts of colicins

    E2 and E3 and cloacin DF 13. Comparison of the genetic

    components of these bacteriocins is depicted in Fig. 14.

    The S-type pyocin has been purified and cloned from E.

    c o l i cells using DEAE-cellulose and chromotography

    (Ohkawa e t a l . , 1973; Sano and Kageyama, 1981). The

    purified preparation is a complex composed of two

    proteins, a larger component which showed essentially

    the same level of killing activity as did the complex

    molecule and a smaller component which made the cells

    immune to pyocins. When indicator strains were trans-

    formed with a cloned DNA for the smaller component,

    they became insensitive to the respective pyocin (Sano

    e t a l . ,

    1990). In conclusion, bacteriocins differ not only

    in the range of target bacteria but also in the location of

    their genes, chromosomal or plasmid borne. However,

    the similarity found among these agents in amino acid

    sequence and in function may give clues concerning their

    etiology.

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    10/13

    4 7 6 M . A . D a w a n d F . R . F a l k i n er

    P y o c i n

    A P 4 1

    S I

    $ 2

    C o l i c i n E 2

    C - T e r m i n a l s T - T e r m i n a l s

    0 400 800

    I I I I I I I I I A m i n o a c i d s

    I I I I I I V

    R 6 4 0

    I ' , . I . ' , I I I I I l I I I I I l I I I l I V A v 7 6

    > , \ R 487

    1

    i ' ,l , , ; ', i il l ' il " I i l V / / / A 6 1 7

    7 7 7

    i l t

    ~ / / / / R 5 58

    I [{ l

    ] 1 ' , I , I , 1 i l l i l i 1 1 1 : l I I ] i I V / / / A 6 8 9

    ~ - [ / ~ R 4 5 2

    R 4 5 4

    E 3 ~ / / A I I l l l l l l l l l k . + ~ \ ~ 5 5 l

    : : : : : R 46 4

    I i l ] l ] l l l l l l l l l l l [ I t k \ \ q 5 6 1

    T r a n s l o c a t i o n R e c e p t o r

    n u c l e a s e

    F i g . 1 4 . A m i n o a c i d s e q u e n c e h o m o l o g y i n t h e k i ll er c o m p o -

    n e n t s o f p y o c i n s A P 4 1 , S l a n d $ 2 o f Pseudomonas aeruginosa

    c o l i c i n s E 2 a n d E 3 o f

    Escherichia coil

    a n d c l o a ci n D F 1 3 o f

    Enterobacter cloacae. D o m a i n s s h o w i ng h o m o l o g y h a v e th e

    s a m e s h a d i n g . L e n g t h s a re p r o p o r t i o n a l t o t h e n u m b e r o f

    a m i n o a c i d s o f e a c h m o l e c u l e . A n A r g r e s i d u e n e a r t h e s t a rt

    p o i n t o f e a c h n u c l e a s e d o m a i n i s f ix e d a s a r e f er e n c e p o i n t

    ( R 6 4 0 i n A P 4 1 ) . T h e N - t e r m i n a l M e t i s la c k i n g i n t h e p u ri f ie d

    p y o c i n s .

    C l o a c i n D F I 3

    B. Microbiological relevance of bacteriocins

    Bacteriocins have found a widespread significance in

    medical microbiology, particularly in epidemiological

    studies. Bacteriocin typing can be done in two ways: 1)

    by determining the bacteriocin production pattern of a

    strain against a set of standard indicators and 2) by

    determining the bacteriocin susceptibility pattern of the

    strain against a set of bacteriocins which are applied

    to it. Each method has been used in epidemiology to

    determine whether the isolates from different sources are

    the same. If the isolates are from the same strain, their

    bacteriocin production or susceptibility patterns will be

    identical. The bacteriocin typing technique has been

    widely used to answer the epidemiological questions in

    the nosocomial infections. Although the bacteriocin

    fingerprinting was found to be applicable for both Gram

    positive and Gram negative bacteria, the scheme has

    been most successfully used in the studies of Gram

    negative bacilli.

    Bacteriocin activity has been used as a marker for

    typing epidemic strains of gram positive bacteria such as

    S. aureus Streptococc us faeca lis

    and

    Colistridium per-

    Jkingens. Hale and Hinsdill, 1973; Jack and Tagg, 1992;

    Stiles, 1994). These studies, however, were never found

    to have a wide range of application in microbiology.

