18
Basin analysis and Prediction of the Basin analysis and Prediction of the development of anomalous fluid development of anomalous fluid pressure at depths pressure at depths in the Western Foothills of Taiwan in the Western Foothills of Taiwan Wataru Tanikawa, Toshihiko Shimamoto (Kyoto University in Japan) Wataru Tanikawa, Toshihiko Shimamoto (Kyoto University in Japan) Wheng Wheng - - Kung Wey, Wei Kung Wey, Wei - - Yu Wu (Chinese Petroleum Corporation) Yu Wu (Chinese Petroleum Corporation) Ching Ching - - Weei Lin, Wen Weei Lin, Wen - - Chi Lai (Cheng Chi Lai (Cheng - - Kong University in Taiwan) Kong University in Taiwan) Wei Wei - - Min Donald Chen, Jih Min Donald Chen, Jih - - Hao Hung (National Central University in Taiwan) Hao Hung (National Central University in Taiwan)

Basin analysis and Prediction of the development of ......Basin analysis and Prediction of the development of anomalous fluid pressure at depths in the Western Foothills of Taiwan

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Basin analysis and Prediction of the Basin analysis and Prediction of the development of anomalous fluiddevelopment of anomalous fluid

    pressure at depths pressure at depths in the Western Foothills of Taiwanin the Western Foothills of Taiwan

    Wataru Tanikawa, Toshihiko Shimamoto (Kyoto University in Japan)Wataru Tanikawa, Toshihiko Shimamoto (Kyoto University in Japan)WhengWheng--Kung Wey, WeiKung Wey, Wei--Yu Wu (Chinese Petroleum Corporation)Yu Wu (Chinese Petroleum Corporation)ChingChing--Weei Lin, WenWeei Lin, Wen--Chi Lai (ChengChi Lai (Cheng--Kong University in Taiwan)Kong University in Taiwan)

    WeiWei--Min Donald Chen, JihMin Donald Chen, Jih--Hao Hung (National Central University in Taiwan)Hao Hung (National Central University in Taiwan)

  • Estimation to hydraulic properties Estimation to hydraulic properties →→permeability structure / porosity distribution / specific storagpermeability structure / porosity distribution / specific storage e

    at the depth of the Western Foothills in Taiwanat the depth of the Western Foothills in Taiwan→→sedimentary basin / focal area / accretionary prism sedimentary basin / focal area / accretionary prism

    by the way of surface samples and laboratory result!by the way of surface samples and laboratory result!

    oil

    INPORTANCEINPORTANCE①① Application forApplication for

    ⇒fluid / oil transport system of the basin / fault zone at depth⇒fault mechanism (ex. Thermal pressurization)

    ②② Help borehole test (inHelp borehole test (in--situ test)situ test)⇒In-situ test has a limit to cost and observation of internal structure⇒laboratory tests and surface samples are CHEAPER!!

    PURPOSEPURPOSE

    $10000

    $10000

    $10000

    $10000

  • How to apply laboratory result to the real depth of natureHow to apply laboratory result to the real depth of nature??(in the case of sedimentary rock)(in the case of sedimentary rock)

    ①Reproduce the depth condition ⇒ Generation of Temperature and Pressure ②Evaluate the overconsolidation affected by previous loading③Evaluate of time dependent – compaction ⇒ Comparison different ages of samples④Estimate the abnormal fluid pressure

    ⇒ analysis to the development of the sedimentary basins

    1020(m)2342(m)

    3847(m)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    depth of sample

    10-18 10-17 10-16 10-15

    Effe

    ctiv

    e pr

    essu

    re (M

    Pa)

    Effe

    ctiv

    e pr

    essu

    re (M

    Pa)

    Permeability (㎡) Permeability (㎡)

    burial

    uplifting・erosion

    over compaction

    Cyclic testNon-Cyclic test(idealconsolidation curve)※using the similar sample

    0

    20

    40

    60

    80

    100

    120

    140

    160

    10-18 10-17 10-16 10-15 10-14

    surface samples are over compacted and shows larger permeability than ideal consolidation curve.

    older rocks showed lower permeability because of the time depending compaction effect

  • What's ABNORMAL FLUID PRESSURE?What's ABNORMAL FLUID PRESSURE?

