49
Basic Aspects of x-ray crystallography and powder diffraction - Diffraction from nanocrystalline materials [email protected] Special thanks to: Luca Rebuffi & Binayak Mukherjee

Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

Basic Aspects of x-ray crystallography and powder diffraction

- Diffraction from nanocrystalline materials

[email protected]

Special thanks to: Luca Rebuffi & Binayak Mukherjee

Page 2: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 2

PRESENTATION OUTLINE

PART I May 10, 9:00 – 10:30 • Powder diffraction: basic elements • Nanocrystalline & severely deformed materials

PART II May 10, 17:00 – 18:30 • Computer lab:

hands-on session with TOPAS

Page 3: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 3

1912 - THE DISCOVERY OF X-RAY DIFFRACTION

copper sulfate (triclinic) random orientation

zinc blende (cubic)

Page 4: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 4

1916 - FROM SINGLE-CRYSTAL TO POWDER DIFFRACTION

1916 DEBYE-SCHERRER CAMERA

s

so

s-so

Page 5: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 5

2 sinhkl BMP P d nN

P

X-ray beam

Diffracted X-ray beam

X-ray 1

X-ray 2

(hkl) planes

ATOMIC PLANES AND DIFFRACTION CONDITION

hkl

B B

Interference of X-rays scattered by atomic planes

BRAGG LAW

Page 6: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 6

in Bragg condition:

all waves in phase

irrespective of depth from the surface.

B

not in Bragg condition:

phase relations change with depth

at a certain depth, a reflected wave is in antiphase with the surface: the

two waves cancel each- other

antiphase

Interference of X-rays scattered by atomic planes

BRAGG LAW

B

Page 7: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 7

DIFFRACTION PATTERN FROM A POLYCRYSTALLINE

B

in antiphase: cancel each-other

not cancelled

B

D

2B 21 22

1

2

D2

L

limit of cancellation

Interference of X-rays scattered by atomic planes

BRAGG LAW

Page 8: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 8

SCHERRER EQUATION

12

cos BL L

D

Peak width is inversely proportional to the crystalline domain thickness

L

2B

D2

L

2B

D2

L

2B

D2

Page 9: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 9

MgO powder

1916 DEBYE-SCHERRER CAMERA

X-RAY DIFFRACTION (XRD) FROM SMALL CRYSTALS

J.T. Randall, The diffraction of X-rays and electrons by amorphous, solids, liquids, and gases, 1934

Page 10: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 10

XRD FROM SMALL CRYSTALS: SCHERRER EQUATION

... ... ... The theory provides for the half-value width h of the maximum defined in the known manner, which occurs at the angle to the incident X-ray beam, the value:

/L is the ratio of the wavelength of the monochromatic X-

rays used to the edge of the crystal presumed to be cube-

shaped

(2)

h

1916 DEBYE-SCHERRER CAMERA

Determination of the size and internal structure of

colloid particles by means of x-rays

Presented by P. Debye in the meeting of

by

L

cry

sta

l siz

e

peak width

Page 11: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 11

PRACTICE: SCHERRER EQUATION

42 43 44 45 46 47 48 49 50 51 52

0

1000

2000

3000

48.34°46.64°

Inte

nsity

(co

un

ts)

2 (degrees)

2B=47.49°

150150

3250

1700

FWHM=1.7°

?L

L : effective crystalline domain size (in nm) h : full width at half maximum (FWHM in radians) = 0.15406 nm (X-ray wavelength)

( )ln 2

2cos 2B

h

L

(220) peak of nanocrystalline CeO2

Page 12: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 12

LABORATORY vs SYNCHROTRON RADIATION XRD

30 40 50 60 70 80 90 100 110 120 130 140 150

10

100

1000

Inte

nsity (c

ounts

)

2 (degrees)

Fig. 1 in P. Scardi & L. Gelisio, Chapter XVIII,

“Diffraction from nanocrystalline materials”

Powder diffraction data from a ball milled Fe1.5%Mo powder collected on a traditional laboratory instrument (Rigaku PMG-VH, Bragg-

Brentano geometry) with CuK radiation (=0.1540598 nm). On the right: schematic of reciprocal space with extension of the limiting

sphere (radius 2/).

