Basic Mathematical Knowledge

Embed Size (px)

Citation preview

  • 7/31/2019 Basic Mathematical Knowledge

    1/33

    Chapter 0. Basic Mathematical Knowledge/P.1

    Chapter 0. Basic Mathematical Knowledge

    Section 0. Trigonometric Formulas

    Section 1. Complex Numbers

    Section 2. Exponential Functions, Logarithmic Functions and Their Limits

    Section 3. Differentiation

    Section 4. Integration

  • 7/31/2019 Basic Mathematical Knowledge

    2/33

    Chapter 0. Basic Mathematical Knowledge/P.2

    Section 0. Trigonometric Formulas

    0.0.0 Compound angle

    1. BABABA sincoscossin)sin( = .

    2. BABABA sinsincoscos)cos( m= .

    3.BA

    BABA

    tantan1

    tantan)tan(

    m

    = .

    0.0.1 Double angle

    1. AAA cossin22sin = .

    2. AAAAA 2222 sin211cos2sincos2cos === .

    0.0.2 Sum to Product

    1.2

    cos2

    sin2sinsinBABA

    BA+

    =+ .

    2.2

    sin2

    cos2sinsinBABA

    BA+

    = .

    3.2

    cos2

    cos2coscosBABA

    BA+

    =+ .

    4.

    2

    sin

    2

    sin2coscosBABA

    BA+

    = .

    0.0.3 Product to Sum

    1. )sin()sin(cossin2 BABABA ++= .

    2. )cos()cos(coscos2 BABABA ++= .

    3. )cos()cos(sinsin2 BABABA += .

    0.0.4 General solution

    1. If k=sin , then nn )1(+= ;

    2. If k=cos , then = n2 ;

    3. If k=tan , then += n , where Nn and is one of the roots.

  • 7/31/2019 Basic Mathematical Knowledge

    3/33

    Chapter 0. Basic Mathematical Knowledge/P.3

    Section 1. Complex Numbers

    Definition 0.1.0 A complex numberz is defined to be a number of the form a + bi,

    where a b, R and i 2 1= .

    a is called the real part ofz and is denoted by Re(z), b is calledthe imaginary

    part ofz and is denoted by Im(z).

    If Im(z)=0,z is real. If Re(z)=0 and Im( )z 0, z is called apurely imaginary

    number.

    Definition 0.1.1 Let z a bi z c di1 2= + = +, , where a b c d , , , R , be two

    complex numbers, then z1 is equalto z2 if and only ifa = c and b = d, i.e. z z1 2=

    iff Re( ) Re( )z z1 2= and Im( ) Im( )z z1 2= .

    Definition 0.1.2 (Arithmetic operations of complex numbers)

    Let z a bi z c di1 2= + = +, where a b c d , , , R , be two complex numbers, then

    the rules of arithmetic operations are defined as

    i) z z a c b d i1 2+ = + + +( ) ( )

    ii) z z a c b d i1 2 = + ( ) ( )

    iii) z z ac bd ad bc i1 2 = + +( ) ( )

    iv)z

    z

    ac bd

    c d

    bc ad

    c d

    i1

    2

    2 2 2 2=

    +

    +

    +

    +

    if z2 0 .

    e.g.0.1.0 Evaluate i) )53)(21( ii + ; ii)i

    i

    67

    32

    +

    .

  • 7/31/2019 Basic Mathematical Knowledge

    4/33

    Chapter 0. Basic Mathematical Knowledge/P.4

    e.g.0.1.1 Find Cz such that iz 432 += .

    e.g.0.1.2 Solve the following equations:

    i) 0222 =++ xx ; ii) 01062 =+ xx ;

    iii) 013 =x ; iv) 0124 =++xx .

  • 7/31/2019 Basic Mathematical Knowledge

    5/33

    Chapter 0. Basic Mathematical Knowledge/P.5

    Section 2. Exponential Functions and Logarithmic Functions

    0.2.0 Revision --Indices Notation and indices laws

    For any real number a and any positive integer n, an is defined to be the product ofa

    by itselfn times. That is,

    an: = aa ... a (n times).

