98
Corosion, Passivity and Metallurgy Introduction to the aqueous corrosion of metals and alloys Passivity and Passive films Passivity breakdown Metallurgical effects 1 by Bernard Baroux Professeur à l’Institut National polytechnique de Grenoble

Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Corosion, Passivity and Metallurgy

• Introduction to the aqueous corrosion of metals and alloys

• Passivity and Passive films

• Passivity breakdown

• Metallurgical effects

1

by

Bernard Baroux

Professeur à l’Institut National polytechnique de Grenoble

Page 2: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

2

Part I: Introduction to the aqueous corrosion

of metals and alloys

by

Bernard Baroux

Institut National Polytechnique de Grenoble

Corrosion is an irreversible phenomenon which results from thebasic thermodynamic characteristics of the materials and thenature of their environment. In this lecture we will look at thewater corrosion phenomena applicable to metals and alloys, butexcluding both high temperature oxidation phenomena andcorrosion of non-metallic materials

Page 3: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

3

Experimental Evidences

• Formation of rust and other corrosion products

• Electrochemical (anodic) dissolution M M+++2e-

Metallurgical effects

loss of weight and pollution…

Page 4: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

4

What is a metal ?

A metal is an assembly ofcations (positive) arranged in alattice structure immersed in agas of delocalized electrons(negative) which ensure thecohesion of the structure.

1) A metal is a good conductorof electricity and heat.

2) The electron gas reflects lightwaves optical properties

3) A metal is ductile (dislocationseasy to displace)

4) A metal is oxidizable (easyseparation of cations andelectrons).

A metal is a reservoir of electrons.

Consequences:

Page 5: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

5

The oxidation of metals(example of a divalent metal)

eOHMOnHM n 2)( 22Water dissolution

eHMOOHM 222Water passivation

Dry oxidation

OeO

eMM

22

1

2

2

MOOM

MOOM 22

1

Precipitation of an oxideor a hydroxide (rust)

ou

HMOOHM 22

HOHMOHM 2)(2 22

Page 6: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

6

Consequences on the history of metallurgy

50

100

150

0-4000 -2000 0

-3000 -1000 10001700 1800 1900

Date

Chaleur de formation

KCal/gr Atome (Métalloide)

Cu

Bronze

Sb

Fe

Co Ni

MoW

Mn

CrAl

Ti

Zr

CH

AN

GE

D'E

CH

EL

LE

Page 7: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

7

Consequences on the Corrosion resistance :The Paradox of passivity

These materials are described as "stainless", quite simply(but this paradox is only apparent) because their oxidation isfast enough and intense enough to inhibit any subsequentcorrosion.

The more oxidisable materials can protect themselves by theformation of their own layer of corrosion in the form of a verythin protective film (called a passive film).

For these materials, the question ofcorrosion resistance no longer arisesin terms of rate of dissolution, but interms of the stability of the protectiveoxide.

Example: the Corrosion resistance of S.S. results from their Chromium

content (more than 12%)

Page 8: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

8

The predominant role of water in Corrosion processes

The oxygen in the iron oxides is drawn essentiallyfrom the molecules of water and not at all or only veryslightly from the oxygen in the air, as is most oftenthought (the oxygen only encourages the cathodicreaction as will be explained later).

In temperate climates, atmospheric corrosion maybe considered a water corrosion phenomenon dueto the presence of a film of water on the surface ofthe metal which generally constitutes a cold surfaceencouraging the formation of condensation.

Page 9: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

9

Oxydoreduction of water

Other instances of oxido-reductive processes

Etc…

Oxidation: H20 2 H+ + ½ O2 + 2 e-

(oxygen evolution reaction)

Reduction: H20 + e- OH- + ½ H2 (hydrogen evolution reaction)

223 222 HOHeOH eOOHOH 424 22and

eONONO

223 2

1 Fe+++ + e- Fe++,

Page 10: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

10

The Bronsted Acidobasicity of Water

p

p'

H

H

H

H

HO

O

O

H

2{H O}

{OH }-

+3{H O }

=

=

= p''

Water is a Bronsted amphoter

Bronsted acids* H2O H+ + OH-

H3O+ H2O + H+

Bronsted bases*H2O + H+ H3O

+

OH- + H+ H2O

Acid-base balance2H2O H3O

+ + OH-

H3O+ = hydronium ion

= protonated water (or hydrated proton)

