25
1 TT Liu, BE280A, UCSD Fall 2006 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 X-Rays/CT Lecture 4 TT Liu, BE280A, UCSD Fall 2006 Topics Review Signal Expansions, Impulse Response and Linearity • Superposition Space Invariance • Convolution Start Computed Tomography

BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

1

TT Liu, BE280A, UCSD Fall 2006

Bioengineering 280APrinciples of Biomedical Imaging

Fall Quarter 2006X-Rays/CT Lecture 4

TT Liu, BE280A, UCSD Fall 2006

Topics

• Review Signal Expansions, Impulse Response andLinearity

• Superposition• Space Invariance• Convolution• Start Computed Tomography

Page 2: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

2

TT Liu, BE280A, UCSD Fall 2006

Discrete Signal Expansion

!

g[n] = g[k]"[n # k]k=#$

$

%

g[m,n] =l=#$

$

% g[k,l]"[m # k,n # l]k=#$

$

%

n

δ[n]

n

1.5δ[n-2]

0

n

-δ[n-1]

0

0

n

g[n]

n

TT Liu, BE280A, UCSD Fall 2006

Image Decomposition

!

g[m,n] = a"[m,n]+ b"[m,n #1]+ c"[m #1,n]+ d"[m #1,n #1]

= g[k, l]l= 0

1

$k= 0

1

$ "[m # k,n # l]

c d

ba 0 010

=

+

+

+

c d

a b

1 000

0 100

0 001

Page 3: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

3

TT Liu, BE280A, UCSD Fall 2006

Representation of 1D Function

!

From the sifting property, we can write a 1D function as

g(x) = g(")#(x $")d" .$%

%

& To gain intuition, consider the approximation

g(x) ' g(n(x)1

(x)

x $ n(x

(x

*

+ ,

-

. /

n=$%

%

0 (x.

g(x)

TT Liu, BE280A, UCSD Fall 2006

Representation of 2D Function

!

Similarly, we can write a 2D function as

g(x,y) = g(",#)$(x %",y %#)d"d#.%&

&

'%&

&

'

To gain intuition, consider the approximation

g(x,y) ( g(n)x,m)y)1

)x*

x % n)x

)x

+

, -

.

/ 0

n=%&

&

11

)y*

y %m)y

)y

+

, -

.

/ 0 )x)y

m=%&

&

1 .

Page 4: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

4

TT Liu, BE280A, UCSD Fall 2006

Impulse Response

!

The impulse response characterizes the response of a system over all space to a

Dirac delta impulse function at a certain location.

h(x2;") = L # x1 $"( )[ ] 1D Impulse Response

h[m',k] = L #[m $ k][ ]

h(x2,y2;",%) = L # x1 $",y1 $%( )[ ] 2D Impulse Response

h[m',n';k, l] = L #[m $ k,n $ l][ ]

x1

y1

x2

y2

!

h(x2,y

2;",#)

!

Impulse at ",#

TT Liu, BE280A, UCSD Fall 2006

LinearityA system R is linear if for two inputs I1(x,y) and I2(x,y) with outputs

R(I1(x,y))=K1(x,y) and R(I2(x,y))=K2(x,y)

the response to the weighted sum of inputs is theweighted sum of outputs:

R(a1I1(x,y)+ a2I 2(x,y))=a1K1(x,y)+ a2K2(x,y)

Page 5: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

5

TT Liu, BE280A, UCSD Fall 2006

Superposition

!

g[m] = g[0]"[m]+ g[1]"[m #1]+ g[2]"[m # 2]

h[m',k] = L["[m # k]]

y[m'] = L g[m][ ]

= L g[0]"[m]+ g[1]"[m #1]+ g[2]"[m # 2][ ]

= L g[0]"[m][ ] + L g[1]"[m #1][ ] + L g[2]"[m # 2][ ]

= g[0]L "[m][ ] + g[1]L "[m #1][ ] + g[2]L "[m # 2][ ]

= g[0]h[m',0]+ g[1]h[m',1]+ g[2]h[m',2]

= g[k]h[m',k]k= 0

2

$

TT Liu, BE280A, UCSD Fall 2006

Superposition Integral

!

What is the response to an arbitrary function g(x1,y1)?

Write g(x1,y1) = g(",#)$(x1-%

%

&-%

%

& '",y1 '#)d"d#.