    For any positive real number a, we define

    am

    :=

    integer.negativeaisif

    1

    zero,isif1

    m

    a

    m

    m

    For any non-negative real number a and any positive integer n, we define a1/n

    to be

    the unique non-negative real root of the equation

    xn= a.

    Sometimes, we write 21

    : aa = and naan1

    := for n 3.

    For any non-zero rational number r, there is a unique pair of non-zero integers m andn such that n is positive, m and n are relative prime (that is, they have not common

    prime factor) and r=n

    m, we define

    ar

    =

    >=

    >

    .0and0if0

    ,0if)(1

    a

    aa nm

    It is not difficult to prove that the following Indice laws.:

    For any real numbers a, b > 0 and for any rational numbersx andy, we have

    (2.0) a0= 1, (2.1) a

    1= a,

    (2.2) axa

    y= a

    x + y,

    (2.3)

    y

    x

    a

    a= a

    xy,

    (2.4) (ab)x

    = axb

    x, (2.5) x

    b

    a)( =

    x

    x

    b

    a

    (2.6) (ax)y

    = axy

    . (2.7) Ifax

    = ay

    thenx =y.

    Table 0

  • 7/31/2019 Basic Mathematical Knowledge

    6/33

    Chapter 0. Basic Mathematical Knowledge/P.6

    e.g.0.2.0

    Solve the following equations.

    a) 493x

    = 343; b) 51

    125

    23

    +

    =

    x

    x

    ;

    c) 22x 5(2x) + 4 = 0; d) 25x= 23(5x)+ 50.

    e.g.0.2.1 Solve the following system of simultaneous equations:

    =+=

    .954

    ,75421 yx

    yx

  • 7/31/2019 Basic Mathematical Knowledge

    7/33

    Chapter 0. Basic Mathematical Knowledge/P.7

    0.2.1 Exponential functions and their graphs

    We ploty = 2x against all rational numbersx. The following graph is obtained.

    Since the symbol 2x

    is not defined for all irrational numbers, the above graph is not a

    continuous curve.

    However, it is easily to see that there is one and only one continuous curvey = g(x)

    satisfying g(x) = 2

    x

    for all rational numbersx. Then we can define

    )(:2 xgx = for any irrational numberx.

    In general, we can prove that

    i) Iff(x +y) =f(x)f(y) for all rational numbersx andy,

    thenf(r) =f(1)r

    for all rational numbers r.

    ii) For any real positive number a, there is one and only one continuous

    functionfa defined on the real line such thatfa(r) = arfor all rational numbers

    r.

    We define

    ax : =fa(x) for irrational numberx.

    wherefa is the unique continuous function satisfyingfa(x) = ax for all rational number

    x.

    0

    1

    2

    3

    4

    3 2 1 1 2x

    y

  • 7/31/2019 Basic Mathematical Knowledge

    8/33

    Chapter 0. Basic Mathematical Knowledge/P.8

    Furthermore, we can show that all indices laws ( (2.0) - (2.7) ) in table 0 hold even

    the powers are irrational.

    Definition 0.2.0

    For any a > 0, the continuous function f(x) = axdefined on the real line is called an

    Exponential Function with Base a.

    Since a0

    = 1 for any positive real number a, the exponential curvey = ax

    must passes

    through the point (0, 1). When a = 1, the graphy = 1x

    is just a horizontal straight line.

    Ifa > 1 then

    ax < a

    y wheneverx ay

    wheneverx 1 and 0 < a < 1,x-axis is a horizontal asymptote to the curvey = ax.