OH- = hydroxyl ion = deprotonated water

(*Conjugated acids and bases are indicated in italics)

Page 11: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

11

Dissociation of water on metal surfaces(Bronsted acidobasicity)

Solution

(OH2) + {H2O}

(H2O)

(H+) + {OH-}

Metal

Acid

Base

Acid

(OH-3

{H O+}) +BaseThe consequences of water

dissociation:

(1) Adsorbed surface charge

][ adadad OHHq

(2) Potential drop

at the metal/electolyte interface

VH = ad/CH

(OH-)ad + H+ (H2O)

(H+)ad H+

Page 12: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

12

Formation de complexes hydratés

cation solvaté cation hydraté )(),( 22 MOHOHM

HMOMOH

HMOHMOH )( 2Hydrolyse

Précipitation de l ’oxyde

Hydrolyse des complexes hydratés

(Acidobasicité de Bronsted)

(Acidobasicité de Lewis)

Page 13: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

13

Oxydoreduction and Lewis acidobasicity of water

Page 14: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

14

Metal water interactions The first steps

Deprotonation

(Bronsted reaction)

+ Oxidation

O

M

H

O

H

HM

e- + H+

O

H

H

M

Physisorption

Chemisorption

(Lewis reaction)

Page 15: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

15

Water corrosion

(1) Fe(OH2) (FeOH) + H+ + e-

(2) (FeOH) (FeOH+) + e-

(3) (FeOH+) Fe++ + OH-

Bockris mechanism foriron dissolution

O

H

H

O

M

H

M

e- + H+

O

M

H

O

M

He- +

O

M

H

O

H

H

+ MOH+

M++ + OH-

Oxidation Dissolution

Page 16: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

16

Water passivation

O

H

OH

M

M + H+

OM

H

M

O

OM

M

OM

OH

OH

H

OH

H

O

OH

+ H+

+ H+

O

H

H

O

M

H

M

+ H+

OM

H

M

O

OM

M

OM

OH

+ H+

+ H+

+ H+

Page 17: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

17

Competition between water corrosion and passivation processes (summary)

O

H

OH

M

M + H+ M

M

H

O

O

M

OH

+ H+

+ H+

O

M

He- + MOH+

M++ + OH-

Corrosion

Passivation

In common

first step

O

H

H

O

M

H

M

+ H+

e-

Page 18: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

18

Chloride assisted corrosion process

M++ + Cl-

MCl+e-

M Cl-

MCle-

Adsorption of a chloride ion

Lewis acid base reaction

Oxidation

Oxidation

Dissolution

Page 19: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

20

Corrosion outlook:

Anodic (electron producing)

and cathodic(electron consuming)

reactions

Ox +e- Red

223 222 HOHeOH

OHeOOH 442 22

Fe+++ + e- Fe++

M M++ + 2e-

e -

Ox

Red

M MO + 2H++2e-

(+H2O)

Page 20: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

21

Consequence of the charge transfers: the potential drop

IHP OHP

V

Metal

Electrolyte

VH

Double layer (Helmoltz)

x

The Charge transfers (electrons and ions) between the metal and the aqueous solution produces a potential difference

Page 21: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

22

Effect of the potential drop on the electrochemical

equilibria of water

OHeOOH 222

122

)log(4

1(6023,1

)ln(4

1)((23,1

2

2

pOpH

pOHLnq

kTV

mVVolts

Volts

V is the potential difference between water and the electron reservoir,

The Standard hydrogen electrode (V=0) is defined by pH=0 and

p(H2)=1.Atm

eOHHOH 3222

1)log(60)ln)(( 22 pHpHpHHLn

q

kTV mV

Electrochemical equilibria Law of mass action

Page 22: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

23

Corrosion equilibria

)log(2

3.2. cq

kTcstV

Assuming local equilibria, the mass action law writes

cst.(c) pH log2

1

cst.pHq

kT.V 32

At a metal electrode, several potential and pH dependent reactions occur

(1) Anodic dissolution:

M M+++2e-

(2) Dissolution or Precipitation of the oxide

(3) Passivation

M+++H2O MO+2H+

M+H2O MO+2H++2e-

Where c is the concentration in dissolved cations near the metal interface.

