55
Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs Benford’s Law, Values of L-Functions and the 3x + 1 Problem Steven J Miller Williams College [email protected] http://www.williams.edu/go/math/sjmiller Special Session on Number Theory AMS Sectional Meeting, Worcester Polytechnic Institute Worcester, MA April 2009 1

Benford's Law, Values of L-Functions and the 3x+1 Problem

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Benford’s Law, Values of L-Functions andthe 3x + 1 Problem

Steven J MillerWilliams College

[email protected]://www.williams.edu/go/math/sjmiller

Special Session on Number TheoryAMS Sectional Meeting, Worcester Polytechnic Institute

Worcester, MA April 2009

1

Page 2: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Summary

Acknowledgements: This talk is based on joint workwith Alex Kontorovich

Outline:⋄ Review history of Benford’s Law.⋄ Discuss applications of Poisson Summation.⋄ Study L-functions and 3x + 1.

2

Page 3: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Benford’s Law: Newcomb (1881), Benford (1938)

StatementFor many data sets, probability of observing a first digit ofd base B is logB

(d+1

d

); base 10 about 30% are 1s.

3

Page 4: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Benford’s Law: Newcomb (1881), Benford (1938)

StatementFor many data sets, probability of observing a first digit ofd base B is logB

(d+1

d

); base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.⋄ Long street [1, L]: L = 199 versus L = 999.⋄ Oscillates between 1/9 and 5/9 with first digit 1.⋄ Many streets of different sizes: close to Benford.

4

Page 5: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Examples

recurrence relations

special functions (such as n!)

iterates of power, exponential, rational maps

products of random variables

L-functions, characteristic polynomials

iterates of the 3x + 1 map

differences of order statistics

hydrology and financial data

many hierarchical Bayesian models

5

Page 6: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Applications

analyzing round-off errors

determining the optimal way to storenumbers

detecting tax and image fraud, and dataintegrity

6

Page 7: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

General Theory

7

Page 8: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Mantissas

For x > 0 write x = MB(x) · Bk , MB(x) ∈ [1, B) isthe mantissa and k ∈ Z.

MB(x) = MB(x) if and only if x and x have thesame leading digits.

Key observation: logB(x) = logB(x) mod 1 if andonly if x and x have the same leading digits.Thus often study y = logB x .

8

Page 9: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Logarithms and Benford’s Law

Fundamental EquivalenceData set xi is Benford base B if yi isequidistributed mod 1, where yi = logB xi .

0 1

1 102

log 2 log 10

9

Page 10: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Benford Good Processes

10

Page 11: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Poisson Summation and Benford’s Law: Definitions

Feller, Pinkham (often exact processes)

11

Page 12: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Poisson Summation and Benford’s Law: Definitions

Feller, Pinkham (often exact processes)data YT ,B = logB

−→X T (discrete/continuous):

P(A) = limT→∞

#n ∈ A : n ≤ TT

12

Page 13: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Poisson Summation and Benford’s Law: Definitions

Feller, Pinkham (often exact processes)data YT ,B = logB

−→X T (discrete/continuous):

P(A) = limT→∞

#n ∈ A : n ≤ TT

Poisson Summation Formula: f nice:∞∑

ℓ=−∞f (ℓ) =

∞∑

ℓ=−∞f (ℓ),

Fourier transform f (ξ) =

∫ ∞

−∞f (x)e−2πixξdx .

13

Page 14: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Benford Good Process

XT is Benford Good if there is a nice f st

CDF−→Y T ,B

(y) =

∫ y

−∞

1T

f(

tT

)dt+ET (y) := GT (y)

and monotonically increasing h (h(|T |) → ∞):Small tails: GT (∞) − GT (Th(T )) = o(1),GT (−Th(T )) − GT (−∞) = o(1).Decay of the Fourier Transform:∑

ℓ 6=0

∣∣∣ f (T ℓ)ℓ

∣∣∣ = o(1).

Small translated error: E(a, b, T )) =∑|ℓ|≤Th(T ) [ET (b + ℓ) − ET (a + ℓ)] = o(1).

14

Page 15: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Main Theorem

Theorem (Kontorovich and M–, 2005)XT converging to X as T → ∞ (think spreadingGaussian). If XT is Benford good, then X isBenford.

Examples⋄ L-functions⋄ characteristic polynomials (RMT)⋄ 3x + 1 problem⋄ geometric Brownian motion.

