Bending of Beams Sollero

Embed Size (px)

Citation preview

  • 8/18/2019 Bending of Beams Sollero

    1/34

    Bending Stress

    Cantilever of Galileo

  • 8/18/2019 Bending of Beams Sollero

    2/34

    Introduction

    • When a slender member is subjected

    to transverse loading, we say it actsas a beam. Examples of beam

    actions are:

     – The horizontal members in

    buildings.

     – The leaf springs of an automobile

    suspension.

     – The wings of an airplane.

  • 8/18/2019 Bending of Beams Sollero

    3/34

    Introduction

    • If we sectioned a transversely

    loaded member a shear force and a

    bending moment would in general

    have to act on the cross section in

    order to maintain equilibrium.

    • Our aim is to determine the

    distributions of stresses which

    have the shear force V and the

    bending moment Mb as their

    resultant.

    • We shall also obtain an exact

    solution within the theory of elasticity

    for the special case of a beam

    subjected to pure bending.

  • 8/18/2019 Bending of Beams Sollero

    4/34

    Symmetrical Beam Subjected to Pure

    Bending

    • In this moment we shall restrict our analysisto beams with the next characteristics:

     – Originally straight beam which is uniformalong its length.

     – The cross section is symmetrical aboutthe plane of loading.

     – The material properties are constant

    along the length and symmetrical withrespect to the plane of loading.

     – Only Constant bending moment (purebending ).

  • 8/18/2019 Bending of Beams Sollero

    5/34

    Plane surfaces perpendicular to the

    plane of symmetry of the beam

  • 8/18/2019 Bending of Beams Sollero

    6/34

    Symmetrical Beam Subjected to Pure Bending

     

     

     

     M dA y M 

    dA z  M 

    dA F 

     x z 

     x y

     x x

     

     

     

    0

    0

    • These requirements may be applied to the sumsof the components and moments of the statically

    indeterminate elementary internal forces.

    • Internal forces in any cross section are equivalent

    to a couple. The moment of the couple is thesection bending moment .

    • From statics, a couple M consists of two equal

    and opposite forces.

    • The sum of the components of the forces in any

    direction is zero.

    • The moment is the same about any axis

     perpendicular to the plane of the couple and

    zero about any axis contained in the plane.

  • 8/18/2019 Bending of Beams Sollero

    7/34

    Symmetrical Beam Subjected to Pure Bending

    Beam with a plane of symmetry in pure

     bending:• member remains symmetric

    •  bends uniformly to form a circular arc

    • cross-sectional plane passes through arc center  

    and remains planar

    • length of top decreases and length of bottom

    increases

    • a neutral surface must exist that is parallel to theupper and lower surfaces and for which the length

    does not change

    • stresses and strains are negative (compressive)

    above the neutral plane and positive (tension)

     below it

  • 8/18/2019 Bending of Beams Sollero

    8/34

    Symmetrical Beam Subjected to Pure Bending

    Consider a beam segment of length L.After deformation, the length of the neutral

    surface remains L. At other sections,

    m x

    mm

     x

    c

     y

    c ρ

    c

     y y

     L

     y y L L

     y L

      

        

        

       

           

       

    or

    linearly)ries(strain va 

  • 8/18/2019 Bending of Beams Sollero

    9/34

    Symmetrical Beam Subjected to Pure Bending

    • For a linearly elastic material,

    linearly)varies(stressm

    m x x

    c

     y

     E c y E 

     

       

    • For static equilibrium,

    dA yc

    dAc

     ydA F 

    m

    m x x

     

      

    0

    0

    First moment with respect to neutral plane is zero. Therefore, the

    neutral surface must pass through

    the section centroid.