    0

    1

    2

    3

    5

    4

    Chinshui field

    0 10 20 30 40 50 60 70 800

    1

    2

    3

    5

    4

    0 10 20 30 40 50 60 70 80

    Chingtsaohu-ChitingPaoshanChunanPaishatun

    fluid pressure(MPa)

    abnormal fluid pressure= fluid pressure - hydrostatic pressure

    Generated from the depth 3~4kmGetting larger at the deeper

    fluid pressure(MPa)

    lithostatics

    hydrostatics

    lithostatics

    hydrostatics

    abnormal fluid

    ×

    geopressuregradient

    hydrostatic

    lager thanhydrostat

    depth - Pe

    proportional

    ×

    Fluid pressure data from boreholes at the northwest of Taiwan(Suppe & Wittke1977)

    abnorml fluid pressure

    We Can Guess...

    depth - permeability

    Experimental dataPe - PermeabilityPe - Porosit

  • Why Why ABNORMALABNORMAL PRESSURE generated in the depth?PRESSURE generated in the depth?①Fluid in a basin undrained by increasing

    loading pressure and decreasing permeabilitya. sedimentation b. tectonic loading

    ②Volume change in aquathermal expansiona. temperature gradientb. heat origin

    ③Fluid movement from subduction boundary (Rice 1992 )④Dehydration (diagenesis)effect

    a. smectite → illite + waterb. gypsum → anhydrite + waterc. hydrocarbon generation

    0

    1

    2

    3

    5

    4

    Chinshui field

    0 10 20 30 40 50 60 70 80

    abnormal fluid pressure

    fluid pressure(MPa)

    lithostatics

    hydrostatics

    It depend onthe sediment environmentand permeability structure

    effective if SEALING LAYERdeveloped

    we need to know PERMEABILITY STRUCTURE PERMEABILITY STRUCTURE at a depth of the Western Foothills

  • Study area and Sampling pointStudy area and Sampling pointThe Western Foothills

    ①sandstone rich sedimentary rock②Pleistocene to Miocene③take different ages of sample(tectonic collision)④1999 Chi-Chi earthquake⑤oilfield ・・・ a lot of drill data

    Western Foothills Slate Terrain

    3km

    雙冬断層 水長流断層

    OligocenePleistocenePliocene

    UpperMiocene│

    Pliocene

    Holocene

    PleistocenePliocene

    Coastal Plain

    B A車籠埔断層

    10km

    paleocene

    miocene

    pleistocene

    pliocene

    upper mioceneto pliocene

    B A

    Che

    lung

    puFa

    ult

    epicenter

    台北

    台南

    高雄

    0 20 40 60 km

    台東

    台中

    Drilling site of ICDP

    Philippine Sea Plate

    EurasianPlate

    8.2 cm/yr

    Sun-and-Moon Lake

  • METHODSMETHODS

    conditioncondition・temperature room temperature(≒20℃)・confining medium/pore fluid N2 gas・confining pressure 0~200MPa・sample size φ 20mm × L 10~50mm

    permeabilitypermeability①steady flow method

    Pp = 0.2~2.0 MPa K = 10-14~10-18 ㎡ (higher permeability)(1darcy = 10-12 ㎡ ≒10-3cm/sec)

    ②pore pressure oscillation method(Kranz1990) Pp =20 MPa (constant) K =10-15~10-21 ㎡ (lower permeability)

    porosityporosity

    error bar

    10-18

    10-17

    10-16

    10-15

    10-14

    0 50 100 150 200

    GR431 sandstone

    steady flowoscillation

    effective pressure(MPa)