15

Page 16: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Sketch of the proof

Structure Theorem:⋄ main term is something nice spreading out⋄ apply Poisson summation

Control translated errors:⋄ hardest step⋄ techniques problem specific

16

Page 17: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Sketch of the proof (continued)

∞∑

ℓ=−∞P

(a + ℓ ≤ −→

Y T ,B ≤ b + ℓ)

=∑

|ℓ|≤Th(T )

[GT (b + ℓ) − GT (a + ℓ)] + o(1)

=

∫ b

a

|ℓ|≤Th(T )

1T

f(

tT

)dt + E(a, b, T ) + o(1)

= f (0) · (b − a) +∑

ℓ 6=0

f (T ℓ)e2πibℓ − e2πiaℓ

2πiℓ+ o(1).

17

Page 18: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Values of L-Functions

18

Page 19: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

‘Good’ L-Functions

We say an L-function is good if:Euler product:

L(s, f ) =∞∑

n=1

af (n)

ns =∏

p

d∏

j=1

(1 − αf ,j(p)p−s)−1

.

L(s, f ) has a meromorphic continuation to C, is of finite order,and has at most finitely many poles (all on the line Re(s) = 1).

Functional equation:

eiωG(s)L(s, f ) = e−iωG(1 − s)L(1 − s),

where ω ∈ R and

G(s) = Qsh∏

i=1

Γ(λi s + µi)

with Q, λi > 0 and Re(µi ) ≥ 0.19

Page 20: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

‘Good’ L-Functions (cont)

For some ℵ > 0, c ∈ C, x ≥ 2 we have

p≤x

|af (p)|2p

= ℵ log log x + c + O(

1log x

).

The αf ,j(p) are (Ramanujan-Petersson) tempered: |αf ,j(p)| ≤ 1.

If N(σ, T ) is the number of zeros ρ of L(s) with Re(ρ) ≥ σ andIm(ρ) ∈ [0, T ], then for some β > 0 we have

N(σ, T ) = O

(T

1−β

(σ−

12

)

log T

).

Known in some cases, such as ζ(s) and Hecke cuspidal formsof full level and even weight k > 0.

20

Page 21: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Results

Theorem (Kontorovich-Miller ’05)Let L(s, f ) be a good L-function. Fix a δ ∈ (0, 1).For each T , let σT = 1

2 + 1logδ T

. Then as T → ∞

µ t ∈ [T , 2T ] : MB (|L(σT + it , f )|) ≤ τT

→ logB τ

Thus the values of the L-function satisfyBenford’s Law in the limit for any base B.

21

Page 22: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Riemann Zeta Function: Data

∣∣ζ(

12 + ik

4

)∣∣, k ∈ 0, 1, . . . , 65535.

2 4 6 8

0.05

0.1

0.15

0.2

0.25

0.3

22

Page 23: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

The 3x + 1 Problem

23

Page 24: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 Problem

Kakutani (conspiracy), Erdös (not ready).

x odd, T (x) = 3x+12k , 2k ||3x + 1.

24

Page 25: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 Problem

Kakutani (conspiracy), Erdös (not ready).

x odd, T (x) = 3x+12k , 2k ||3x + 1.

Conjecture: for some n = n(x), T n(x) = 1.

25

Page 26: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 Problem

Kakutani (conspiracy), Erdös (not ready).

x odd, T (x) = 3x+12k , 2k ||3x + 1.

Conjecture: for some n = n(x), T n(x) = 1.

7 →1 11 →1 17 →2 13 →3 5 →4 1 →2 1,2-path (1, 1), 5-path (1, 1, 2, 3, 4).m-path: (k1, . . . , km).

26

Page 27: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Heuristic Proof of 3x + 1 Conjecture

an+1 = T (an)

E[log an+1] ≈∞∑

k=1

12k log

(3an

2k

)

= log an + log 3 − log 2∞∑

k=1

k2k

= log an + log(

34

).

Geometric Brownian Motion, drift log(3/4) < 1.27

Page 28: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Structure Theorem: Sinai, Kontorovich-Sinai

P(A) = limN→∞#n≤N:n≡1,5 mod 6,n∈A

#n≤N:n≡1,5 mod 6 .(k1, . . . , km): two full arithm progressions:6 · 2k1+···+kmp + q.

Theorem (Sinai, Kontorovich-Sinai)ki-values are i.i.d.r.v. (geometric, 1/2):

28

Page 29: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Structure Theorem: Sinai, Kontorovich-Sinai

P(A) = limN→∞#n≤N:n≡1,5 mod 6,n∈A

#n≤N:n≡1,5 mod 6 .(k1, . . . , km): two full arithm progressions:6 · 2k1+···+kmp + q.