Powder diffractometer geometry

10 20 30 40 50 60 70 80 90 10010

100

1000

Inte

nsity (c

ounts

x 1

00)

2 (degrees)

Powder diffraction data from a ball milled Fe1.5%Mo powder collected (b) on ID31 (now ID22) at ESRF, Grenoble (F) (=0.0632 nm).

On the right: schematic of reciprocal space with extension of the limiting sphere (radius 2/).

1916 Debye-Scherrer geometry

(the return !)

Page 13: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 13

LABORATORY vs SYNCHROTRON RADIATION XRD

10 20 30 40 50 60 70 80 90 10010

100

1000

Inte

nsity (c

ounts

x 1

00)

2 (degrees)

Powder diffraction data from a ball milled Fe1.5%Mo powder collected (b) on ID31 (now ID22) at ESRF, Grenoble (F) (=0.0632 nm).

On the right: schematic of reciprocal space with extension of the limiting sphere (radius 2/).

1916 Debye-Scherrer geometry

(the return !)

• High intensity (brilliancy): better counting statistics / shorter data collection time ( fast kinetics, in situ/in operando studies)

• Highly collimated beam: narrow instrumental profile for high resolution / accuracy (in the measurement of peak position, intensity, width, and shape)

• High energy X-rays: to extend the accessible region of reciprocal space (collect more peaks, more information, proper evaluation of asymptotic trend of intensity in PDF analysis, etc.)

• Tuning X-ray energy: e.g., for haldling absoprtion problems, or to exploit absorption thresholds (anomalous scattering)

Page 14: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 14

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( ) ( )2 2*m ni s r i s r

sc m n

m n

I s f e f e

( )2* mni s r

m n

m n

f f e

sx [Å-1]

sy [

Å-1

]

( )

( )2*

24

mni s r

m n

m nPD

f f e d

I ss

s=Q/2=2sin / 2 sind s d d

S

mrnr

mnr

Page 15: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 15

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( ) ( )2 2*m ni s r i s r

uc m n

m n

I s f e f e

n n n nr u a v b w c

* * *s ha kb lc

( )2

2

1

n n n

Ni u h v k w l

n

n

f e

2

F

(un,vn,wn)

(0,0,0)

(½,1,½)

(0,1,1)

(1,1,1)

(1,1,0)

(0,1,0)

(1,½,½)

(0,½,½)

(½,0,½)

(½,½,1)

(½,½,0)

(1,0,0)

(1,0,1)

(0,0,1)

D Na a

Traditional "reciprocal space" approach: factorize unit cell intensity

F, the structure factor

Intensity from one unit cell, Iuc |F|2

Page 16: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 16

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( )2

,F s D

line profile function

DFactorize structural contribution: the line profile function

sx [Å-1]

sy [

Å-1

]

S

mrnr

mnr

( )

( )2*

24

mni s r

m n

m nPD

f f e d

I ss

Page 17: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 17

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( )2

,PD sphereI s F s D

100 ÅD

( ) ( )2

0cos 2

D

F A L sL dL

0 20 40 60 80 100 120 1400.0

0.2

0.4

0.6

0.8

1.0

A(L)=V(L)/V0

L (Å)

Fourier Transform of peak profile: the Common Volume Function

V(L)

( )3

3

3 11

2 2

L LA L

D D

[hkl]

sx [Å-1]

sy [

Å-1

]

s

Page 18: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

4 5 6 7 8 9 100

200

400

600

800

1000

Inte

nsity [

a.u

.]

s [Å-1]

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6

1

10

100

1000

Inte

nsity [a

.u.]

s [Å-1]