    • For static equilibrium,

     I 

     My

    c

     y

    S  M 

     I  Mc

    c

     I dA y

    c M 

    dAc

     y ydA y M 

     x

    m x

    m

    mm

    m x

     

      

     

     

      

     

      

      

     ngSubstituti

    2

  • 8/18/2019 Bending of Beams Sollero

    10/34

    Stress and deformation in symmetrical elastic beams

    • Deformation due to bending moment M is

    quantified by the curvature of the neutral surface 

     EI 

     M 

     I 

     Mc

     Ec Ecc

    mm

    11     

      

    • Although cross sectional planes remain planar

    when subjected to bending moments, in-plane

    deformations are nonzero,

      

       

      

       

      y y x z  x y  

    • Expansion above the neutral surface and

    contraction below it cause an in-plane curvature,

    curvaturecanticlasti1

       

     

      

  • 8/18/2019 Bending of Beams Sollero

    11/34

    Stress and deformation in symmetrical elastic

    beams

  • 8/18/2019 Bending of Beams Sollero

    12/34

  • 8/18/2019 Bending of Beams Sollero

    13/34

    Example 1.

    SOLUTION:

    Based on the cross section geometry, calculate

    the location of the section centroid and

    moment of inertia.

    mm38

    3000

    10114 3

     A

     A yY 

     

    3

    3

    3

    32

    101143000

    104220120030402109050180090201

    mm,mm,mmArea,

     A y A

     A y y

    49-3

    23

    12123

    121

    23

    1212

    m10868mm10868

    18120040301218002090

       

     I 

    d  Abhd  A I  I  x

  • 8/18/2019 Bending of Beams Sollero

    14/34

    Example 1.

    • Apply the elastic flexural formula to find the

    maximum tensile and compressive stresses.

    49

    49

    mm10868

    m038.0mkN3

    mm10868

    m022.0mkN3

     I 

    c M 

     I 

    c M 

     I 

     Mc

     B B

     A A

    m

     

     

     

    MPa0.76 A 

    MPa3.131 B 

    • Calculate the curvature

    49- m10868GPa165mkN3

    1

     EI 

     M 

      

    m7.47

    m1095.201 1-3

     

      

      

  • 8/18/2019 Bending of Beams Sollero

    15/34

    Example 2

    • Problem. A steel beam 25mm. Wide and 75mm. Deep is pinned to supports

    at points A and B, where the suuport B is on rollers and free to movehorizontally. When the ends of the beam area loaded with 5kN loads, find

    the maximum bending stress at the mid-span of the beam and also the angle

     ΔΦ0 subtended by the cross sections at A and B in the deformed beam.

  • 8/18/2019 Bending of Beams Sollero

    16/34

    Example 2

    • Solution.

    1. Determine the bending moment.

    From this diagram we see that

    the portion AB is one of constant

    bending moment (state of pure

    bending).

    2. To calculate the bending stress,

    we must locate the axes and

    calculate the moment of intertia:

  • 8/18/2019 Bending of Beams Sollero

    17/34

    Example 2

    • The maximum bending stress occurs at the farthest from the neutral

    surface. At the mid-span the bending stress at the top of the beam isfound to be:

    • If we use y=-37.5mm., we obtain a numerically equal compressive

    stress at the bottom of the beam.

    • To obtain the angle change  ΔΦ0  we use the moment-curvature

    relation (curvature definition from calculus):

  • 8/18/2019 Bending of Beams Sollero

    18/34

    Example 2

    • Then, the total angle change between A and B is found byintegration:

  • 8/18/2019 Bending of Beams Sollero

    19/34

    Example 3.

    For the timber beam and loading

    shown, draw the shear and bend-

    moment diagrams and determine the

    maximum normal stress due to

     bending.

    SOLUTION:

    • Treating the entire beam as a rigid body, determine the reaction forces

    • Identify the maximum shear and

     bending-moment from plots of theirdistributions.

    • Apply the elastic flexure formulas to

    determine the corresponding

    maximum normal stress.

    • Section the beam at points near

    supports and load application points.

    Apply equilibrium analyses on

    resulting free-bodies to determine

    internal shear forces and bending

    couples

  • 8/18/2019 Bending of Beams Sollero

    20/34

    Example 3.