Theorem (Sinai, Kontorovich-Sinai)ki-values are i.i.d.r.v. (geometric, 1/2):

P

log2

[xm

(34)

mx0

]

√2m

≤ a

= P

(Sm − 2m√

2m≤ a

)

29

Page 30: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Structure Theorem: Sinai, Kontorovich-Sinai

P(A) = limN→∞#n≤N:n≡1,5 mod 6,n∈A

#n≤N:n≡1,5 mod 6 .(k1, . . . , km): two full arithm progressions:6 · 2k1+···+kmp + q.

Theorem (Sinai, Kontorovich-Sinai)ki-values are i.i.d.r.v. (geometric, 1/2):

P

log2

[xm

( 34)

mx0

]

(log2 B)√

2m≤ a

= P

(Sm − 2m

(log2 B)√

2m≤ a

)

30

Page 31: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Structure Theorem: Sinai, Kontorovich-Sinai

P(A) = limN→∞#n≤N:n≡1,5 mod 6,n∈A

#n≤N:n≡1,5 mod 6 .(k1, . . . , km): two full arithm progressions:6 · 2k1+···+kmp + q.

Theorem (Sinai, Kontorovich-Sinai)ki-values are i.i.d.r.v. (geometric, 1/2):

P

logB

[xm

(34)

mx0

]

√2m

≤ a

= P

(Sm−2m)log2 B√

2m≤ a

31

Page 32: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 and Benford

Theorem (Kontorovich and M–, 2005)As m → ∞, xm/(3/4)mx0 is Benford.

Theorem (Lagarias-Soundararajan 2006)

X ≥ 2N , for all but at most c(B)N−1/36X initialseeds the distribution of the first N iterates ofthe 3x + 1 map are within 2N−1/36 of theBenford probabilities.

32

Page 33: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Sketch of the proof

Failed Proof: lattices, bad errors.

33

Page 34: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Sketch of the proof

Failed Proof: lattices, bad errors.

CLT: (Sm − 2m)/√

2m → N(0, 1):

P (Sm − 2m = k) =η(k/

√m)√

m+O

(1

g(m)√

m

).

34

Page 35: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Sketch of the proof

Failed Proof: lattices, bad errors.

CLT: (Sm − 2m)/√

2m → N(0, 1):

P (Sm − 2m = k) =η(k/

√m)√

m+O

(1

g(m)√

m

).

Quantified Equidistribution:Iℓ = ℓM , . . . , (ℓ+1)M −1, M = mc, c < 1/2

k1, k2 ∈ Iℓ:∣∣∣η(

k1√m

)− η

(k2√m

)∣∣∣ small

C = logB 2 of irrationality type κ < ∞:

#k ∈ Iℓ : kC ∈ [a, b] = M(b−a)+O(M1+ǫ−1/κ).35

Page 36: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Irrationality Type

Irrationality typeα has irrationality type κ if κ is the supremum ofall γ with

limq→∞qγ+1 minp

∣∣∣∣α − pq

∣∣∣∣ = 0.

Algebraic irrationals: type 1 (Roth’s Thm).

Theory of Linear Forms: logB 2 of finite type.

36

Page 37: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Linear Forms

Theorem (Baker)α1, . . . , αn algebraic numbers height Aj ≥ 4,β1, . . . , βn ∈ Q with height at most B ≥ 4,

Λ = β1 log α1 + · · · + βn log αn.

If Λ 6= 0 then |Λ| > B−CΩ log Ω′

, withd = [Q(αi , βj) : Q], C = (16nd)200n,Ω =

∏j log Aj , Ω′ = Ω/ log An.

Gives log10 2 of finite type, with κ < 1.2 · 10602:

|log10 2 − p/q| = |q log 2 − p log 10| /q log 10.37

Page 38: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Quantified Equidistribution

Theorem (Erdös-Turan)

DN =sup[a,b] |N(b − a) − #n ≤ N : xn ∈ [a, b]|

N

There is a C such that for all m:

DN ≤ C ·(

1m

+

m∑

h=1

1h

∣∣∣∣∣1N

N∑

n=1

e2πihxn

∣∣∣∣∣

)

38

Page 39: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Proof of Erdös-Turan

Consider special case xn = nα, α 6∈ Q.

Exponential sum ≤ 1| sin(πhα)| ≤ 1

2||hα|| .

Must control∑m

h=11

h||hα|| , see irrationalitytype enter.

type κ,∑m

h=11

h||hα|| = O(mκ−1+ǫ

), take

m = ⌊N1/κ⌋.

