33
1 Amit Shabtay In collaboration with: Zinovi Rabinovich Supervised by: Jeffrey S. Rosenschein

Behaviosites: A Novel Paradigm for Affecting Distributed Behavior

  • Upload
    andres

  • View
    29

  • Download
    1

Embed Size (px)

DESCRIPTION

Behaviosites: A Novel Paradigm for Affecting Distributed Behavior. Amit Shabtay In collaboration with: Zinovi Rabinovich Supervised by: Jeffrey S. Rosenschein. Parasites- Paradigm Motivation. - PowerPoint PPT Presentation

Citation preview

Page 1: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

1

Amit ShabtayIn collaboration with: Zinovi RabinovichSupervised by: Jeffrey S. Rosenschein

Page 2: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

2

Parasites- Paradigm Motivation

• Our paradigm employs a special kind of agent (called “Behaviosite”) that manipulates the behavior of other agents.

• Affecting the behavior of several agents in a distributed manner will facilitate altered performance of the entire system.

• By definition, the behaviosite is not necessary for the normal conduct of the system, thus termed a kind of “parasite”.

Page 3: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

3

Lecture Layout

1. Parasites in biological context and in computer science

2. Formalization of the Behaviosite Paradigm

3. Presenting the paradigm in the El Farol problem and Behaviosite

paradigm and floys

1. Discussion and Future work.

Scanning EM ofAfrican Trypanosomes

Nature 414 ( (2001)

Scanning EM ofAfrican Trypanosomes

Nature 414 ( (2001)

Page 4: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

4

Parasite Concept in

Biology & CS

Page 5: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

5

Parasite In Nature

• A parasite is an organism that lives inside or outside the living tissue of a host organism at the expense of it.

• The biological interaction between the host and the parasite is called parasitism. The parasite usually harms the host, but not necessarily.

• It can have a complex life cycle.

• They may help the host, as in the case of bees.

1 Parasite Concept

Page 6: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

6

Parasites in Computer Science

• Parasites appear in three forms in CS:– As an observed phenomena in evolution

• Tierra Virtual World (Thomas Ray 1992)

– As helpers in genetic algorithms using co-evolution.

• Co-evolving parasites improving the sorting problem (Hillis WD. 1990 and many more examples)

– As malware in the electronic world.• Parasite is a known concept: Computer viruses, Worms,

Trojan Horses as parasites (R.J Bagnall).

• Viruses today are more focused and interested in quietly stealing our data and control over the computer than just crashing it (Meet the Sonic Worm, Zone Alarm 2000)

1 Parasite Concept

Page 7: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

7

Behaviosite Formalization

Page 8: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

8

Behaviosites Formalization I

• Behaviosites act as a society of special agents within a system composed a society of agents and environment

A distributed solution to issues raised in a distributed environment

• The behaviosite is an additional property/information added to the system (and not the agent).

• Behaviosites must be beneficial to the system in some sense, not necessarily in regards to the initial purpose of the system.

2 Behaviosite Formalization

Page 9: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

9

Behaviosites Formalization II

• Basically, behaviosites are designed in two levels: infection strategy and manipulation strategy.– Infection strategy: finding the best host to infect

at the current time step and how to move between agents.

– Manipulation strategy: possible options for the behaviosite to manipulate the behavior of the infected agent.

One may also include “behaviosite ecology”- where do they come from?

2 Behaviosite Formalization

Page 10: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

10

Behaviosites Formalization III

• Benefiting the system

• Deep system knowledge

• Use existing capabilities

• Small numbers

• Mobility between hosts

2 Behaviosite Formalization

Page 11: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

11

External vs. Internal Behaviosites

• Behaviosites can alter the input or output of the agent vis-á-vis the environment (external behaviosites) or using an internal hook (internal behaviosites).

• An agent designer can have an incentive to create such a hook, if it is required of him, or if it can be guarantied that the overall performance of the agent will not degrade because of it.

External

Internal

2 Behaviosite Formalization

Page 12: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

12

Behaviosites Optional Traits

• Hidden vs. Apparent infection.There are some settings in which the sheer knowledge that an agent is infected, is sufficient for the behavior manipulation.

• Behaviosite communication.Behaviosites may communicate within an infected host or across hosts to form some kind of an inner network.

2 Behaviosite Formalization

Page 13: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

13

The El Farol Problem

El Farol

Page 14: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

14

The El Farol Problem

• The El Farol problem is an example of a distributed system (Brian Arthur 1994), first suggested as a Congestion Problem in economics.

• All agents want to go to a bar called “El Farol”, but it has a limited (comfortable) capacity.