    Besides the graph of the curvey = )1

    ()1

    (x

    x

    aa

    = is the mirror image of that of the

    curve xay = about they-axis.

    y = ax , a > 1

    y =x

    a

    )1

    (

    y = 1x

    y

    x

    O

    The graphs of exponential functionsy = ax

    andy = ax

    1

    a

    1

    a

    1

    1

    a

    21

  • 7/31/2019 Basic Mathematical Knowledge

    9/33

    Chapter 0. Basic Mathematical Knowledge/P.9

    e.g.0.2.2 Sketch the following curves in one graph.

    a) y = 3x

    b) y = )3

    1()

    3

    1(

    x

    x = ;

    c) y = 4(3x);

    d) y = 4(3x) 1 ;

    e) y =2

    1 (3x);

    f) y = 22

    1 (3x).

    Class Practice 0.2.0

    Sketch the following curves in one graph.

    a) y =x2.0 ;

    b) y =

    x5 ; c) y = 2(0.2x); d) y =5

    2.0 x;

    e) y = 32(0.2x) ; f) y =5

    2.03

    x

    + .

    0.2.2 The limits of exponential functions

    Theorem 0.2.0

    (I) ifa >1,

    (i) x

    xa

    +lim = + ,

    (ii) x

    xa

    lim = 0,

    (II) if 0< a

  • 7/31/2019 Basic Mathematical Knowledge

    10/33

    Chapter 0. Basic Mathematical Knowledge/P.10

    d)x

    x

    x 3

    3

    31

    1)3(4lim

    +

    ; e)

    )5.0(43

    )5.0(2lim

    x

    x

    x +; f)

    x

    x

    x )7.0(45

    )7.0(2lim

    1

    +

    ;

    g)x

    xx

    x )1.0(27)1.0(4)1.0(3lim

    32

    +

    +

    .

    e.g.0.2.4 Sketch the following graphs

    a) y =13

    1

    +x; b) y =

    13

    2

    +

    x

    ; c) y =13

    31

    +

    x

    x

    .

  • 7/31/2019 Basic Mathematical Knowledge

    11/33

    Chapter 0. Basic Mathematical Knowledge/P.11

    Class Practice 0.2.1

    1. Evaluate the following limit.

    a) x

    x4.0lim

    +; b)

    2

    31lim

    x

    x

    .

    c)5

    4lim

    3x

    x +;

    d) kx

    x5lim

    where kis a positive constant;

    e) bx

    xa

    +lim where a and b are positive constants but a

  • 7/31/2019 Basic Mathematical Knowledge

    12/33

    Chapter 0. Basic Mathematical Knowledge/P.12

    Let a > 0 and a 1.

    (2.8) logaax

    =x for any real numberx;

    (2.9) y = a aylog

    for anyy >0;

    (2.10)

    loga 1 = 0, a

    0= 1.

    (2.11) logaa = 1. a1

    = a .

    For anyx,y > 0, we have

    (2.12) log axy

    =ylogax,

    .

    )(

    log

    log

    xy

    yxy

    a

    a

    a

    ax

    =

    =

    (2.13) log a(xy) = logax + logay,

    .

    ))((

    loglog

    loglog

    yx

    yx

    aa

    aa

    a

    aaxy

    +=

    =

    (2.14) logax

    1= log ax ,

    .

    11

    log

    log

    x

    x

    a

    a

    a

    ax

    =

    =

    (2.15) loga(y

    x) = logax logay,

    .loglog

    log

    log

    yx

    y

    x

    aa

    a

    a

    a

    a

    a

    y

    x

    =

    =

    (2.16)If logax = logay thenx =

    y.

    (2.17) logax =a

    x

    b

    b

    log

    log

    (change of base)

    whenever b > 0 and b1.

    ).)(log(log

    )(logloglog

    ax

    ax

    ba

    xbb

    a

    =

    =

    Table 1

    Definition 0.2.2

    The inverse function of the exponential function with base a is called theLogarithmic

    Function withBasea and is denoted by loga. That is, forx > 0,

    logax =y if y is the unique number satisfying ay=x.

  • 7/31/2019 Basic Mathematical Knowledge

    13/33

    Chapter 0. Basic Mathematical Knowledge/P.13

    Ifa > 1, then logax is strictly increasing.