    • Identify the maximum shear and bending-

    moment from plots of their distributions.

    mkN50kN26     Bmm   M  M V 

    • Apply the elastic flexure formulas to

    determine the correspondingmaximum normal stress.

    36

    3

    36

    2

    612

    61

    m1033.833

    m N1050

    m1033.833

    m250.0m080.0

     M 

    hbS 

     Bm 

    Pa100.60 6m 

  • 8/18/2019 Bending of Beams Sollero

    21/34

    Example 4.

    The structure shown is constructed of a

    W10x112 rolled-steel beam. (a) Draw

    the shear and bending-moment diagrams

    for the beam and the given loading. (b)determine normal stress in sections just

    to the right and left of point D.

    SOLUTION:

    • Section the beam at points near thesupport and load application points.

    Apply equilibrium analyses on

    resulting free-bodies to determine

    internal shear forces and bending

    couples.

    • Apply the elastic flexure formulas to

    determine the maximum normal

    stress to the left and right of point D.

  • 8/18/2019 Bending of Beams Sollero

    22/34

    Example 4.

    • Apply the elastic flexure formulas to

    determine the maximum normal stress tothe left and right of point D.

    3

    3

    in126

    inkip1776

    :

    in126

    inkip2016:

     M 

     Dof  right theTo

     M  Dof  left theTo

    m

    m

     

      ksi0.16m 

    ksi1.14m 

  • 8/18/2019 Bending of Beams Sollero

    23/34

    Stresses in Symmetrical Elastic Beams

    Transmitting Both Shear Force and Bending

    Moment

    • Pure bending is a relatively uncommon

    type of loading for a beam. Instead it is

    more common for a shear force to be

    present.

    • The presence of the shear force means

    that the bending moment varies along the

    beam (i.e. symmetry arguments are no

    longer applicable).

    • In Engineering applications we make the

    assumption that the bending-stress

    equation is valid even when a shear

    force is present.

  • 8/18/2019 Bending of Beams Sollero

    24/34

    Shear Stresses in Beams

    00

    0

    00

     

     

     x z  xz  z 

     x y xy y

     xy xz  x x x

     y M dA F 

    dA z  M V dA F 

    dA z  y M dA F 

      

      

       

    • Distribution of normal and shearing

    stresses satisfies

    • Transverse loading applied to a beam

    results in normal and shearing stresses intransverse sections.

    • When shearing stresses are exerted on the

    vertical faces of an element, equal stressesmust be exerted on the horizontal faces

    • Longitudinal shearing stresses must exist

    in any member subjected to transverse

    loading.

  • 8/18/2019 Bending of Beams Sollero

    25/34

    Shear Stresses in Beams

    • Consider prismatic beam

    • For equilibrium of beam element

       

     A

    C  D

     A D D x

    dA y I 

     M  M  H 

    dA H  F      0

     xV  xdx

    dM  M  M 

    dA yQ

    C  D

     A

    •  Note,

     flow shear  I 

    VQ

     x

     H q

     x I 

    VQ H 

    • Substituting,

  • 8/18/2019 Bending of Beams Sollero

    26/34

    Shear Stresses in Beams

     flow shear  I VQ

     x H q  

    • Shear flow,

    • where

    sectioncrossfullof momentsecond

     aboveareaof momentfirst

    '

    21

     A A

     A

    dA y I 

     y

    dA yQ

    • Same result found for lower area

     H  H 

    QQ

    q I QV 

     x H q

    axisneutralto

    respecthmoment witfirst

    0

  • 8/18/2019 Bending of Beams Sollero

    27/34

    Example 5

    A beam is made of three planks,

    nailed together. Knowing that the

    spacing between nails is 25 mm andthat the vertical shear in the beam is

    V  = 500 N, determine the shear force

    in each nail.

    SOLUTION:

    • Determine the horizontal force per

    unit length or shear flow q on the

    lower surface of the upper plank.