C results from the balance between the dissolution rate and the diffusion flow J cfrom the metal surface to the solution bulk (where c=0)

The dissolution rate is then proportionnal to c

Page 23: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

24

The Pourbaix diagrams of metals

cst.pHq

kT.V

cst.(c) pH

cq

kTcstV

Mc

32 )3(

log2

1 )2(

)log(2

3.2. (1)

M M++ : anodic dissolution

M MO : passivation

M ++ M0 : rust precipitation

pH

Pote

ntiel

M++

M

MO

3

2

1

M+++H2O MO+2H+

M M+++2e-M+H2O MO+2H++2e-

In diffusion controlled kinetics, the corrosion current j is proportionnal to the concentration c in solute cations near the surface. An arbitrary concentration c =10-6M is

chosen, below wich corrosion is disregarded

Page 24: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

25

Pourbaix diagramof Aluminium

Al+++ (Al2O3,3H20)

AlO2-

Al

(5)(2)

(6)

(3) (4)

(1) Al+++ + 2 H2O AlO2- +4 H+

(2) Al + 3 H2O Al2O3 + 6 H+ + 6 e-

(3) 2 Al+++ + 3 H2O Al2O3 + 6 H+

(4) Al2O3 + H2O 2 AlO2- +2 H+

(5) Al Al+++ + 3 e-

(6) Al + 2 H2O AlO2- +4 H+ + 3 e-

NB: this diagram is drawn for 1µM/l

concentrations in solute species

Page 25: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

26

Pourbaix diagram of Iron

Fe2O3

Fe+++

Fe++

HFeO2-Fe

Page 26: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

27

Effect of the potential drop on the Corrosion kinetics.Polarisation curves:

Vcor

icor iA

iK iG=iA+iK

- iK i

VV = Electrode potential

Vcor = Corrosion potential

I = Current density

Both anodic and cathodic currents depend on the

potential difference

Page 27: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

28

The Tafel law

CU in H2SO4(0.5M) + CuSO4(0.075M)

In the cathodic domain: Proton reduction

In the anodic domain: Anodic dissolution

V = cst + b log iThe Tafel law: I = B.exp (2.3 V/ b)

Page 28: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

29

Part II) Passive films

OM

H

M

O

O

M

OM

OH

OH

M

OM

H

O

OM

(b) ion hopping and film growth

(a) Formation of the first oxide monolayer

(b) Cation hopping and formation of a second layer.

(c) Vacancy migrates toward the metal

(d) The process is repeated (Passive Film growth)

OM

H

M

O

OM

M

OM

OH

OH

H

OH

H

O

OH

(a) First (hydrated) oxide layer

From passive layer to passive film:ion hopping and water deprotonation

Page 29: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

30

(over)simpified model of passive film

M

OM

OM

OM

OM

OM

M

OM

OM

OM

OM

OM

M

OM

OM

OM

OM

OM

OH

H

M

OM

OM

OM

OM

OM

O H

A-

OH

M

IHPmetal film

Electrolyte

Adsorbed water

Adsorbed anion or chloride

Metallic complex

Thickness: few nanometers

Page 30: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

31

The Electric field

Electron Energy (E)

Fermi Level (EF)

redox sytem

Surface states

Metal Film Electrolyte

Electron transfer from metal to electrolyte redox system (e.g.

Fe+++/Fe++) or on metallic complexes (MOH+ type) located at IHP

L ~ 30 A° (example)

F~106 V/cm= 10mV/Å

Potential

Vf >0

VH <0

xIHP OHP

Density: F= ss/e ~ 106 V/cm ss/q~1014 cm-2

Page 31: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

32

Effect of the electric field

• Ionic conduction

– The electric field drives the positively charged species (cations, anionic vacancies…) toward the outer interface, and the negatively charged species (anions, cationic vacancies …) toward the inner interface

• Electrostriction

– Strong electric field produce a so called electrostriction force, perpendicularly to the field, This force is normally equilibrated by the cohesion forces in the oxide. A decrease in these cohesion forces may therefore produce local breakdown of the passive film (Sato)

Page 32: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

33

Défauts ponctuels

Pour les films passifs minces, on considère généralement que la densité

en défauts ponctuels (ions en excès et lacunes) est très faible:

r << 1/L3 ~1020 cm-3 (pour L ~ 2nm)

Les défauts ponctuels sont chargés et agissent comme pièges

électroniques

Suivant leur charge, ils migrent vers le métal ou l’interface externe qui

peuvent constituer des sources ou des puits de défauts.