    If 0 < a < 1, then logax is strictly decreasing.

    The graph of logarithmic functiony = logax

    (a) passesthrough the point (1, 0).

    (b) has a vertical asymptotex = 0 (the y-axis)

    (c) is the mirror image of that of its inverse functiony = axabout the liney =x

    e.g.0.2.5 Solve the following equations.

    a) log8(x 3) + log8(x 5) = 1; b) log10(x2

    + 4) 2 log10x = 1;c) 3

    2x+1= 5

    x;d) 2

    32x7

    x+1=56.

    y

    = lo ax

    = ax

    =x

    O x

    y

    = lo ax

    = ax =x

    O1 1

  • 7/31/2019 Basic Mathematical Knowledge

    14/33

    Chapter 0. Basic Mathematical Knowledge/P.14

    e.g.0.2.6 Solve the following simultaneous equations.

    =+

    =+

    .0)33(log

    ,log22log)2(log

    10

    101010

    yx

    yx

    Definition 0.2.3

    Thebase of Natural Logarithm is denoted by e.This number e be defined by

    e = nn n

    )11(lim +

    2.7182818284

    The exponential function with base e is simply calledthe Exponential function and

    denoted by exp. That is,

    exp(x) = ex

    for any real number x.

    The Natural Logarithmic Function and denoted by ln or log is the logarithmic

    Function with base e. That is, xx elogln = .

    The importance ofe will be shown in next sections.

  • 7/31/2019 Basic Mathematical Knowledge

    15/33

    Chapter 0. Basic Mathematical Knowledge/P.15

    Section 3. Differentiation

    You should learn the following formulas/theorems in CE Additional Mathematics:

    0.3.0 Let u and v be differentiable functions ofx and c is a constant, then

    i)d

    dxc = 0 ;

    ii)d

    dxu v

    du

    dx

    dv

    dx( ) = ;

    iii)d

    dxuv u

    dv

    dxv

    du

    dx( ) = + (Product rule);

    iv)d

    dx

    u

    v

    vdu

    dxu

    dv

    dx

    vv( ) ,=

    20 (Quotient rule).

    0.3.1 (Chain Rule)

    If y is a differentiable function ofu and u is a differentiable function ofx,

    thendx

    du

    du

    dy

    dx

    dy= .

    0.3.2 (Inverse Function Theorem)

    Ify is a differentiable function ofx given by y=f(x), and if x y= ( ) is the

    inverse function ofy=f(x), then

    '( )'( ( ))

    yf y

    =1

    , or

    dy

    dxdx

    dy 1= .

  • 7/31/2019 Basic Mathematical Knowledge

    16/33

    Chapter 0. Basic Mathematical Knowledge/P.16

    e.g.0.3.0 Prove or disprove:2

    2

    2

    2

    2

    2

    dx

    ud

    du

    yd

    dx

    yd= .

    e.g.0.3.1 sin: ( . ) ( , )

    2 211 is differentiable and bijective. Let y x= sin 1 be

    its inverse function, finddy

    dx.

    e.g.0.3.2 It is known thatd

    dxx

    x aa(log )

    ln=

    1(where a > 0, 1 ). Find

    d

    dxa

    x .

  • 7/31/2019 Basic Mathematical Knowledge

    17/33

    Chapter 0. Basic Mathematical Knowledge/P.17

    Theorem 0.3.0

    i)d

    dxx x

    = 1 , is a real constant;

    ii)d

    dxx xsin cos= ;

    iii)d

    dxx xcos sin=

    iv)d

    dxx xtan sec= 2 ;

    v)d

    dxx xcot csc= 2 ;

    vi) ddx

    x x xsec sec tan= ;

    vii)d

    dxx x xcsc csc cot= ;

    viii) 1)d

    dxe ex x= ; 2)

    d

    dxa a a

    x x= ln , a>0 is a constant;

    ix) 1)d

    dxx

    xln =

    1; 2)

    d

    dxx

    x aalog

    ln,=

    1 a > 0 1, is a constant.