39

Page 40: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 Data: random 10,000 digit number, 2k ||3x + 1

80,514 iterations ((4/3)n = a0 predicts 80,319);χ2 = 13.5 (5% 15.5).

Digit Number Observed Benford1 24251 0.301 0.3012 14156 0.176 0.1763 10227 0.127 0.1254 7931 0.099 0.0975 6359 0.079 0.0796 5372 0.067 0.0677 4476 0.056 0.0588 4092 0.051 0.0519 3650 0.045 0.046

40

Page 41: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

3x + 1 Data: random 10,000 digit number, 2|3x + 1

241,344 iterations, χ2 = 11.4 (5% 15.5).

Digit Number Observed Benford1 72924 0.302 0.3012 42357 0.176 0.1763 30201 0.125 0.1254 23507 0.097 0.0975 18928 0.078 0.0796 16296 0.068 0.0677 13702 0.057 0.0588 12356 0.051 0.0519 11073 0.046 0.046

41

Page 42: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

5x + 1 Data: random 10,000 digit number, 2k ||5x + 1

27,004 iterations, χ2 = 1.8 (5% 15.5).

Digit Number Observed Benford1 8154 0.302 0.3012 4770 0.177 0.1763 3405 0.126 0.1254 2634 0.098 0.0975 2105 0.078 0.0796 1787 0.066 0.0677 1568 0.058 0.0588 1357 0.050 0.0519 1224 0.045 0.046

42

Page 43: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

5x + 1 Data: random 10,000 digit number, 2|5x + 1

241,344 iterations, χ2 = 3 · 10−4 (5% 15.5).

Digit Number Observed Benford1 72652 0.301 0.3012 42499 0.176 0.1763 30153 0.125 0.1254 23388 0.097 0.0975 19110 0.079 0.0796 16159 0.067 0.0677 13995 0.058 0.0588 12345 0.051 0.0519 11043 0.046 0.046

43

Page 44: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Conclusions

44

Page 45: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Conclusions

See many different systems exhibit Benfordbehavior.

Ingredients of proofs (logarithms,equidistribution).

Applications to fraud detection / dataintegrity.

45

Page 46: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

Caveats!

Not all fraud can be detected by Benford’sLaw.

A math test indicating fraud is not proof offraud: unlikely events, alternate reasons.

46

Page 47: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

References

47

Page 48: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

A. K. Adhikari, Some results on the distribution of the mostsignificant digit, Sankhya: The Indian Journal of Statistics, SeriesB 31 (1969), 413–420.

A. K. Adhikari and B. P. Sarkar, Distribution of most significantdigit in certain functions whose arguments are random variables,Sankhya: The Indian Journal of Statistics, Series B 30 (1968),47–58.

R. N. Bhattacharya, Speed of convergence of the n-foldconvolution of a probability measure ona compact group, Z.Wahrscheinlichkeitstheorie verw. Geb. 25 (1972), 1–10.

F. Benford, The law of anomalous numbers, Proceedings of theAmerican Philosophical Society 78 (1938), 551–572.

A. Berger, Leonid A. Bunimovich and T. Hill, One-dimensional

dynamical systems and Benford’s Law, Trans. Amer. Math. Soc.

357 (2005), no. 1, 197–219.

48

Page 49: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

A. Berger and T. Hill, Newton’s method obeys Benford’s law, TheAmer. Math. Monthly 114 (2007), no. 7, 588-601.

J. Boyle, An application of Fourier series to the most significantdigit problem Amer. Math. Monthly 101 (1994), 879–886.

J. Brown and R. Duncan, Modulo one uniform distribution of thesequence of logarithms of certain recursive sequences,Fibonacci Quarterly 8 (1970) 482–486.

P. Diaconis, The distribution of leading digits and uniformdistribution mod 1, Ann. Probab. 5 (1979), 72–81.

W. Feller, An Introduction to Probability Theory and its

Applications, Vol. II, second edition, John Wiley & Sons, Inc.,

1971.

49

Page 50: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

R. W. Hamming, On the distribution of numbers, Bell Syst. Tech.J. 49 (1970), 1609-1625.

T. Hill, The first-digit phenomenon, American Scientist 86 (1996),358–363.

T. Hill, A statistical derivation of the significant-digit law,Statistical Science 10 (1996), 354–363.

P. J. Holewijn, On the uniform distribuiton of sequences ofrandom variables, Z. Wahrscheinlichkeitstheorie verw. Geb. 14(1969), 89–92.