    More promising, is the application of bacteriocin typing

    of mycobacteria, particularly atypical strains Takeya

    and Tokiwa, 1972, 1974). Rapidly growing mycobac-

    teria such as the Mycobacter iumfortui tum che lone i com-

    plex cause serious infections in immunocompromised

    patients and those with acquired immune deficiency

    syndrome AIDS). My c obac te r ium species, isolated from

    patients with prosthetic heart valves and hip joints, can

    be classified to specific bacteriocin profiles. The myco-

    bacteriocin activity can be combined and correlated with

    other typing methods for further classification and

    differentiation of such mycobacteria.

    The role of Gram negative bacilli in a wide variety of

    diseases is well known, particularly in the nosocomial

    infection Du Pont and Spink, 1969; Daw and Falkiner,

    1994). Hence, not only the recognition of the causative

    agent is critical, but also determinat ion as to whether all

    strains of a particular pathogenic organism isolated from

    an outbreak o f disease originate from a common source.

    Bacteriocin typing has been used to trace such organisms

    and most of the definitive investigations of bacteriocin

    typing have been used on Gram negative infections.

    Early data on the epidemiological relevance of bacterio-

    cin typing was reported on typing of E. coil and related

    pathogens such as

    Proteus

    species and

    Shigella sonnei.

    A significant resurrection of interest in the bacteriocin

    typing started in the early seventies. This was due the

    fact that bacteriocin typing is, 1) reliable in tracing the

    source of the infecting organisms, 2).discr imantory

    and reproducible, 3) does not need a sophisticated

    instruments and 4) can be easly used by a small labora-

    tories with no need to rely on reference laboratories. The

    most significant bacteriocin typing of Gram negative

    bacilli concerns those groups of opportunistic bacteria

    such as

    Pseudomonas Klebsiella Enterobacter

    and

    Serratia which often cause serious infections in hospital-

    ised patients Daw, 1989). The microbiological rele-

    vance of bacteriocin is evident. As an epidemiological

    tool, the system was found to be applicable and com-

    parable to the classical typing methods. Further to

    its practicability, bacteriocin typing almost always pro-

    vides answers to pertinent epidemiological questions,

    which make it one of the favourite typing methods,

    particularly with those laboratories possessing only basic

    equipment.

    IV. CONCLUSIONS

    Bacteriocins are protein-like antibiotics. They differ

    from traditional antibiotics because of their composition

    and narrow spectrum of activity, in which they kill

    bacteria of the same or closely related species. The

    producing strain usually shows immunity to the bac-

    teriocin they produce. The classification and thus

    the nomenclature of bacteriocins has gone through a

    major changes since the discovery of these bactericidal

    particles. Further to their classification according to the

    producing bacterial strains, they have also been classi-

    fied according to their electron microscopical appear-

    ance. Both ultrastructure and biochemical data seem

    to suggest that bacteriocin particles are heterogeneous

    molecules, varying from a small unidentified structure to

    a large one resolvable by electron microscopy.

    The macromolecular bacteriocins exert their action by

    adsorbtion to specific receptors located on the external

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    11/13

    B a c t e r i o c i n s 4 7 7

    s u r f a c e o f t h e se n s i t i v e s t r ai n f o l l o w e d b y m a j o r b i o l o g i -

    c a l a n d m o r p h o l o g i c a l c h a n g e s o f b o t h t h e b a c t er i a l c el l

    and the bac ter ioc in par t i c l e . This re s ul t s in the k i l l ing

    o f t h e s e n s i t i v e s t r a i n w i t h o u t p r o d u c t i o n o f f u r t h e r

    b a c t e r i o c i n p a r t ic l e s o n e o f t h e m a i n f e a t u r e s w h i c h

    m a k e s t h e m c l e a r l y d i f f e r e n t t o b a c t e r i o p h a g e s .

    T h e m o s t i n t e n s i v e l y s t u d i e d g r o u p s o f b a c t e r i o c i n a r e

    t h e c o l i c i n s w h i c h a r e p r o d u c e d b y E . co l i a n d c l o s e l y

    re la ted enterobac ter ia .

    T h e y a r e a r e t y p i c a l l y p l a s m i d - e n c o d e d p r o t e i n s . T h e

    o t h e r m a j o r g r o u p i s t h e p y o c i n o f P. aerug in osa w h i c h

    i s c o n t r o l l e d b y t h e p r e s e n c e o f s p e c if i c g e n e t ic d e t e r m i -

    n a n t s e n c o d e d o n t h e c h r o m o s o m e o f t h e p r o d u ci n g

    bacter ia .