    x) ddx

    xx

    sin =

    12

    11

    ;

    xi)d

    dxx

    xcos =

    1

    2

    1

    1;

    xii)d

    dxx

    xtan

    =+

    1

    2

    1

    1;

    xiii)d

    dxx

    xcot

    =

    +1

    2

    1

    1.

    e.g.0.3.3 Find the derivatives of the following functions

    a) e7x

    ; b) 4 22

    x

    e

    ; c)xe4 ; d) xex

    2; e)

    x

    x

    e

    e

    +

    1

    1; f)

    21 )(tan xe

    .

  • 7/31/2019 Basic Mathematical Knowledge

    18/33

    Chapter 0. Basic Mathematical Knowledge/P.18

    e.g.0.3.4 Find the derivatives of the following functions

    a) f(x) = 3lnx; b) g(x) = )1ln(2 +x ; c) h(x) =

    x

    xln; d)

    y(x)= xx ln2

    .

    e.g.0.3.5 a) Let y =1

    32)54(

    2

    2

    +

    +

    x

    xxforx >

    3

    2. Find )(lny

    dx

    dand

    dx

    dy.

    b) Lety =xx

    forx > 0. Find )(lnydx

    dand

    dx

    dy.

    Class Practice 0.3.0

    1. Find the derivatives of the following functions.

    a)y = ekx

    (kis a constant.); b) y = 4e8x

    + 15 3x

    e ;

    c)y = 4ex( )2 5 6+ ; d) y =x3e2x ;

  • 7/31/2019 Basic Mathematical Knowledge

    19/33

    Chapter 0. Basic Mathematical Knowledge/P.19

    e)y =e

    x

    x2 1

    7 4

    +

    ; f) y = log3x;

    g)y = log2 (x2 +x 1); h) y = ln lnx;

    i)y = 3x; j) y = 5

    lnx

    k)y =54 23x x ; l) y = ee

    x

    .

    2. (Logarithmic differentiation) Find ddx

    (lny) and dydx

    of the following functions.

    a)y = (x2

    + 3)4(2x

    3 1)5; b) yx x

    x x=

    + +

    ( )( )

    ( )( )

    1 3

    1 3;

    c)y =xlnx

    d) y = (log2x)x.

  • 7/31/2019 Basic Mathematical Knowledge

    20/33

    Chapter 0. Basic Mathematical Knowledge/P.20

    Section 4. Integration

    0.4.0 Method of Substitution

    Definition 0.4.0

    Let )(xfy = be a function ofx, and let x be a small increment ofx. The

    product xxf )(' is defined to be thedifferential of y and denoted by dy.

    Since xxdx

    dxdx == 1 , we have dxxfxxfdy )(')(' == .

    e.g.0.4.0 Find the differential of xyi cos) = and xxyii 2sin) = .

    Theorem 0.4.0 (Method of Substitution/ Change of Variable)

    Ifd

    dug u f u( ) ( )= and u h x= ( ) , then

    f h x h x dx f u du g h x C( ( )) ' ( ) ( ) ( ( ))= = + ,

    where Cis a constant.

    e.g.0.4.1 Evaluate i) dxx 2)72(1

    by the substitution 72 = xu ;

    ii) dxx)37sin( by the substitution xu 37 = ;

    iii) + dxxx20052

    )1( by the substitution 12

    +=xu ;

    iv) + dxxx 1032 )12( by the substitution 12 3 += xu ;

    v) xdxx cossin by the substitution xu sin= or xu cos= .

  • 7/31/2019 Basic Mathematical Knowledge

    21/33

    Chapter 0. Basic Mathematical Knowledge/P.21

    Remark: i) If 1n , Cna

    baxdxbax

    nn +

    ++

    =++

    )1()(

    )(1

    .

    ii) ++

    =+ Ca

    baxdxbax

    )cos()sin( .

    iii) ++

    =+ Ca

    baxdxbax

    )sin()cos( .

    e.g.0.4.2 Evaluate the following integrals by a suitable substitution:

    i) dx

    x

    x

    cos1

    sin; ii) +

    dxx

    x

    tan20071

    sec2; iii) dxxxxx )43()2( 22

    1

    23 ++

    ;

    iv) d6csc ; v) dxxx

    6)1(; vi) +

    dx

    xx

    x22 )12(

    1.

