86
J. Jasche, Bayesian LSS Inference Jens Jasche Garching, 11 September 2012 Large Scale Bayesian Inference in Cosmology

Bayesian LSS Inference - mpe.mpg.de

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Jens Jasche

Garching, 11 September 2012

Large Scale Bayesian Inferencein

Cosmology

Page 2: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction Cosmography

• 3D density and velocity fields• Power-spectra, bi-spectra• Dark Energy, Dark Matter, Gravity• Cosmological parameters

Large Scale Bayesian inference High dimensional ( ~ 10^7 parameters ) State-of-the-art technology On the verge of numerical feasibility

Page 3: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction Cosmography

• 3D density and velocity fields• Power-spectra, bi-spectra• Dark Energy, Dark Matter, Gravity• Cosmological parameters

Large Scale Bayesian inference• High dimensional ( ~ 10^7 parameters )• State-of-the-art technology• On the verge of numerical feasibility

Page 4: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?

Page 5: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?• Inference of signals = ill-posed problem

Page 6: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?• Inference of signals = ill-posed problem

• Noise Incomplete observations Systematics

Page 7: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?• Inference of signals = ill-posed problem

• Noise• Incomplete observations Systematics

Page 8: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?• Inference of signals = ill-posed problem

• Noise• Incomplete observations• Systematics

Page 9: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Introduction

Why do we need Bayesian inference?• Inference of signals = ill-posed problem

• Noise• Incomplete observations• Systematics

No unique recovery possible!!!

Page 10: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

“What are the possible signals compatible with observations?”

Introduction

Page 11: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“What are the possible signals compatible with observations?”

We can do science! Model comparison Parameter studies Report statistical summaries Non-linear, Non-Gaussian error propagation

Introduction

Page 12: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“What are the possible signals compatible with observations?”

We can do science!• Model comparison• Parameter studies• Report statistical summaries• Non-linear, Non-Gaussian error propagation

Introduction

Page 13: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Markov Chain Monte Carlo Problems:

• High dimensional (~10^7 parameter) A large number of correlated parameters

No reduction of problem size possible Complex posterior distributions

Numerical approximation Dim > 4 MCMC

Metropolis-Hastings

Page 14: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Markov Chain Monte Carlo Problems:

• High dimensional (~10^7 parameter)• A large number of correlatedcorrelated parameters

• No reduction of problem size possible Complex posterior distributions

Numerical approximation Dim > 4 MCMC

Metropolis-Hastings

Page 15: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Markov Chain Monte Carlo Problems:

• High dimensional (~10^7 parameter)• A large number of correlatedcorrelated parameters

• No reduction of problem size possible• Complex posterior distributions

Numerical approximation Dim > 4 MCMC

Metropolis-Hastings

Page 16: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Markov Chain Monte Carlo Problems:

• High dimensional (~10^7 parameter)• A large number of correlatedcorrelated parameters

• No reduction of problem size possible• Complex posterior distributions

Numerical approximation• Dim > 4 MCMC

Metropolis-Hastings

Page 17: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Markov Chain Monte Carlo Problems:

• High dimensional (~10^7 parameter)• A large number of correlatedcorrelated parameters

• No reduction of problem size possible• Complex posterior distributions

Numerical approximation• Dim > 4 MCMC

• Metropolis-Hastings

Page 18: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Parameter space exploration via Hamiltonian sampling interpret log-posterior as potential

introduce Gaussian auxiliary “momentum” variable

rltant joint posterior distribution of and

separable in and marginalization over yields again

Hamiltonian sampling

Page 19: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Parameter space exploration via Hamiltonian sampling• interpret log-posterior as potential

introduce Gaussian auxiliary “momentum” variable

resultant joint posterior distribution of and

separable in andmarginalization over yields again

Hamiltonian sampling

Page 20: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Parameter space exploration via Hamiltonian sampling• interpret log-posterior as potential

• introduce Gaussian auxiliary “momentum” variable

resultant joint posterior distribution of and

separable in and marginalization over yields again

Hamiltonian sampling

Page 21: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Parameter space exploration via Hamiltonian sampling• interpret log-posterior as potential

• introduce Gaussian auxiliary “momentum” variable

• resultant joint posterior distribution of and

separable in and marginalization over yields again

Hamiltonian sampling

Page 22: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Parameter space exploration via Hamiltonian sampling• interpret log-posterior as potential

• introduce Gaussian auxiliary “momentum” variable

• resultant joint posterior distribution of and

separable in and marginalization over yields again

Hamiltonian sampling

Page 23: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

IDEA: Use Hamiltonian dynamics to explore solve Hamiltonian system to obtain new sample