18

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( )2

,PD sphereI s F s D

100 ÅD

( ) ( )2

0cos 2

D

F A L sL dL

0 20 40 60 80 100 120 1400.0

0.2

0.4

0.6

0.8

1.0

A(L)=V(L)/V0

L (Å)

Fourier Transform of peak profile: the Common Volume Function

V(L)

( )3

3

3 11

2 2

L LA L

D D

[hkl]

Page 19: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

10 20 30 40 50 60 70 80 90 100

0

10k

20k

30k

40k

50k

60k

70k

80k

Inte

nsity

(co

unts

)

2 (degrees)

19

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( )( )

( )2 2ln 2

1/2

1

2

Dg D e

D

6 8 10 12 14 16 18 20 22 24 26 28 30 32

10k

20k

30k

40k

50k

60k

70k

80k

Inte

nsity (c

ounts

)

2 (degrees)

Xerogel cerium oxide powder

5 nm

ESRF – ID31 (now ID22) =0.0632 nm

H0=½, H1=-¾, H2=0, H3=¼ 0 1 2 3 4 50.0

0.2

0.4

0.6

0.8

1.0<D>=2.25(10) nmg(D)

D (nm)

Scardi, P. (2008). Powder Diffraction: Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, ch. 13, pp. 376–413. Cambridge: Royal Society of Chemistry

( )

( )( )

232

0

ln 3erfc exp 2 6

22

ln,sphere

n

n

n

A L

L n nH n L

Page 20: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

4 5 6 7 8 9 100

200

400

600

800

1000

Inte

nsity [

a.u

.]

s [Å-1]

20

( ) ( )max2

0cos 2

L

F A L sL dL

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( )2

,PD cubeI s F s D

80.6 ÅD

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6

1

10

100

1000

Inte

nsity [a

.u.]

s [Å-1]

Fourier Transform of peak profile: the Common Volume Function

0 20 40 60 80 100 120 140 1600.0

0.2

0.4

0.6

0.8

1.0

V(L)/V0

L (Å)

[111]

(111) (111)

(111)

V(L)

( )2 3

111 2 3

31

3 3

L L LA L

D D D

Page 21: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

4 5 6 7 8 9 100

200

400

600

800

1000

Inte

nsity [

a.u

.]

s [Å-1]

21

DIFFRACTION FROM NANOCRYSTALLINE POWDER

80.6 ÅD

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6

1

10

100

1000

Inte

nsity [a

.u.]

s [Å-1]

Fourier Transform of peak profile: the Common Volume Function

0 20 40 60 80 100 120 140 1600.0

0.2

0.4

0.6

0.8

1.0

V(L)/V0

L (Å)

[111]

(111) (111)

(111)

[200]

( )200 1L

A LD

(200)

(200)

(200)

( ) ( )2

,PD cubeI s F s D ( ) ( )max2

0cos 2

L

F A L sL dL

( )2 3

111 2 3

31

3 3

L L LA L

D D D

Page 22: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 22

DIFFRACTION FROM NANOCRYSTALLINE POWDER Any shape A.Leonardi et al., J.Appl.Cryst. 45 (2012) 1162

Wulff polyhedra

24 26 28 30 32 34 36

2 (degrees)

CO0 CO25 CO100

(111)

(200)

Page 23: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 23

DIFFRACTION FROM NANOCRYSTALLINE POWDER

Pd nanocrystals

P. Scardi et al.

Phys.Rev.B 91(2015)155414

Page 24: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 24

DIFFRACTION FROM NANOCRYSTALLINE POWDER … what I did not consider (so far…)

Courtesy of A. Young & F. Tsung

Boston College,

: microstructure !

most metals:

a0

a0+Da CeO2

Surface relaxation

Perez-Demydenko & Scardi, Phil. Mag. 97 (2017) 2317

Page 25: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 25

DIFFRACTION FROM NANOCRYSTALLINE POWDER … what I did not consider (so far…) : microstructure !