  • 7/31/2019 Basic Mathematical Knowledge

    22/33

    Chapter 0. Basic Mathematical Knowledge/P.22

    e.g.0.4.3 Evaluate the integrals in e.g.0.4.1 and 0.4.2 directly.

  • 7/31/2019 Basic Mathematical Knowledge

    23/33

    Chapter 0. Basic Mathematical Knowledge/P.23

    e.g.0.4.4 (Trigonometric Substitution)

    Case 1. If the integrand contains )( 22 xa , make the substitution x a= sin .

    Case 2. If the integrand contains )( 22 xa + , make the substitution tanax = .

    Case 3. If the integrand contains )( 22 ax , make the substitution secax = .

    Evaluate i) dxx 21 ; ii) dxxx

    2

    24; iii)

    + 23

    2 )5( x

    dx; iv)

    +dx

    x

    x

    92

    3

    .

    0.4.1 Formula of Integration

    e.g.0.4.5 i) Find the derivative of lnx for x 0.

    ii) Find the indefinite integral1

    x

    dx

    .

  • 7/31/2019 Basic Mathematical Knowledge

    24/33

    Chapter 0. Basic Mathematical Knowledge/P.24

    Theorem 0.4.1

    1. x dx n x C

    n n

    = + ++1

    1

    1

    for 1n .

    2.1

    xdx x C = + ln .

    3. i) sin cosxdx x C= + ; ii) cos sinxdx x C= + ;

    iii) sec tan2xdx x C= + ; iv) csc cot2xdx x C= + ;

    v) sec tan secx xdx x C= +

    ; vi) csc cot cscx xdx x C= +

    .

    4. tan ln secxdx x C= + .

    5. cot ln sinxdx x C= + .

    6. sec ln sec tan ln tan( )xdx x x Cx

    C= + + = + +

    4 2.

    7. csc ln csc cot ln tanxdx x x Cx

    C= + = +2

    .

    8. i) Cedxe xx += ; ii) Cekdxekxkx +=

    1, where kis a constant;

    iii) a dxa

    aC

    xx

    = + ln , where a > 0 1, is a constant.

    9. i)1

    1 21

    += + x dx x C tan ;

    ii)1 1

    2 2

    1

    x adx

    a

    x

    aC

    += + tan , where a is a constant.

    10. i)1

    1

    1

    2

    1

    12=

    +

    + x dx

    x

    xCln ;

    ii)1 1

    22 2a xdx

    a

    a x

    a xC

    =

    +

    + ln , where a is a constant.

    11. i)1

    1 21

    = +

    xdx x C sin ;

    ii)1

    2 2

    1

    a xdx

    x

    aC

    = + sin , where a is a constant.

  • 7/31/2019 Basic Mathematical Knowledge

    25/33

    Chapter 0. Basic Mathematical Knowledge/P.25

    12. i)1

    11

    2

    2

    xdx x x C

    = + + ln ;

    ii)1

    2 2

    2 2

    x adx x x a C

    = + + ln , where a is a constant.

    e.g.0.4.6 Evaluate the following indefinite integrals by suitable substitutions:

    i)1

    2 1xdx

    + ; ii)1

    x xdx

    ln ,x > 0; iii) x e dxx2 3 ;

    iv)e

    edx

    x

    x + 1 ; v)e x

    edx

    x

    x

    sinsin

    2 2

    2 .

    e.g.0.4.7 (Integrals of the form1 1

    2 2ax bx cdx

    ax bx cdx

    + + + + , )

    Find i)1

    12x xdx

    + + ; ii)1

    4 42 x x dx ;

    iii)1

    5 42

    x x

    dx ; iv)1

    6 12

    x xdx

    + + .