    I n a d d i t i o n t o t h e i n t e n s i v e s t u d i e s o n t h e s e b a c t e r i o -

    c in s a n d t h ei r c o n t r i b u t i o n t o m o d e r n b i o l o g y t h e y h a v e

    g a i n e d n e w a t t e n t i o n i n m e d i c i n e p a r t i c u la r l y in t h e

    e p i d e m i o l o g y o f n o s o c o m i a l i n fe c t io n s . D u e t o t h e

    s i m p l e p r o d u c t i o n o f t h e b a c t e r i o c i n s i t m a k e s t h e m a

    f a v o u r i t e t y p i n g a s s a y f o r p a t h o g e n i c o r g a n i s m s . T h i s

    a l l o w s c o n t r o l o f t h e c r o s s - i n f e c t i o n s w h i c h o c c u r i n

    t h e h o s p i t a l s t h a t m a y r e s u l t i n s e r i o u s c o n s e q u e n c e s

    p a r t i c u l a r l y a m o n g i m m u n o c o m r o m i s e d p a t i e n t s .

    A c k n o w l e d g e m e n t s - - T h e a u t h o r s w o u l d l ik e to t h a n k D r s M o h a m e d J .

    M a b r u k , K . S . G e n g h i s h , M . I . M a h m o u d , N a g e t S a i e d , M u s t a f a

    H a j a j i , M . F a r o u k i , S . T l o b a a n d A . R a h o m a , d e p a r t m e n t s o f M e d i c a l

    M i c r o b i o l o g y a n d P a r a s i t o l o g y , F a c u l t y o f M e d i c i n e , T r i p o l i , L i b y a

    f o r t h e i r h e l p f u l c o m m e n t s a n d s u g g e s ti o n s .

    R E F E R E N C E S

    A l a t o s s v a , T . , 1 9 9 4 . A n a l o g i e s b e t w e e n s u p e r i n f e c t io n e x c l u s io n a n d

    b a c t e r i o c i n i m m u n i t y . Tr e nds M ic r ob io l . , 2, 215 216.

    Becker , R . J . , Cooper , A. J . and S tar zyka , M. J , , 1993 . Ev idence fo r

    a s s o c i a t i o n o f b a c t e r i o c i n o g e n i c a c t i v it y w i t h m e m b r a n e v e si cl es

    o f The r mu s r ube ns. M ic r ob ios . , 73, 123-133.

    Boemare , N. E . , Boyer -Gig l io , M. H. , Thaler , J . O. , Akhur s t , R . J . and

    Brehel in , M. , 1992. Lys ogey and ba c te r ioc inoge ny in X e n o r h a b d u s

    ne matoph i lus a n d o t h e r X e n o r h a b d u s spp. Appl. Env iron. M icro-

    biol., 58 , 3032-3037 .

    Brad ley , D. E . , 1 966 . The s t ruc ture o f pyocin par t i c l es r e leas ed f rom

    P s e udomonas ae r ug inos a b y m i t o m y c i n C . Int . Congr . Elec t .

    Microsc . , 6 , 115 116.

    Bradley , D. E . and Rober t s on , D. , 1968 . The s t ruc ture and in f ec t ive

    p r o c e s s o f a c o n t r a c t i l e P s e udomonas ae r ug inos a b a c t e r i o p h a g e .

    J. Gen. Virol.. 3, 247 254.

    B r a d l e y , D . , 1 9 6 7 . U l t r a s t r u c t u r e o f b a c t e r i o p h a g e a n d b a c t e r i o c i n s .

    Bacteriol. Rev.. 3 1 , 2 3 0 - 3 1 4 .

    Braun , V., P i ls i, H. an d Gro s s , P . , 199 4 . Col i c ins , s truc ture , m ode o f

    a c t i o n , t r a n s f e r t h r o u g h m e m b r a n e s a n d e v o l u t i o n . A r c h . M ic r o-

    biol., 161, 199-206.

    C a v a r d , D . a n d O u d e g a , B . , 1 9 9 2 . G e n e r a l i n t r o d u c t i o n t o t h e

    s ecre t ion of bac te r ioc ins . I n : B ac te r ioc ins , M ic r oc ins and Lan t i -

    hiotics , J ames , R . , Lazduns k i , C . and Pa t tus , F . ( eds ) . NATO ASI

    s er i es Vol 65 , pp . 297-305 .