The response is given by

I(x2,y2) = L g1(x1,y1)[ ]

= L g(",#)$(x1-%

%

&-%

%

& '",y1 '#)d"d#[ ] = g(",#)L $(x1 '",y1 '#)[ ]

-%

%

&-%

%

& d"d#

= g(",#)h(x2,y2;",#)-%

%

&-%

%

& d"d#

Page 6: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

6

TT Liu, BE280A, UCSD Fall 2006

Pinhole Magnification Example

η

η

a b

ba

-

!

In this example, an impulse at ",#( ) will yield an impulse

at m",m#( ) where m = $b /a.

Thus, h x2,y2;",#( ) = L % x1 $",y1 $#( )[ ] = %(x2 $m",y2 $m#).

TT Liu, BE280A, UCSD Fall 2006

Pinhole Magnification Example

!

I(x2,y

2) = g(",#)h(x

2,y

2;",#)

-$

$

%-$

$

% d"d#

= C g(",#)&(x2'm",y

2'm#)

-$

$

%-$

$

% d"d#

I(x2,y2)

g(x1,y1)

Page 7: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

7

TT Liu, BE280A, UCSD Fall 2006

Space Invariance

!

If a system is space invariant, the impulse response depends only

on the difference between the output coordinates and the position of

the impulse and is given by h(x2,y2;",#) = h x2 $",y2 $#( )

TT Liu, BE280A, UCSD Fall 2006

Pinhole Magnification Example

η

η

a b

ba

-

!

h x2,y2;",#( ) = C$(x2 %m",y2 %m#) .

Is this system space invariant?

Page 8: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

8

TT Liu, BE280A, UCSD Fall 2006

Pinhole Magnification Example____, the pinhole system ____ space invariant.

TT Liu, BE280A, UCSD Fall 2006

Convolution

!

g[m] = g[0]"[m]+ g[1]"[m #1]+ g[2]"[m # 2]

h[m',k] = L["[m # k]] = h[m # k]

y[m'] = L g[m][ ]

= L g[0]"[m]+ g[1]"[m #1]+ g[2]"[m # 2][ ]

= L g[0]"[m][ ] + L g[1]"[m #1][ ] + L g[2]"[m # 2][ ]

= g[0]L "[m][ ] + g[1]L "[m #1][ ] + g[2]L "[m # 2][ ]

= g[0]h[m'#0]+ g[1]h[m'#1]+ g[2]h[m'#2]

= g[k]h[m'#k]k= 0

2

$

Page 9: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

9

TT Liu, BE280A, UCSD Fall 2006

1D Convolution

!

I(x) = g(")h(x;")d"-#

#

$

= g(")h(x %")-#

#

$ d"

= g(x)& h(x)

Useful fact:

!

g(x)"#(x $%) = g(&)#(x $% $&)-'

'

( d&

= g(x $%)

TT Liu, BE280A, UCSD Fall 2006

2D Convolution

!

I(x2,y

2) = g(",#)h(x

2,y

2;",#)

-$

$

%-$

$

% d"d#

= g(",#)h(x2&",y

2&#)

-$

$

%-$

$

% d"d#

= g(x2,y

2) **h(x

2,y

2)

For a space invariant linear system, the superpositionintegral becomes a convolution integral.

where ** denotes 2D convolution. This will sometimes beabbreviated as *, e.g. I(x2, y2)= g(x2, y2)*h(x2, y2).

Page 10: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

10

TT Liu, BE280A, UCSD Fall 2006

Rectangle Function

!

"(x) =0 x >1/2

1 x #1/2

$ % &

-1/2 1/2

1

-1/2 1/2

1/2

x

-1/2

x

yAlso called rect(x)

!

"(x,y) = "(x)"(y)

TT Liu, BE280A, UCSD Fall 2006

2D Convolution Example

-1/2 12x

y

h(x)=rect(x,y)

y

x

g(x)= δ(x+1/2,y) + δ(x,y)

xI(x,y)=g(x)**h(x,y)

Page 11: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

11

TT Liu, BE280A, UCSD Fall 2006

2D Convolution Example

TT Liu, BE280A, UCSD Fall 2006

Image of a point object

!

Id (x,y) = limm"0

ks(x /m,y /m)

= #(x,y)

s(x,y)

s(x,y)

!

Id (x,y) = s(x,y)

m=1

!