Severe Plastic Deformation

(Zhu et al. J. Mater. Res. 18 (2003) 1908)

Page 26: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 26

DIFFRACTION FROM NANOCRYSTALLINE POWDER microstructure perturbation of “perfect crystal structure”

Any shape A.Leonardi et al., J.Appl.Cryst. 45 (2012) 1162

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

(s

)

S = s - shkl

(Å)

( ) ( ) ( )max2

0cos 2

LSI s F A L sL dL

( ) ( )max * 2

0

LS isL

LI s A L FF e dL

( )max2 2

0( ) ...

LS D F F isLI s F A A A iB e dL

domain size inhomog.strain faulting

Page 27: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 27

DIFFRACTION FROM NANOCRYSTALLINE POWDER

Pd nanocrystals

( )max2 2

0

LS D IP isLI s F A A T e dL

domain size

inhomog. strain

instrum. profile

Inhomogeneous displacement ( strain, e = DL/L ): ( )

2 2 22 <ΔLhklsDA L e

P. Scardi et al. Phys.Rev.B 91(2015)155414

Page 28: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

0 20 40 60 80 100 120 140 160 180 200 220 240 2600.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140 160 180 200 220 240 2600.00

0.05

0.10

0.15

0.20

0.25

0.30

[hhh]

[hh0]

D

L2 h

hh

1/2 (Å

)

DL

2 hh

0

1/2 (Å

)

DL

2 h00

1/2 (Å

)

L (Å)

28

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( )max2 2

0

LS D IP isLI s F A A T e dL

domain size

inhomog. strain

instrum. profile

Pd nanocrystals

P. Scardi et al. Phys.Rev.B 91(2015)155414

MD trunc. cube

Inhomogeneous displacement ( strain, e = DL/L ):

Radial

110 cross-section

Planar

Molecular Dynamics (MD) atomic displacement maps

MD perfect cube

MD sphere

Warren plot (root mean square displacement vs L)

XRD

( )2 2 22 <ΔLhklsDA L e

Page 29: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 29

WHOLE POWDER PATTERN MODELLING – WPPM

( )max2 2

0( ) ...

LS D F F IP isLI s F A A A iB T e dL

domain size inhomog.strain faulting instrum. profile

( ) ( ) ( )( ) ( ) ( ) ...IP S D F APBI s I s I s I s I s I s

Diffraction profile as a convolution of (independent) effects:

Page 30: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 30

High-energy grinding (ball-milling) of an iron alloy powder: AstaloyTM Fe1.5Mo

Rebuffi et al., Sci. Reports 6 (2016) 20712

SEM TEM

HREM

DIFFRACTION FROM NANOCRYSTALLINE POWDER

Page 31: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 31

High-energy grinding (ball-milling) of an iron alloy powder: AstaloyTM Fe1.5Mo

DIFFRACTION FROM NANOCRYSTALLINE POWDER

( ) ( ) ( ) ( )2 2S D IP isL

hkl hklI s F A L A L T L e dL

XRD data : MCX beamline, Italian synchrotron ELETTRA

Rebuffi et al., Sci. Reports 6 (2016) 20712

Size effect

Inhom. Displ. effect

Page 32: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

0 2 4 6 8 10 12 14 160.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(222)

(110)

DL

2>

1/2

L (nm)

(200)

33

High-energy grinding (ball-milling) of an iron alloy powder: AstaloyTM Fe1.5Mo

XRD data : MCX beamline, Italian synchrotron ELETTRA

Rebuffi et al., Sci. Reports 6 (2016) 20712

DIFFRACTION FROM NANOCRYSTALLINE POWDER

Re= 4.3 nm

r = 4.5x1016 m-2

Warren’s plot

2 dislocations

per crystalline

domain !