    C h a k , K . F . a n d J a m e s , R . , 1 9 8 6 . C h a r a c t e r i s a t i o n o f th e C o l E 9 - J

    p l a s m i d a n d a n a l y s i s o f i t s g e n e t i c o r g a n i s a t i o n . J. Gen.

    Micr ibiol . , 132, 61 71.

    C law s on , C . C . and D ajan i , A. S . , 1970 . E fec t o f bac te r i c ida l s ubs tanc e

    f r o m

    S taphy loc oc c us aur e us

    o n g r o u p A s t r e p to c o c c i I I . S t ru c t u r a l

    a l t e r a t ions . In le c t . Immun . . 1 , 4 9 1 - 4 9 8 .

    Coetzee , H . L . , Coetzee , J. N. an d Sm i t , J . A. , 1968 . Bac ter ioph age t a i l

    l i ke par t i c l es as s oc ia t ed wi th in t r a s pec ies k i l l i ng o f P r o te us

    vulgaris. J. Gen. Virol., 2 , 29-36 .

    Davies , J . K. a nd Reeves , P . , 1975 . Ge net i c o f r es i s t ance to co l i c ins in

    Escherchia coli K - 1 2 : c r o s s - re s i s ta n c e a m o n g c o l i c in s o f g r o u p B .

    J . Bac ter iol . . 123, 96 101.

    Davies , J . K. a nd Reeves , P . , 1975 . Ge net i c o f r es i s t ance to co l i c ins in

    E s c he r c h ia c o l i

    K-12: c ros s - r es i s t ance among co l i c ins o f g roup B .

    J . Bac ter iol . , 123, 102-117.

    D a j a n i , A . S . , T a u b e , Z . , 1 9 7 4 . P l a s m i d - m e d i c a t e d p r o d c t i o n o f

    s t a p h y l o c o c c i n i n b a c t e r i o p h a g e t y p e 7 1 Staphy lococcus aureus .

    A n t im ic r ob . A ge n ts Che mothe r . , 5 , 594-598 .

    Daw, M. A. , 1989 . PhD thes i s , Dubl in Univer s i ty , T r in i ty Col l ege

    D u b l i n , I r e l a n d .

    D a w , M . A . a n d F a l k i n e r , F . R . , 1 9 9 3 . T h e u l t r a s t r u c t u r e o f c lo a c i n

    C 5 o f E nte r obac te r c loacae . P r oc e e d ings o f the R oy a l M ic r os c op i -

    c a l Soc ie ty . 28 , (Supplement 1 ) , 24 .

    D a w , M . A . a n d F a l k i n e r , F . R . , 1 9 9 4 . P r e v e n t i o n o f g r a m n e g a t i v e

    i n f e c t i o n s i n n e u r o p e n i c c a n c e r p a t i e n t s . Saud. Med. J . , 15,

    196 203.

    Daw, M. A. , Corcorn , G. D. , Fa lk iner , F . R . and Keane , C . T . , 1992 .

    A p p l i c a t i o n a n d a s s e s s m e n t o f c l o a c i n t y p i n g o f E nte r ohac te r

    cloacae. J. Hosp. lnJect., 20, 141 151.

    Di Mas i , R . D. , Whi t e , J . , Scha i tman , C . A. and Bradbeer , C . , 1973 .

    T r a n s p o r t o f v i t a m i n B 1 2 i n Esherichia coli; c o m m o n r e c e p t o r

    s i te s fo r v i t a m i n B I 2 a n d E c o l i c in s o n t h e o u t e r m e m b r a n e o f t h e

    cel l envelop. J . Bac ter iol . . 115, 506--573.

    D u P o n t , H . L . a n d S p i n k , W . W . , 1 9 6 9 . I n f e c t i o n s d u e t o G r a m -

    n e g a t i v e o r g a n i s m s : a n a n a l y s i s o f o f 8 6 0 p a t i e n t s w i t h b a c t e r i -

    am ia a t t he un iver s i ty o f Minn es o ta Med ica l Center , 1958-1966 .

    M e dic ine , 48 ,

    307-316 .

    D u r k a c z , B . W . a n d S h e r r a t t , D . J . , 1 9 7 3 . S e g r e g a t i o n K i n e t i c s o f

    c o l i c in o g e n i c f a c t o r C o l E l f r o m a b a c t e r i a l p o p u l a t i o n

    t e m p e r a t u r e - s e n s i t i v e f o r D N A p o l y m e r a s e 1 . Mol. Gen. Genet.,

    121, 71 75.