Id (x,y) =1

m2s(x /m,y /m)In general,

Page 12: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

12

TT Liu, BE280A, UCSD Fall 2006

Pinhole Magnification Example

!

I(x2,y2) = s(",#)h(x2,y2;",#)-$

$

%-$

$

% d"d#

= s(",#)&(x2 'm",y2 'm#)-$

$

%-$

$

% d"d#

after substituting ( " = m" and ( # = m#, we obtain

=1

m2

s( ( " /m, ( # /m)&(x2 ' ( " ,y2 ' ( # )-$

$

%-$

$

% d ( " d ( #

=1

m2s(x2 /m,y2 /m)))& x2,y2( )

=1

m2s(x2 /m,y2 /m)

TT Liu, BE280A, UCSD Fall 2006

Magnification of Object

!

M(z) =d

z

=Source to Image Distance (SID)

Source to Object Distance (SOD)

Bushberg et al 2001

zd

Page 13: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

13

TT Liu, BE280A, UCSD Fall 2006

Image of arbitrary object

!

limm"0

Id (x,y) = t(x,y)

s(x,y)

s(x,y)

!

Id (x,y) = ???

m=1

!

Id (x,y) =1

m2s(x /m,y /m) **t(x /M,y /M)

t(x,y)

t(x,y)

Note: we are ignoring obliquity, etc.

TT Liu, BE280A, UCSD Fall 2006

X-Ray Image Equation

!

I(x2,y2) = s(",#)h(x2,y2;",#)-$

$

%-$

$

% d"d#

= s(",#)tx2 &m"

M,y2 &m#

M

'

( )

*

+ ,

-$

$

%-$

$

% d"d#

after substituting - " = m" and - # = m#, we obtain

=1

m2

s( - " /m, - # /m)tx2 & - "

M,y2 & - #

M

'

( )

*

+ ,

-$

$

%-$

$

% d - " d - #

=1

m2s(x2 /m,y2 /m)..t x2 /M,y2 /M( )

Note: we have ignored obliquity factors etc.

Page 14: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

14

TT Liu, BE280A, UCSD Fall 2006 Macovski 1983

TT Liu, BE280A, UCSD Fall 2006

Summary1. The response to a linear system can be

characterized by a spatially varying impulseresponse and the application of the superpositionintegral.

2. A shift invariant linear system can becharacterized by its impulse response and theapplication of a convolution integral.

3. Dirac delta functions are generalized functions.

Page 15: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

15

TT Liu, BE280A, UCSD Fall 2006

Computed Tomography

Suetens 2002

TT Liu, BE280A, UCSD Fall 2006

Computed Tomography

Suetens 2002

ParallelBeam

Fan Beam

Page 16: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

16

TT Liu, BE280A, UCSD Fall 2006

Computed Tomography

Suetens 2002

TT Liu, BE280A, UCSD Fall 2006

Computed Tomography

Suetens 2002

Page 17: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

17

TT Liu, BE280A, UCSD Fall 2006

Computed Tomography

Suetens 2002

TT Liu, BE280A, UCSD Fall 2006

CT Line Integral

!

Id = S0 E( )E0

Emax" exp # µ s; $ E ( )0

d

" ds( )dE

Monoenergetic Approximation

Id = I0 exp # µ s;E ( )0

d

" ds( )

gd = #logId

I0

%

& '

(

) *

= µ s;E ( )0

d

" ds

Page 18: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

18

TT Liu, BE280A, UCSD Fall 2006

CT Number

!

CT_number = µ "µ

water

µwater

#1000

Measured in Hounsfield Units (HU)

Air: -1000 HUSoft Tissue: -100 to 60 HUCortical Bones: 250 to 1000 HUMetal and Contrast Agents: > 2000 HU

TT Liu, BE280A, UCSD Fall 2006

CT Display

Suetens 2002

Page 19: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

19

TT Liu, BE280A, UCSD Fall 2006

Direct Inverse Approach

µ4µ3

µ2µ1 p1

p2

p3 p4

p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p4= µ2+ µ4

4 equations, 4 unknowns. Are these the correct equations to use? !

p1

p2

p3

p4

"

#

$ $ $ $

%

&

' ' ' '

=

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

"

#

$ $ $ $

%

&

' ' ' '

µ1

µ2

µ3

µ4

"

#

$ $ $ $

%

&

' ' ' '

No, equations are not linearly independent.p4= p1+ p2- p3Matrix is not full rank.