Hamiltonian dynamics conserve the Hamiltonian Metropolis acceptance probability is unity

All samples are accepted

Hamiltonian sampling

Page 24: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

IDEA: Use Hamiltonian dynamics to explore• solve Hamiltonian system to obtain new sample

Hamiltonian dynamics conserve the Hamiltonian Metropolis acceptance probability is unity

All samples are accepted

Hamiltonian sampling

Page 25: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

IDEA: Use Hamiltonian dynamics to explore• solve Hamiltonian system to obtain new sample

Hamiltonian dynamics conserve the HamiltonianMetropolis acceptance probability is unity

All samples are accepted

Hamiltonian sampling

Page 26: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

IDEA: Use Hamiltonian dynamics to explore• solve Hamiltonian system to obtain new sample

Hamiltonian dynamics conserve the Hamiltonian Metropolis acceptance probability is unity

All samples are accepted

Hamiltonian sampling

Page 27: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

IDEA: Use Hamiltonian dynamics to explore• solve Hamiltonian system to obtain new sample

Hamiltonian dynamics conserve the Hamiltonian Metropolis acceptance probability is unity

All samples are accepted

Hamiltonian sampling

Page 28: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling Example: Wiener posterior = multivariate normal distribution

Page 29: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling Example: Wiener posterior = multivariate normal distribution

Prior

Page 30: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling Example: Wiener posterior = multivariate normal distribution

Likelihood

Page 31: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling Example: Wiener posterior = multivariate normal distribution

Page 32: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling Example: Wiener posterior = multivariate normal distribution

EOM:

coupled harmonic oscillator

Page 33: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

Large number of tunable parameter Determines efficiency of sampler

Mass matrix aims at decoupling the system In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 34: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter Determines efficiency of sampler

Mass matrix aims at decoupling the system In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 35: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

Mass matrix aims at decoupling the system In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 36: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

Mass matrix aims at decoupling the system In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 37: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

• Mass matrix aims at decoupling the system In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 38: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

• Mass matrix aims at decoupling the system• In practice: use diagonal approximation The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 39: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

• Mass matrix aims at decoupling the system• In practice: use diagonal approximation• The quality of approximation determines sampler efficiency Non-Gaussian case: Taylor expand to find Mass matrix

Page 40: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Hamiltonian sampling How to set the Mass matrix?

• Large number of tunable parameter• Determines efficiency of sampler

• Mass matrix aims at decoupling the system• In practice: use diagonal approximation• The quality of approximation determines sampler efficiency• Non-Gaussian case: Taylor expand to find Mass matrix

Page 41: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

HMC in action Inference of non-linear density fields in cosmology

• Non-linear density field• Log-normal prior

Galaxy distribution Poisson likelihood Signal dependent noise

Problem: Non-Gaussian sampling in high dimensions

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)

Page 42: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

HMC in action Inference of non-linear density fields in cosmology

• Non-linear density field• Log-normal prior

• Galaxy distribution• Poisson likelihood• Signal dependent noise

Problem: Non-Gaussian sampling in high dimensions

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)

Page 43: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

HMC in action Inference of non-linear density fields in cosmology

• Non-linear density field• Log-normal prior

• Galaxy distribution• Poisson likelihood• Signal dependent noise

Problem: Non-Gaussian sampling in high dimensions

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)

Page 44: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

LSS inference with the SDSS

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Jasche, Kitaura, Li, Enßlin (2010)

Page 45: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Goal: provide a representation of the SDSS density posterior• to provide 3D cosmographic descriptions• to quantify uncertainties of the density distribution

LSS inference with the SDSS

Jasche, Kitaura, Li, Enßlin (2010)

Page 46: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

LSS inference with the SDSS

Page 47: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Page 48: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

Problem: Design of “good” proposal distributions High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

Break down into subproblems

simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Serial processing only!

Page 49: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

Break down into subproblems

simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Serial processing only!

Page 50: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

Break down into subproblems

simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Serial processing only!

Page 51: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

Break down into subproblems

simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Serial processing only!

Page 52: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

• Break down into subproblems

simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Page 53: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

• Break down into subproblems

• simplifies design of conditional proposal distributions Average acceptance rate is higher Requires serial processing

Serial processing only!

Page 54: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

• Break down into subproblems

• simplifies design of conditional proposal distributions• Average acceptance rate is higherRequires serial processing

Serial processing only!

Page 55: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling What if the HMC is not an option?