    • Calculate the corresponding shear

    force in each nail.

  • 8/18/2019 Bending of Beams Sollero

    28/34

    Example 5.

    46

    2

    3121

    3121

    36

    m1020.16

    ]m060.0m100.0m020.0

    m020.0m100.0[2

    m100.0m020.0

    m10120

    m060.0m100.0m020.0

     I 

     y AQ

    SOLUTION:

    • Determine the horizontal force per

    unit length or shear flow q on the

    lower surface of the upper plank.

    m N3704

    m1016.20

    )m10120)( N500(46-

    36

     I 

    VQq

    • Calculate the corresponding shear

    force in each nail for a nail spacing of25 mm.

    m N q F  3704)(m025.0()m025.0(  

     N6.92 F 

  • 8/18/2019 Bending of Beams Sollero

    29/34

    Determination of the Shearing Stress in a Beam

    • The average shearing stress on the horizontal

    face of the element is obtained by dividing theshearing force on the element by the area of

    the face.

     It 

    VQ

     xt 

     x

     I 

    VQ

     A

     xq

     A

     H ave

     

    • On the upper and lower surfaces of the beam,

    yx= 0. It follows that xy= 0 on the upper and

    lower edges of the transverse sections.

    • If the width of the beam is comparable or large

    relative to its depth, the shearing stresses at D1 

    and D2 are significantly higher than at D.

  • 8/18/2019 Bending of Beams Sollero

    30/34

    Shearing Stresses τ  xy  in Common Types of Beams

    • For a narrow rectangular beam,

     A

    c

     y

     A

     Ib

    VQ xy

    2

    3

    12

    3

    max

    2

    2

     

     

     

     

     

     

    • For American Standard (S-beam)

    and wide-flange (W-beam) beams

    web

    ave

     A

     It VQ

    max 

     

  • 8/18/2019 Bending of Beams Sollero

    31/34

    Distribution of

    Stresses in a Narrow Rectangular Beam

     

     

     

     

    2

    2

    12

    3

    c

     y

     A

     P  xy 

     I 

     Pxy x    

    • Consider a narrow rectangular cantilever beam

    subjected to load P  at its free end:

    • Shearing stresses are independent of the distance

    from the point of application of the load.

    •  Normal strains and normal stresses are unaffected by

    the shearing stresses.

    • From Saint-Venant’s principle, effects of the load

    application mode are negligible except in immediatevicinity of load application points.

    • Stress/strain deviations for distributed loads are

    negligible for typical beam sections of interest.

  • 8/18/2019 Bending of Beams Sollero

    32/34

    Example 6.

    A timber beam is to support the three

    concentrated loads shown. Knowing

    that for the grade of timber used,

     psi120 psi1800     all all      

    determine the minimum required depth

    d  of the beam.

    SOLUTION:

    • Develop shear and bending moment

    diagrams. Identify the maximums.

    • Determine the beam depth based onallowable normal stress.

    • Determine the beam depth based on

    allowable shear stress.

    • Required beam depth is equal to thelarger of the two depths found.

  • 8/18/2019 Bending of Beams Sollero

    33/34

    Example 6.

    SOLUTION:

    Develop shear and bending moment

    diagrams. Identify the maximums.

    inkip90ftkip5.7

    kips3

    max

    max

     M 

  • 8/18/2019 Bending of Beams Sollero

    34/34

    Example 6.

    2

    2

    6

    1

    261

    3121

    in.5833.0

    in.5.3

    d bc

     I S 

    d b I 

    • Determine the beam depth based on allowable

    normal stress.

    in.26.9

    in.5833.0

    in.lb1090 psi1800

    2

    3

    max

     M all  

    • Determine the beam depth based on allowable

    shear stress.

    in.71.10

    in.3.5lb3000

    23 psi120

    2

    3 max

     A

    V all  

    • Required beam depth is equal to the larger of the two.

    in.71.10d