    Spacemen assembly

    Pressure vessel and Piston

    Sample picture

    Comparison of two methods

  • 10-19

    10-18

    10-17

    10-16

    10-15

    10-14

    0 50 100 150 20010-18

    10-17

    10-16

    10-15

    10-14

    10-13

    0 50 100 150 200

    GR435 12 conglomerateGR400 matrix in conglomerateGR392 sandy matrixGR535 12 conglomerate

    RESULTS of PERMEABILITYRESULTS of PERMEABILITY①①sandstone (10-14~10-18㎡) conglomerate (10-13~10-17㎡)

    Effective pressure (MPa)Effective pressure (MPa)

    Per

    mea

    bilit

    y (㎡

    )

    Per

    mea

    bilit

    y (㎡

    )

    initialporosity (%)

    sedimentaryage (Ma)

    samplingpoint

    441442449488501507516

    430431432433434437438

    46105172015726282528720

    17.8 - 19.013.9 - 185.7 - 7.4

    13.9 - 180 - 0.67

    12.3 - 13.91.64 - 3.017.8 - 1920 - 23.317.8 - 1923.3 - 35.417.8 - 1917.8 - 1912.3 - 13.9

    4.88.4

    11.710.917.915.61210.28.4

    13.114.413.49.17.3

  • RESULTS of PERMEABILITYRESULTS of PERMEABILITY②②

    Effective pressure (MPa)Effective pressure (MPa)

    Per

    mea

    bilit

    y (㎡

    )

    Per

    mea

    bilit

    y (㎡

    )10-21

    10-20

    10-19

    10-18

    10-17

    10-16

    10-15

    10-14

    0 50 100 150 20010-20

    10-19

    10-18

    10-17

    10-16

    10-15

    10-14

    0 50 100 150 200

    gr393 clayey fine grained gougegr302 clayey fine grained gougegr352 foliated cataclasite

    Initialporosity(%) age (Ma)

    samplinglocation

    gr489gr502gr503gr515gr518

    gr346gr436gr439gr440gr451gr452

    9162015253828273

    20 - 23.30 - 0.67

    12.3 - 13.91.64 - 3.023.3 - 35.423.3 - 35.417.8 - 1917.8 - 1918 - 2023.3 - 35.4

    5.516.78.45.16.0fracture9.12.68.1

    1.fault rock ≒ siltstone2.sandstone can be classified into 2 groups3.siltstone < sandstone < conglomerate → grain size

    fault rock(Chelungpu Fault)(10-14~10-19㎡)siltstone・shale(10-14~10-21㎡)

  • TIMETIME--DEPENDENT COMPACTIONDEPENDENT COMPACTION

    十四股段

    卓蘭層

    粗坑層

    水長流層

    Pliocene

    福隆園層

    猴洞坑層

    炭寮地段

    桂竹林層

    沖積層

    錦水頁岩Ple

    isto

    cene

    Mio

    cene

    Olig

    ocen

    eHolocene

    頭科山層

    石門村層

    time-dependent compaction(pressure solution/grain rearrangement/chemical cementation)

    Permeability (㎡)

    Age

    of S

    edim

    enta

    ry ro

    ck (M

    a)A

    ge o

    f Sed

    imen

    tary

    rock

    (Ma)

    ※Pe = 80MPa

    5

    20

    15

    1

    3.4

    30

    We can not identify impermeable layerclearly?

    sandstonesiltstone・shaleconglomerate

  • POROSITY and SPECIFIC STORAGEPOROSITY and SPECIFIC STORAGE

    0

    5

    10

    15

    20gr488 14.4 35.4-23.3gr501 13.4 19-17.8gr507 9.1 19-17.8gr516 7.3 13.9-12.3gr535gr536gr538