• Problem: Design of “good” proposal distributions• High rejection rates

Multiple block sampling ( see e.g. Hastings (1997) )

• Break down into subproblems

• simplifies design of conditional proposal distributions• Average acceptance rate is higher• Requires serial processing

Serial processing only!

Page 56: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling Can we “boost” block sampling?

Sometimes it is easier to explore full joint the PDF

Block sampler:

Permits efficient sampling for numerical expensive posteriors

Page 57: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling Can we “boost” block sampling?

• Sometimes it is easier to explore full joint the PDF

Block sampler:

Permits efficient sampling for numerical expensive posteriors

Page 58: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling Can we “boost” block sampling?

• Sometimes it is easier to explore full joint the PDF

• Block sampler:

Permits efficient sampling for numerical expensive posteriors

process in parallel!

Page 59: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling Can we “boost” block sampling?

• Sometimes it is easier to explore full joint the PDF

• Block sampler:

Permits efficient sampling for numerical expensive posteriors

process in parallel!

Page 60: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Multiple Block Sampling Can we “boost” block sampling?

• Sometimes it is easier to explore full joint the PDF

• Block sampler:

• Permits efficient sampling for numerical expensive posteriors

process in parallel!

Page 61: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8) low redshift accuracy ( ~ 100 Mpc along LOS) Infer accurate redshifts: Rather sample from joint distribution:

Block sampler:

Process in parallel!

HMC sampler!

Page 62: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS) Infer accurate redshifts: Rather sample from joint distribution:

Block sampler:

Page 63: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS)• Infer accurate redshifts: Rather sample from joint distribution:

Block sampler:

Page 64: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS)• Infer accurate redshifts:• Rather sample from joint distribution:

Block sampler:

Page 65: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS)• Infer accurate redshifts:• Rather sample from joint distribution:

• Block sampler:

Page 66: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS)• Infer accurate redshifts:• Rather sample from joint distribution:

• Block sampler:

Process in parallel!

Page 67: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Photometric surveys

• millions of galaxies ( ~10^7 - 10^8)• low redshift accuracy ( ~ 100 Mpc along LOS)• Infer accurate redshifts:• Rather sample from joint distribution:

• Block sampler:

Process in parallel!

HMC sampler!

Page 68: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Application to artificial photometric data

• ~ Noise, Systematics, Position uncertainty (~100 Mpc)• ~ 10^7 density amplitudes /parameters• ~ 2x10^7 radial galaxy positions / parameters~ 3x10^7 parameters in total

Page 69: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling Application to artificial photometric data

• ~ Noise, Systematics, Position uncertainty (~100 Mpc)• ~ 10^7 density amplitudes /parameters• ~ 2x10^7 radial galaxy positions / parameters• ~ 3x10^7 parameters in total

Page 70: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling

Jasche, Wandelt (2012)

Page 71: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2012)

Before After

Page 72: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2012)

Raw data Density estimate

Page 73: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference Physical motivation

Complex final state Simple initial state

Page 74: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference Physical motivation

• Complex final state Simple initial state

Final state

Page 75: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference Physical motivation

• Complex final state• Simple initial state

Initial state Final state

Page 76: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference Physical motivation

• Complex final state• Simple initial state

Gravity

Initial state Final state

Page 77: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference The ideal scenario:

• We need a very very very large computer!

Not practical! Even with approximations!!!!

Page 78: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference The ideal scenario:

• We need a very very very large computer!

Not practical! Even with approximations!!!!

Page 79: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference The ideal scenario:

• We need a very very very large computer!

Not practical! Even with approximations!!!!

Page 80: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference The ideal scenario:

• We need a very very very large computer!

Not practical! Even with approximations!!!!

Page 81: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference The ideal scenario:

• We need a very very very large computer!

Not practical! Even with approximations!!!!

Page 82: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference BORG (Bayesian Origin Reconstruction from Galaxies)

• HMC• Second order Lagrangian perturbation theory

BORG

Jasche, Wandelt (2012)

Page 83: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference

Page 84: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

4D physical inference

Page 85: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

Summary & Conclusion Large scale Bayesian inference

• Inference in high dimensions from incomplete observations Noise, systematic effects, survey geometry, selection effects, biases

• Need to quantify uncertainties explore posterior distribution Markov Chain Monte Carlo methods Hamiltonian sampling (exploit symmetries, decouple system) Multiple block sampling (break down into subproblems)

3 high dimensional examples (>10^7 parameter) Nonlinear density inference Photometric redshift and density inference 4D physical inference

Page 86: Bayesian LSS Inference - mpe.mpg.de

J. Jasche, Bayesian LSS Inference

The End …

Thank you