    E l l i s on , J . S . , Mat t e rn , C . F . T . and Danie l , W. A. , 1971 . S t ruc tura l

    c h a n g e s i n Cols t r id ium bo tu l inum t y p e E a f t e r t r e a t m e n t w i t h

    bo t i c in $51 . J . Bac ter iol . , 1 0 8 , 5 2 6 5 3 4 .

    Farkas -Hims ley , H. , Zhang , Y. S . , Yuan , M. and Mus clow, C . E . ,

    1992 . Par t i a l ly pur i f i ed bac te r ioc in k i l l s mal ignan t ce l l s by apop-

    t o s is ; p r o g r a m m e d c el l d e a t h . Cell Mol. Biol . No isy h, grand, 38,

    643 65 t.

    F reder i cq , P . , 1957 . Col i c ins . A nn . R e v . M ic r ob io l . , I1, 7 22.

    Freder i cq , P . , 1963 . On the na ture o f co l i c inogenic f ac to r s: a r ev iew.

    J. Theor. Biol., 4, 159 161.

    G a g l i a n o , V . F . a n d H i n d s i ll , R . D . , 1 9 7 0 . C h a r a c t e r i s a t i o n o f

    S taphy loc oc c us aur e us

    bac ter ioc in .

    J . Bac ter iol . ,

    104, 117 125.

    G e l i , V . a n d L a z d u n s k i , C . , 1 9 92 a . I m m u n i t y p r o t e i n t o p o r e f o r m i n g

    col icins . In The B ac te r ioc in , M ic r oc ins and Lan t ib io t i c s b y J a m e s

    R , L a z d u n s k i C a n d P a t t u s F . p p 1 71 1 7 9 . S p r i n g e r - V e r l a g ,

    Ber l in . NATO ASI Ser i es .

    G e l i , V . a n d L a z d u n s k i , C . , 1 9 9 2 . A n a - h e li c a l h y d r o p h o i c h a i r p i n a s

    a s p ec if ic d e t e r m i n a n t i n p r o t e i n - p r o t e i n i n t e r a c t i o n o c c u r i n g i n

    Escherichia coli c o l i c in A a n d B i m m u n i t y s y s t em s . J . Bac ter iol . ,

    147, 6432-6437.

    G r a t i a . A . , 1 9 2 5 . s u r u n r e m a r q u a b l e e x a m p l e d ' a n t a g o n i s m e e n t r e

    deux s ouches de co l ibac i l l e . C R. Soc. Biol., 93, 1040 1041.

    Gra t i a , J . P . and Gren ier , L . , 1992 . Di f f e r en t i a l ac t iv i ty o f bac te r io c ins

    a n d c e f o t a x i m e a g a i n i s t Se r r a t ia mar c e s c e ns c l in i ca l i s o l a t e

    S M G 4 0 a n d i t s p i g m e n t e d v a r i a n t . Int. J . Microbiol. Virol.

    Parasitol . ln/ec t . Dis . , 276 , 340-346 .

    G o n z a l e z - M a n a s , J . M . , L a k e y , J . H . a n d P a t t u s , F , , 1 9 9 2 . B r o m i n a t e d

    p h o s p h p l i p i d s a s f o r m o n i t o r i n g t h e m e m b e r a n e i n s e r t i o n o f

    co l i c in A. B ioc he mis t r y , 31 , 7294-7300 .

    G o o r m a g h t i g h , E . , V i g n e r o n , L . , K n i b i e h l e r , M . , L a z d u n s k i , C . a n d

    R u y s s c h a e t , J . M . , 1 9 9 1 . S e c o n d a r y s t r u c t u r e o f t h e m e m b r a n e -

    b o u n d f o r m o f th e p o r e f o r m i n g d o m a i n o f c o l i c in A . Eur. J.

    B ioc he m. , 202, 1299 1305.

    G o v a n , J . R . W . , 1 9 7 4 . S t u d i e s o n t h e p y o c i n s o f P s e u d o m o n a s

    ae r ughws a: m o r p h o l o g y a n d m o d e o f a c t io n o f c o n t r a c ti l e

    pyocins . J . Gen. Micr ibiol . . 80, 1 15.