TT Liu, BE280A, UCSD Fall 2006

Direct Inverse Approach

µ4µ3

µ2µ1 p1

p2

p3 p4

p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p4= µ2+ µ4

4 equations, 4 unknowns. Are these the correct equations to use? !

p1

p2

p3

p4

"

#

$ $ $ $

%

&

' ' ' '

=

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

"

#

$ $ $ $

%

&

' ' ' '

µ1

µ2

µ3

µ4

"

#

$ $ $ $

%

&

' ' ' '

No, equations are not linearly independent.p4= p1+ p2- p3Matrix is not full rank.

Page 20: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

20

TT Liu, BE280A, UCSD Fall 2006

Direct Inverse Approach

µ4µ3

µ2µ1 p1

p2

p3 p4

p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p5= µ1+ µ4

4 equations, 4 unknowns. These are linearly independent now.In general for a NxN image, N2 unknowns, N2 equations.This requires the inversion of a N2xN2 matrixFor a high-resolution 512x512 image, N2=262144 equations.Requires inversion of a 262144x262144 matrix! Inversion process sensitive to measurement errors.

!

p1

p2

p3

p5

"

#

$ $ $ $

%

&

' ' ' '

=

1 1 0 0

0 0 1 1

1 0 1 0

1 0 0 1

"

#

$ $ $ $

%

&

' ' ' '

µ1

µ2

µ3

µ4

"

#

$ $ $ $

%

&

' ' ' '

p5

TT Liu, BE280A, UCSD Fall 2006

Iterative Inverse ApproachAlgebraic Reconstruction Technique (ART)

43

21 3

7

4 6 5

2.52.5

2.52.5 5

5

3.53.5

1.51.5 3

7

5 5

43

21 3

7

5 5

Page 21: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

21

TT Liu, BE280A, UCSD Fall 2006

Backprojection

Suetens 2002

000030000 0

3

0

30303

000111000

100121001

110131011

111141111

TT Liu, BE280A, UCSD Fall 2006

In-Class Exercise

Suetens 2002

µ4µ3

µ2µ1 5.7

11.3

8.2 8.8 10.1

Page 22: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

22

TT Liu, BE280A, UCSD Fall 2006

Projections

Suetens 2002

!

r

s

"

# $ %

& ' =

cos( sin(

)sin( cos(

"

# $

%

& ' x

y

"

# $ %

& '

x

y

"

# $ %

& ' =

cos( )sin(

sin( cos(

"

# $

%

& ' r

s

"

# $ %

& '

TT Liu, BE280A, UCSD Fall 2006

Projections

Suetens 2002

!

I" (r) = I0 exp # µ(x,y)dsLr ,"$%

& ' (

) *

= I0 exp # µ(rcos" # ssin",rsin" + scos")dsLr ,"$%

& ' (

) *

Page 23: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

23

TT Liu, BE280A, UCSD Fall 2006

Projections

Suetens 2002

!

I" (r) = I0 exp # µ(rcos" # ssin",rsin" + scos")dsLr ,"$%

& ' (

) *

!

p" (r) = #lnI" (r)

I0

= µ(rcos" # ssin",rsin" + scos")dsLr ,"$

Sinogram

TT Liu, BE280A, UCSD Fall 2006

Sinogram

Suetens 2002

Page 24: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

24

TT Liu, BE280A, UCSD Fall 2006

Backprojection

Suetens 2002

!

b(x,y) = B p r,"( ){ }

= p(x cos" + y sin",")d"0

#

$

x

y

!

b(x0,y) = p r," = 0( )#"

= p(x0)#"

x0

r

TT Liu, BE280A, UCSD Fall 2006

Backprojection

Suetens 2002

!

b(x,y) = B p r,"( ){ }

= p(x cos" + y sin",")d"0

#

$

Page 25: BE280A 06 xct4 - University of California, San Diego · TT Liu, BE280A, UCSD Fall 2006 Macovski 1983 TT Liu, BE280A, UCSD Fall 2006 Summary 1.The response to a linear system can be

25

TT Liu, BE280A, UCSD Fall 2006

Backprojection

Suetens 2002!

b(x,y) = B p r,"( ){ } = p(x cos" + y sin",")d"0

#

$