  • 7/31/2019 Basic Mathematical Knowledge

    26/33

    Chapter 0. Basic Mathematical Knowledge/P.26

    e.g.0.4.8 (Integrals of the formex f

    ax bx cdx

    ex f

    ax bx cdx

    +

    + +

    +

    + + 2 2, )

    Find i)8 3

    2 2 12t

    t tdt

    + + ; ii)x

    x xdx

    +

    + +5

    2 82;

    iii)2 1

    3 8 12

    x

    x xdx+

    + .

    Class Practice 0.4.0

    Find the following integrals by the substitution.

    a) dxx)25( ; b) dxxxx + 21

    )13)(32( 2 ;

    c) dxxx

    xx

    ++

    23

    42

    23

    2

    ; d) dxxx + )56()12( ; e) dxxx ln1

    .

  • 7/31/2019 Basic Mathematical Knowledge

    27/33

    Chapter 0. Basic Mathematical Knowledge/P.27

    0.4.2 Integration by Partial Fractions

    Definition 0.4.1

    An algebraic fraction or a rational function is an algebraic expression of the

    formp x

    q x

    ( )

    ( ), where p(x) and q(x) are polynomials in x and q x( ) 0 .

    Definition 0.4.2

    A rational functionp x

    q x

    ( )

    ( )

    is called

    i) aproper fraction if deg( ( )) deg( ( ))p x q x< ,

    ii) an improper fraction if deg( ( )) deg( ( ))p x q x , where deg(p(x)) is the degree of

    the polynomialp(x).

    For instance,1

    1

    2 3 1

    1 2 3

    2

    +

    +

    + + +x

    x x

    x x x

    ,

    ( )( )( )

    are proper fractions while

    x

    x

    +

    1

    1,x x

    x x

    3

    2

    4 1

    2 1

    + +

    + are improper fractions.

    Ifp x

    q x

    ( )

    ( )is an improper fraction, then by dividing p(x) by q(x), we get

    p x q x Q x R x( ) ( ) ( ) ( ) + , where Q(x), R(x) are polynomials and

    deg( ( )) deg( ( ))R x q x< . It follows thatp x

    q xQ x

    R x

    q x

    ( )

    ( )( )

    ( )

    ( ) + , which is the sum of a

    polynomial and a proper fraction.

    Definition 0.4.3

    Partial fractions is the process which breaks a given fraction (proper or

    improper) into an algebraic sum of several proper fractions and a polynomial.

    Process of resolving a rational fraction in partial fractions:

    1. Express the given rational function as a sum of a polynomial (it may be a zero

  • 7/31/2019 Basic Mathematical Knowledge

    28/33

    Chapter 0. Basic Mathematical Knowledge/P.28

    polynomial if the given rational function is proper) and aPROPERfraction.

    2. Factorize the denominator completely into product of linear and quadratic factors.

    3. To a factor of the form ( ) ,ax b nn

    + 1, there corresponds a group of fractions

    A

    ax b

    A

    ax b

    A

    ax b

    nn

    1 22+

    ++

    + ++( ) ( )

    L

    where A A An1 2, , ,L are constants.

    4. To a factor of the form ( ) ,ax bx c nn2 1+ + , there corresponds a group of

    fractions

    A x Bax bx c

    A x Bax bx c

    A x Bax bx c

    n nn

    1 12

    2 22 2 2

    ++ +

    + ++ +

    + + ++ +( ) ( )

    L

    where A A An1 2, , ,L , B B Bn1 2, , ,L are constants.