    G o v a n , J . R . W . , 1 9 7 4 . S t u d i e s o n t h e p y o c i n s o f P s e u d o m o n a s

    aeruginosa: p r o d u c t i o n o f c o n t r a c t i l e s a n d f l e x u o u s p y o c i n s o f

    Pseu dom onas aeruginosa. J . Gen. Micr ib ioL. 80, 15 30.

    Hale , E . M. and H ins d i l l , R . D. , 19 73 . Cha rac te r i za t io n of a bac te r io -

    c i n f r o m S taphy loc oc c us aur e us s train 462. A n t i m i c r o b A g e n t s

    Che mothe r . , 4 , 634-640 .

    H a r d y , K . G . , 1 9 7 5 . C o l i c i n o g e n y a n d r e l a t e d p h e n o m e n a . Bacter iol .

    Rev . , 39, 464--515.

    H a r d y , K . G . a n d M e y n e l l , G . G . , 1 9 7 2 . C o l i c in f a c t o r s a n d

    m i t o m y c i n - C . J . Gen. MicrobioZ, 73, 547 549.

    H a r d y , K . G . a n d M e y n e l l, G . G . , 19 7 2 . I n d u c t i o n o f c o l i c i n f a c t o r

    E 2 - P 9 b y m i t o m y c i n C. J . Bac ter iol . , 112, 1007 1009.

    Has t ing s , J . W. , S ti les , M. E . and V on H oly , A. , 1995 . Bac ter ioc ins o f

    l e u c o n o s t o c s i s o l a t e d f r o m m e a t . Int . J . Fo ,d Microh ioL. 24,

    75 82.

  • 8/18/2019 Bacteriocins Nature, Function and Structure

    12/13

    4 7 8 M . A . D a w a n d F . R . F a l k i n e r

    Havar s t e in , L . S . , Holo , H. and Nes , I . F . , 1994 . The l eader pep t ide o f

    c o l i ci n V s h a r e s c o n s e n u s s e q u e n c e w i t h l e a d e r p e p t i d e s t h a t a r e

    c o m m o n a m o n g p e p t i d e b a c te r i o ci n p ro d u c e d b y G r a m p o s it i ve

    bac ter i a . M i c r o b i o l o g y , 140, 2383 2389.

    Higerd , T . B . , Baech ler , C . A. and Berk , R . S . , 1969 . Morpholog ica l

    s t u d i e s o n r e l a x e d a n d c o n t r a c t e d f o r m s o f p u r i f i e d p y o c i n

    par t i c l es . J . B a c t e r i o l . , 98 , 1378-1389 .

    H o w a r d s , P . , C a v a r d , D . a n d L a z d u n s k i , C . , 1 9 8 9 . A m i n o a c i d

    s e q u e n c e a n d l e n g h t r e q u i r e m e n t s f o r a s s e m b l y a n d f u n c t i o n o f

    the co l i c in A lys i s p ro te in . J . Bac t er io l . , 1 7 1 , 4 1 0 - 4 1 8 .

    I t o , S . a n d K a g e y a m a , M . , 1 9 70 . R e l a t i o n s h i p b e t w e e n p y o c i n s a n d a

    b a c t e r i o p h a g e i n p s e u d o m o n a s a e r u g i n o s a . J . G e n . A p p . M i c r o -

    b io l . , 16 , 231-240 .

    I t o , K . , K a g e y a m a , M . a n d E g a m i , F . , 1 9 70 . I s o l a t i o n a n d c h a r a c t e r i s-

    a t i o n o f p y o c i n s f r o m s e v e ra l s t r a in s o f P s e u d o m o n a s a e r u g i n o s a .

    J . G e n , A p p l . M i c r o b i o l . , 16, 205 214.

    I s s acs on , R . E . and Koni s ky , J . , 1974 . s tud ies on the r egu la t ion of the

    c o l i c i n I b s y n t h s i s : r e p l i c a t i o n o f t h e C o l I b - P 9 p l a s m i d d u r i n g

    c o l i c in i n d u c t i o n . A n t i m i c r o b . A g e n t s C h e m o t h e r . , 6 , 848-852 .

    I o n e s c o , H . a n d B o u a n c h a u d , D . H . , 1 9 73 . P r o d u c t i o n d e b a c t e r i o c i n e

    l iee a l a p r es ence d un p la s mid chez C o l i s t r i d i u m p e r f e r i n g s t y p e A .

    C . R . A c a d . S e i . ( D ) P a r i s , 276 ,