    0 50 100 150 200

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200

    gr502 9.1 19-17.8gr503 2.6 19-17.8gr515 8.1 20-18gr518 35.4-23.3

    0 50 100 150 200

    10-10

    10-9

    10-8

    gr488 14.4 35.4-23.3gr501 13.4 19-17.8gr507 9.1 19-17.8gr516 7.3 13.9-12.3gr535gr536gr538

    gr502 9.1 19-17.8gr503 2.6 19-17.8gr515 8.1 20-18gr518 35.4-23.3

    10-10

    10-9

    0 50 100 150 200

    5・10-9

    Ss=1 ΔΦ

    1-Φ ΔPe +Φ・βf

    specific storage

    Φ:porosityβf:compressibility of water

    =4.4*10-10

    ①these parameters have pressure sensitivity

    ②sandstone and siltstone showed similar values

    ③specific storage shows smaller change to Pe(1 ~2 order)

    compared to permeability

    effective pressure (MPa)effective pressure (MPa)

    effective pressure (MPa)effective pressure (MPa)

    poro

    sity

    (%)

    poro

    sity

    (%)

    poro

    sity

    (%)

    poro

    sity

    (%)

    spec

    ific

    stor

    age(

    1/Pa

    )sp

    ecifi

    c st

    orag

    e(1/

    Pa)

    spec

    ific

    stor

    age(

    1/Pa

    )sp

    ecifi

    c st

    orag

    e(1/

    Pa)

    effective pressure (MPa)effective pressure (MPa)

    effective pressure (MPa)effective pressure (MPa)siltstonesiltstone

    sandstonesandstone

  • GENERATION MECHANISM of ABNORMAL FLUID PRESSUREGENERATION MECHANISM of ABNORMAL FLUID PRESSURE

    ① fluid undrained by decreasing permeability and increasing loading pressurea. sedimentation b. tectonic loading

    ② volume change in aquathermal expansiona. temperature gradientb. heat origin

    ③ fluid movement from subduction boundary (Rice 1992 )④ dehydration (diagenesis)effect

    a. smectite → illite + waterb. gypsum → anhydrite + waterc. hydrocarbon generation

    First of all we should evaluate Mechanism ① in the sedimentary basin

    proceeding sedimentationpermeability - smaller in deeper horizonno drainfluid pressure - abnormal pressuredisturb sedimentation

    beginning of sedimentationpermeability - largedrain rapidlyfluid pressure - hydrostaticsedimentation

    hydrostatic

    permeability

    large

    fluid pressure

    hydrostatic

    large

    smallfluid pressure

    IMAGE of MECHANISM ① - a

  • 11--D NONLINEAR COMPACTION FLOW EQUATIOND NONLINEAR COMPACTION FLOW EQUATION

    δuδt -

    δlδt

    g・ρe( )Ss・η = δuδz( K ) + γΦ

    δ

    δzδTδt

    temperature effectdiffusion termcompaction term

    continuingsedimentation

    u(z,t)abnormal pressure

    u:abnormal fluid pressure(Pa)K:permeability(㎡)η:fluid viscosity(Pa・s)Ss:specific storage(1/Pa)l:thickness of sediments(m) ρe:effective density

    = ρ(saturated rock density)-ρf(fluid density)γ:coefficient of thermal expansibility of fluidΦ:porosityT:temperature(℃)

    Assumption①permeability of base = 0②fluid moves upward (1 dimension)③permeability does not show anisotropy④temperature gradient = constant⑤sedimentation rate = constant ⑥grain compressibility ≒ 0⑦water viscosity = constant

    Gibson 1958/Bethke and Corbet 1988/Luo and Vasseur 1992

    Darcy's law

    effectivepressures law

    conservation law

    Vz = - Kη

    δpδz +ρf・g)(

    - δδz

    (ρf・g・Vz)ΔxΔyΔz =δ

    δt(ρf・Φ・ΔxΔyΔz)