( )

22 2 *

4

hkl

hkl e

C bL L f L R

r

D

Page 33: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 34

Rebuffi et al., Sci. Reports 6 (2016) 20712

DIFFRACTION FROM NANOCRYSTALLINE POWDER Understanding XRD line profile analysis result by Molecular Dynamics simulations

<D> = 9.3 nm

s.d. = 5.9 nm

atomistic model

by space tessellation

Molecular Dynamics (MD)

simulation

Page 34: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 35

Rebuffi et al., Sci. Reports 6 (2016) 20712

DIFFRACTION FROM NANOCRYSTALLINE POWDER Understanding XRD line profile analysis result by Molecular Dynamics simulations

Page 35: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 36

DIFFRACTION FROM NANOCRYSTALLINE POWDER Temperature Diffuse Scattering – TDS

Page 36: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 37

DIFFRACTION FROM NANOCRYSTALLINE POWDER

Debye

Density of States

Temperature Diffuse Scattering – TDS in small crystals

Page 37: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 38 P. Scardi et al. J. Appl. Cryst. 50 (2017) 508

DIFFRACTION FROM NANOCRYSTALLINE POWDER TDS in ball-milled FeMo nanocrystals: static and dynamic contributions

Argonne 11bm, 30keV – 100, 200, 300K

10 20 30 40 50

0

5000

10000

15000

20000

25000

30000

35000

Inte

nsity

(co

unts

)

2 (degrees)

10 20 30 40 50100

1000

10000

Inte

nsity

(co

unts

)

2 (degrees)

10 20 30 40 50

0

5000

10000

15000

20000

25000

Inte

nsity

(co

unts

)

2 (degrees)

10 20 30 40 50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Inte

nsity (

counts

)

2 (degrees)

Expt. data

capillary + fcc phase

TDS

10 20 30 40 50

0

5000

10000

15000

20000

25000

Inte

nsity

(co

unts

)

2 (degrees)

10 20 30 40 50

0

50

100

150

Inte

nsity (

counts

)

2 (degrees)

300K

200K

100K

100K 200K 300K

0 50 100 150 200 250 3000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T (K)B

ISO (Å

2)

2.858

2.860

2.862

2.864

2.866

2.868

2.870

2.872

a0 (Å

)

TDS

bulk Fe

20% increase in BS

ball milled Fe

Page 38: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 39

DIFFRACTION FROM NANOCRYSTALLINE POWDER EXAFS & XRD : Mean Square Displacement (MSRD, MSD) and DCF

6900 7200 7500 7800 8100 8400 8700-0.6

-0.4

-0.2

0.0

0.2

0.4

(E

)

Energy (eV)

Ni edge

4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

Magnitude

K (Å-1)

Fe foil

b.m. FeMo_RT

b.m. FeMo_78K0 50 100 150 200 250 300

0,000

0,002

0,004

0,006

0,008

0,010

0,012

MS

RD

, (2

x<

u2 s>

) (Å

2)

T (K)

0,000

0,002

0,004

0,006

0,008

0,010

0,012

Fe foil

(bulk)

22 qu D

+20%

+20% 2

||u D

2 2

|| 2 qu MSRD u DCF D D

EXAFS Debye-Waller parm. < 𝛥𝑢||2 > : 1° coordination shell

XRD Debye-Waller parm. < 𝛥𝑢𝑞2 >=B/82 : average over whole crystal

P. Scardi et al. J. Appl. Cryst. 50 (2017) 508

20% increase in BS

Page 39: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 40

DIFFRACTION FROM NANOCRYSTALLINE POWDER

P. Scardi et al. J. Appl. Cryst. 50 (2017) 508

What is the main reason for the 20% increase in BS (static disorder) ?

Molecular Dynamics simulation of a cluster of 50 Fe grains (size distribution from XRD/WPPM)

MSD - Mean Square Displacement < 𝛥𝑢𝑞2 > (B=82< 𝛥𝑢𝑞

2 >)

results for average-size grain (G5)

no defects

g.b. only

1 edge disloc.

and g.b.

vacancies

and g.b.