    5. Find the constants A A An1 2, , ,L , B B Bn1 2, , ,L .

    e.g.0.4.9 Resolve the following fractions in partial frations:

    i) x xx x

    3

    23 42 1

    ; ii) 443x x+

    ; iii) 113x +

    ;

    iv)1

    15 4 3 2x x x x x + + ; v)

    x x x

    x

    3 2

    4

    6 4 8

    3

    + +

    ( ).

    e.g.0.4.10 Evaluate

    i)1

    2 2

    a x

    dx

    ; ii)

    1

    1

    5 4 3 2

    x x x x x

    dx

    + + ;

  • 7/31/2019 Basic Mathematical Knowledge

    29/33

    Chapter 0. Basic Mathematical Knowledge/P.29

    iii)2 3 3

    1

    4 3 2

    3

    x x x x

    xdx

    + +

    ; iv)2 6 8

    1 1

    2

    4

    x x

    x xdx

    + +

    + ( )( ) .

    e.g.0.4.11 Using the substitution t ex= , find

    i)

    4 6

    9 4

    e e

    e e dx

    x x

    x x

    +

    ; ii)e

    e dx

    x

    x

    2

    1 + .

    Class Practice 0.4.1

    By the method of partial fractions, find the following indefinite integrals.

    a)1

    1x xdx

    ( )+ ; b)x

    x xdx

    +

    + 1

    4 52;

    c)

    2 3

    6 3 2

    x

    x dx

    +

    + ( ) ; d)x

    x x dx2 4 4 + .

  • 7/31/2019 Basic Mathematical Knowledge

    30/33

    Chapter 0. Basic Mathematical Knowledge/P.30

    0.4.3 Integration by Parts

    Theorem 0.4.2 (Integration by Parts)

    Let u=f(x) and v=g(x) be two real-valued functions with continuous first

    derivatives. Then udv uv vdu= , i.e.

    f x g x dx f x g x g x f x dx( ) ' ( ) ( ) ( ) ( ) ' ( )= .

    Integration by parts is particularly useful when the integrand contains

    i) a product of two factors;

    ii) an inverse trigonometric functions;

    iii) a logarithmic functions.

    e.g.0.4.12 Evaluate

    i) lnxdx ; ii) sin 1xdx .

    In the integral f x g x dx( ) ( ) , if f xdu

    dx( ) = for some function u(x) and g(x) cant be

    integrated by ordinary means, then try

    f x g x dx g x du u x g x u x dg x( ) ( ) ( ) ( ) ( ) ( ) ( )= = .

    e.g.0.4.13 Evaluate

    i) x xdxtan 1 ; ii) sin ln(tan )x x dx ; iii) x x dx(tan ) 1 2 .

  • 7/31/2019 Basic Mathematical Knowledge

    31/33

    Chapter 0. Basic Mathematical Knowledge/P.31

    In the integral x g x dxn ( ) , if g xdv

    dx( ) = for some function v(x), then try

    x g x dx x dv x v x v x dxn n n n( ) ( ) ( )= = .

    e.g.0.4.14 Evaluate

    i) xe dxx3

    ; ii) x xdx2

    cos .

  • 7/31/2019 Basic Mathematical Knowledge

    32/33

    Chapter 0. Basic Mathematical Knowledge/P.32

    If there are sinnx or cosnx in the integrand, we should reduce them to

    compound angle.

    e.g.0.4.15 Evaluate x xdxcos2

    .

    Sometimes, after integrating by parts, the new integral on the right hand side

    may be expressible as a sum of a multiple of the original integral and an integral

    which can be readily integrated. This technique is illustrated in the following

    examples.

    e.g.0.4.16 Evaluate

    i) sec3xdx ; ii) e xdxx sin ; iii) cos(ln )x dx .

  • 7/31/2019 Basic Mathematical Knowledge

    33/33

    Chapter 0. Basic Mathematical Knowledge/P.33

    Class Practice 0.4.2

    1. Using the method of integration by parts. Find

    a) x xdxk ln where k 1; b) ln( )

    x

    xdx

    12

    and

    c) sec tanx xdx2 .

    2. a) Derive the following reduction formula

    x e dxa

    x en

    ax e dx

    n ax n ax n ax = 1 1 where a 0.

    b) Hence evaluate x e dxx3 2 .