    Pe = Pc - p = g・(l-x)・ρe - u

    impermeable base

    water

    sediments

    sedimentation

    z

    model

    l (t)

    z = 0

  • HYDRAULIC PROPERTY for CALCULATIONHYDRAULIC PROPERTY for CALCULATION

    sandstonesiltstoneconglomerate

    0

    20

    40

    60

    80

    100

    12010-2110-2010-1910-1810-1710-1610-1510-14

    A=20

    0

    20

    40

    60

    80

    100

    12010 -10 10 -9 10 -8

    α=0.0008

    0.0004

    0.0006

    9

    8

    7

    6

    5

    4

    3

    2

    1

    0 8 7 6 5 4 3 2 1 0

    Pe=A・log( KK0) K0=10-13

    12<A<20

    log-linear approximation

    Φ=Φ0・exp(-α・Pe

    ρe・g)

    g = 10(m/s

    Φ0 = 50(%)ρe = 1500(kg/m

    3)

    2)

    Ss =1 ΔΦ

    1-Φ ΔPe+Φ・βf

    -13βf(flud compressibility)

    = 4.4・10

    0.0004~α~0.0008

    approximated from Athy's law burial rate=thickness/age1000(m/Ma)

    A = 20α = 0.0004

    δuδt -

    δlδt

    g・ρe( )Ss・η =δuδz

    ( K )δδz

    )+γΦ δTδt

    30(℃/km)temperature gradient

    effe

    ctiv

    e pr

    essu

    re (M

    Pa)

    effe

    ctiv

    e pr

    essu

    re (M

    Pa)

    permeability (㎡) specific storage (1/Pa)

    accu

    mul

    atio

    n th

    ickn

    ess

    (km

    )

    age(Ma)

    Teng (1990)

    25~37 ℃/km (Suppe & Wittke 1977)

    Permeability Specific storageSedimentation rate

    Temperature gradient

  • FLUID PRESSURE DISTRIBUTIONFLUID PRESSURE DISTRIBUTION

    lithostatics

    hydrostatics

    numerical result

    borehole data

    permeability specific storage

    10

    10-19

    -18

    -910-910

    (㎡)

    (㎡)

    permeability・specific storage change with pressure (our study)

    permeability / specific storage assumed to be constant (Gibson 1958)

    dept

    h(m

    )

    dept

    h(m

    )

    fluid pressure (MPa)fluid pressure (MPa)

    Pressure sensitivity for permeability is important !!Predicted fluid pressure distribution showed

    similar result to the borehole data !!

    α = 0.0004 A = 12 K0 = 10 -13

  • IN DETAILSIN DETAILS

    α=0.00040.00060.00080.0004 (K0=10-14 )

    10-20

    10-19

    10-18

    10-17

    10-16

    10-15

    0 10 20 40 5030

    permeabilityvs

    abnormal pressure

    influence of fluid volume expansion

    by temperature gradient

    abnormal fluid pressure (MPa)abnormal fluid pressure (MPa)

    perm

    eabi

    lity

    (㎡)

    dept

    h (m

    )

    temperature=30℃/kmtemperature=constant

    0 1 107 2 107 3 107

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    Temperature gradient has little influence to pressure generation(mostly by the effect of sedimentation)

    Abnormal pressure generated from10-1810-17 ~ ㎡

  • hydrostaticsgeneration of abnormal pressure

    permeability (㎡)

    dept

    h (m

    )

    dept

    h (m

    )

    porosity (%)

    effect of abnormal fluid pressure

    PERMEABILITY STRUCTURE at The Western FoothillsPERMEABILITY STRUCTURE at The Western Foothills

    depth vs permeability depth vs porosity

    estimation ofabnormal pressure

    depth vs

    effective pressure

    permeability ‐ depthporosity ‐ depth

  • CONCLUSIONCONCLUSION

    ◆We measured permeability and porosity of sedimentary rocks in the Western Foothills at high pressure condition and estimated the hydraulic properties - effective pressure relationship in this area.

    ◆We estimated the fluid pressure distribution from one-dimensional compressional flow model and the result agreed with real borehole data.

    ◆We estimated the hydraulic properties (permeability / specific storage / porosity) at a depth of the Western Foothills.