DB = BG5 – Bbulk 22% 22%+ ~2% 22%+ ~0% (<<1%)

Page 40: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 41

FROM SINGLE CRYSTAL TO POWDER DIFFRACTION

( )( )

24

sc

PD

I s dI s

s

( )

2F I s

perfect (infinite) crystal

D

( ) ( )2* mni S r

sc m n

m n

I s f f e

( ) ( ) ( ) ( ) ( ) ( ) ( ) ...IP S D F APB C GSRI s I s I s I s I s I s I s

Traditional reciprocal space approach : sum & average

Page 41: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 42

PRESENTATION OUTLINE

PART II May 10, 17:00 – 18:30 • Computer lab:

hands-on session with TOPAS

Page 42: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

Debye formula

(Direct Space)

real nanocrystals are complex objects

DIFFRACTION FROM NANOCRYSTALLINE MATERIALS

CdS-CdSe OCTAPODS

non-crystallographic (e.g. multiply twinned) nanoparticles, 2D and highly disordered layer systems:

translational symmetry: not verified

large strain / misfit – complex local atomic arrangement

Page 43: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

DIFFRACTION FROM NANOCRYSTALLINE MATERIALS

Direct (real) space approach : average & sum

( )

( )2*

24

mni s r

m n

m nPD

f f e d

I ss

Page 44: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018

DIFFRACTION FROM NANOCRYSTALLINE MATERIALS

( )

( )2 2

24

mni s r

m nPD

f e d

I ss

( )( )2 sin 2

2

mn

PD

m n mn

srI s f

sr

( ) ( )2 2 cos 2

2

0

sin 212 sin

4 2mn mn

i s r isr mn

mn

mn mn

sre e r d

r sr

Debye Scattering Equation (DSE)

rmn

Direct (real) space approach : average & sum

rmn rmn

Page 45: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 46

( )2 sin 2( )

2

mn

PD

m n mn

srI s f

sr

DSE APPLICATION TO NON-CRYSTALLOGRAPHIC NPs

Debye Scattering Equation (DSE)

Page 46: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 47

( )2 sin 2( )

2

mn

PD

m n mn

srI s f

sr

DSE APPLICATION TO GRAPHENE AND RELATED MATERIALS

Debye Scattering Equation (DSE)

L. Gelisio et al., J. Appl. Cryst. 43 (2014) 647

Page 47: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 48

( )2 sin 2( )

2

mn

PD

m n mn

srI s f

sr

DSE APPLICATION TO GRAPHENE AND RELATED MATERIALS

Debye Scattering Equation (DSE)

Carbon nanotubes

Page 48: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 49

GENERAL REFERENCES

B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1969.

A. Guinier, X-ray Diffraction, Freeman & Co, S. Francisco, 1963.

A.J.C. Wilson, X-ray Optics, 2nd ed., Methuen & Co, London, 1962.

H.P. Klug & L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974.

B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading Ma, 1978.

Powder Diffraction: Theory and Practice

R.E. Dinnebier & S.J.L. Billinge, editors.

Cambridge: Royal Society of Chemistry, 2008.

P. Scardi, Chapter 13 on Line Profile Analysis:

Page 49: Basic Aspects of x-ray crystallography and powder diffractionindico.ictp.it/.../212/material/slides/0.pdf · • High energy X-rays: to extend the accessible region of reciprocal

P. Scardi – Diffraction from nanocrystalline materials ICTP School - Trieste, 10.05.2018 50

REFERENCES - [email protected]

Extending the Reach of Powder Diffraction Modelling by User Defined Macros

P. Scardi & R. E. Dinnebier, editors

A special issue of Materials Science Forum, 2010.

Diffraction Analysis of Materials Microstructure

E.J. Mittemeijer & P. Scardi, editors.

Berlin: Springer-Verlag, 2004.

Synchrotron Radiation. Basics, Methods and Applications

S. Mobilio, F. Boscherini, C. Meneghini, editors.

Springer-Verlag, 2015