W. Hurlimann, Benford’s Law from 1881 to 2006: a bibliography,http://arxiv.org/abs/math/0607168.

D. Jang, J. U. Kang, A. Kruckman, J. Kudo and S. J. Miller,

Chains of distributions, hierarchical Bayesian models and

Benford’s Law, preprint.

50

Page 51: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

E. Janvresse and T. de la Rue, From uniform distribution toBenford’s law, Journal of Applied Probability 41 (2004) no. 4,1203–1210.

A. Kontorovich and S. J. Miller, Benford’s Law, Values ofL-functions and the 3x + 1 Problem, Acta Arith. 120 (2005),269–297.

D. Knuth, The Art of Computer Programming, Volume 2:Seminumerical Algorithms, Addison-Wesley, third edition, 1997.

J. Lagarias and K. Soundararajan, Benford’s Law for the 3x + 1Function, J. London Math. Soc. (2) 74 (2006), no. 2, 289–303.

S. Lang, Undergraduate Analysis, 2nd edition, Springer-Verlag,New York, 1997.

51

Page 52: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

P. Levy, L’addition des variables aleatoires definies sur unecirconference, Bull. de la S. M. F. 67 (1939), 1–41.

E. Ley, On the peculiar distribution of the U.S. Stock IndicesDigits, The American Statistician 50 (1996), no. 4, 311–313.

R. M. Loynes, Some results in the probabilistic theory ofasympototic uniform distributions modulo 1, Z.Wahrscheinlichkeitstheorie verw. Geb. 26 (1973), 33–41.

S. J. Miller, When the Cramér-Rao Inequality provides noinformation, to appear in Communications in Information andSystems.

S. J. Miller and M. Nigrini, The Modulo 1 Central Limit Theoremand Benford’s Law for Products, International Journal of Algebra2 (2008), no. 3, 119–130.

S. J. Miller and M. Nigrini, Differences between IndependentVariables and Almost Benford Behavior, preprint.http://arxiv.org/abs/math/0601344

52

Page 53: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

S. J. Miller and R. Takloo-Bighash, An Invitation to ModernNumber Theory, Princeton University Press, Princeton, NJ, 2006.

S. Newcomb, Note on the frequency of use of the different digitsin natural numbers, Amer. J. Math. 4 (1881), 39-40.

M. Nigrini, Digital Analysis and the Reduction of Auditor LitigationRisk. Pages 69–81 in Proceedings of the 1996 Deloitte & Touche/ University of Kansas Symposium on Auditing Problems, ed. M.Ettredge, University of Kansas, Lawrence, KS, 1996.

M. Nigrini, The Use of Benford’s Law as an Aid in AnalyticalProcedures, Auditing: A Journal of Practice & Theory, 16 (1997),no. 2, 52–67.

M. Nigrini and S. J. Miller, Benford’s Law applied to hydrologydata – results and relevance to other geophysical data,Mathematical Geology 39 (2007), no. 5, 469–490.

53

Page 54: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

R. Pinkham, On the Distribution of First Significant Digits, TheAnnals of Mathematical Statistics 32, no. 4 (1961), 1223-1230.

R. A. Raimi, The first digit problem, Amer. Math. Monthly 83(1976), no. 7, 521–538.

H. Robbins, On the equidistribution of sums of independentrandom variables, Proc. Amer. Math. Soc. 4 (1953), 786–799.

H. Sakamoto, On the distributions of the product and the quotientof the independent and uniformly distributed random variables,Tohoku Math. J. 49 (1943), 243–260.

P. Schatte, On sums modulo 2π of independent randomvariables, Math. Nachr. 110 (1983), 243–261.

54

Page 55: Benford's Law, Values of L-Functions and the 3x+1 Problem

Introduction Theory of Benford’s Law Benford Good Values of L-Functions The 3x + 1 Problem Conclusions Refs

P. Schatte, On the asymptotic uniform distribution of sumsreduced mod 1, Math. Nachr. 115 (1984), 275–281.

P. Schatte, On the asymptotic logarithmic distribution of thefloating-point mantissas of sums, Math. Nachr. 127 (1986), 7–20.

E. Stein and R. Shakarchi, Fourier Analysis: An Introduction,Princeton University Press, 2003.

M. D. Springer and W. E. Thompson, The distribution of productsof independent random variables, SIAM J. Appl. Math. 14 (1966)511–526.

K. Stromberg, Probabilities on a compact group, Trans. Amer.Math. Soc. 94 (1960), 295–309.

P. R. Turner, The distribution of leading significant digits, IMA J.Numer. Anal. 2 (1982), no. 4, 407–412.

55