• With no option for communication or collusion, an agent must learn the behavior of other agents en-masse, in order to reach a decision.

0.5

( [ ]) 0

0.5

Util ag i

Attended and undercrowdedDid not attend

Attended and overcrowded

3 The El Farol Problem

Page 15: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

15

Parasitized El Farol Problem

• The system reaches an equilibrium around the capacity, where every agent has a unique, simple learning decision algorithm.

• However, personal and social utilities are suboptimal.

• We show that using behaviosites with simple infection and manipulation strategies, both utility and social fairness improve, overcoming learning ability of agents.

3 The El Farol Problem

Page 16: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

16

Parasitized El Farol Problem

• Infection strategy: infect all, infect attending, infect when overcrowded.

• Manipulation strategy: lower the believed capacity of the infected agent (50 40, 60 40, 80 60).

3 The El Farol Problem

Page 17: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

17

Mean Attendance and Social Utility

• Infect all had the most severe effect on attendance, while infect when overcrowded had the least effect.

80

60

50

•Utility for infect attending:

•Attendance for capacity of 60

Overcrowded

Attending

All

3 The El Farol Problem

Page 18: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

18

Simulation Social Fairness

• Formula for social fairness according to attendance:

• For capacity of 60:

1 . [ ]1# .[ ]t trials

PersonalAtt SD t

trials MeanAtt t

All

Attending

Overcrowded

3 The El Farol Problem

50%

Page 19: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

19

Controlling a Swarm of Floys

Page 20: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

20

Controlling a Swarm of Floys

• Controlling a swarm has received much attention (UGV, computer graphics)

• Reynolds (1987) showed that it is possible to create a swarm behavior using three rules:

– Separation– Cohesion– Alingment

3 The Floys Problem

Rome

Page 21: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

21

A Swarm of Floys3 The Floys Problem

Page 22: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

22

Controlling a Swarm of Floys

• Infection Strategy: Jump to an uninfected floy within sight.

• Manipulation Strategy: Make the floy move two “turn units” toward

the goal point. If in vicinity of goal, switch to next goal.

3 The Floys Problem

Page 23: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

23

Tasks for Behaviosites

• Keep swarm in one place• Move swarm between check points (rectangle,

circle)• Move between equilibrium points

3 The Floys Problem

Page 24: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

24

Parasitized Swarm Simulation

• It takes only 5% infection rate for achieving control

3 The Floys Problem

Number of drawn rectangles Distance from true path

Page 25: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

25

Parasitized Swarm Simulation

• Can create a movement of the swarm along a path

• Robust to malfunctioning, ill-functioning, or destroyed behaviosites

• Behaviosites are endemic, thus protected by the swarm from external harm

• Few can control many

• Behaviosites can move to the most effective position at a given time without disturbing the swarm (unlike herdsman).

• All tasks were accomplished using only one infection and manipulation strategy, and one type of simple behaviosite.

3 The Floys Problem

Page 26: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

26

Discussion & Future Work

Page 27: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

27

Discussion

• The core of the Behaviosite Paradigm is creating a distributed behavioral changes in a small number of agents using infection and manipulation strategies, to achieve a global effect.

• We described the Parasitized El Farol Problem, and a method for controlling a swarm

• Behaviosites are not a type of “lie” in the system, since they cannot be disregarded or overcome.

4 Discussion & Future work

Page 28: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

28

Future Work- Appetisers

• Use behaviosites as an information propagation mechanism in array of sensors

• Use behaviosites in a congestion problem like traffic routing (packet routing)

4 Discussion & Future work

Page 29: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

29

Future Work- Appetisers

• Turn floys to boids and deal with obstacle avoidance

• Automatic story generation

4 Discussion & Future work

Page 30: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

30

Future Work- Ant Foraging

• Using behaviosites in a colony of ants for foraging when food sources suddenly appear

4 Discussion & Future work

Nest

A

B

Food source

Infection Strategy? Manipulation Strategy? Ecology?

Page 31: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

31

Future Work- Ant Foraging

• Using behaviosites in a colony of ants for foraging mutually exclusive appearing/disappearing food sources

4 Discussion & Future work

Nest

A B Food source

Infection Strategy? Manipulation Strategy? Ecology?

Page 32: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

32

Future Work- Ant Foraging

• Final stage- food sources appear and disappear randomly.

4 Discussion & Future work

Infection Strategy? Manipulation Strategy? Ecology?

Combination of Behaviosites?

Page 33: Behaviosites:  A Novel Paradigm for  Affecting  Distributed Behavior

33