Page 33: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

34

Point defects produced by

corrosion

O

M

M

O

M

O

M

O

MO

O

M

O

M

O

M

O

M

H2O

2 H+

= oxygen vacancy = cation vacancyCl- = anionMCl+ = unstable complex

O

O

O

M

O

M

MO

M

O

M

O

M

O

M

O

M

MCl+

Cl-

M++ + Cl-

O

Cation Vacancies InjectionAcidic attack

Cation vacancies migrate toward the metal film interface where they anihilate

Page 34: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

35

Cation vacancies produced by the film growth

H2O

2 H+

O

M

O

M

O

O

M

O

MO

O

M

O

M

O

M

O

M

O

M

Water deprotonation produces Oxygen anions excess

Cation hopping film growth

Growth kinetics is controlled by the cation migration rate from the mf interface ( vacancies migration to the mf interface)

Oxygen deposition

Page 35: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

36

Croissance des films (details) • Un cation est transféré du film vers le film hydraté d’extrème surface où il prend la place d’un proton qui est rejeté en solution

• Le processus global se résume à une déprotonation de l’eau et à une injection de lacunes cationiques dans le film

• Sous l’effet du champ électrique les lacunes cationiques créées sont drainées par le champ électrique vers l’interface métal-film où elles s’ anihilent

M

O

OM

O

OM

O

M

M

M

OM

O

OM

OM

OM

M

OM

OM

OM

OM

OM

OH

M

M

OM

O

OM

OM

OM

OH

H

OH

solutionfilm Metal

Page 36: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

37

Capacité de croissance

3

Zq ~ 18 Cb/mm3 dans le cas de ZrO2

où 3 est le volume cationique moyen et

dLZq

dQ3

C= /F est la capacité de croissance

C = 15 mF/cm2

pour F = 1.2 106 V/cm (1/F~8 nm/V)

La Croissance du film implique le transfert d ’une charge par unité de surface:

Et engendre une augmentation dV de chute de potentiel V=F.L à travers le film:

0

50

100

150

200

250

0 200 400 600 800 1000 1200

scan rate (mV/min)

j (µ

A/c

m²)

C = j/s = 15mF/cm2

L’augmentation de potentield ’électrode est entièrement absorbéepar la croissance du film

dV=FdL+LdF.

if dF~0 then F= dV/dL = / C

Zry4 poli 4000 dans Na2SO4 1M pH 6.6 23°C désaéré. Tracé de courbes de polarisation à plusieurs vitesses de balayage s . Le courant mesuré est sensiblement constant dans le domaine passif. j est sa valeur pour V = 1 V/SCE.

la Capacité C = j/s = jdt/dV = dQ/dV est sensiblement constante et proche d ’une capacité de croissance.

Page 37: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

38

Loi du Champ fort (mise en évidence expérimentale)

F = s/j = F*.Ln(j/j*)

Avec F* = 9 104 V/cm

j* = 0,7.10-9 A/cm2

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

-16 -14 -12 -10 -8

1,7

1,6

1,5

1,4

1,3

1,2

1,1

1,8

F=s/j (mV/cm)

Ln j (A/cm-2)

(Zry4 dans Na2SO4 )

Une analyse plus fine des résultatsprécédents montre que C=j/s etdonc aussi F = s/j ne sont pasrigoureusement constants etvarient linéairement avec Ln j :

D ’où la loi dite du Champ fort :

*exp*

F

Fjj

Page 38: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

39

Loi du Champ fort:justification théorique

(1-)

J +

J -

W +

W -

Transport thermiquement activé:

J+ =K0exp -W+/kT

Effet du Champ électrique:

W+= W0 - ZqF

J = K(exp ZqF/kT exp -ZqF(1-)/kT

=0,5

Métal

(m)

IHP OHP

MZ+

MZ+

MZ+

(s) (H)

2K.F =J *F<<F

Loi du Champ Fort :

2*F

Fsinh*KFJ

cmVF /10~* 5

Où 2K est la conductivité et

pour Z=2 et ~1 nm) on trouve:

*F

FK.exp =J *F>>F

Loi d ’Ohm:

qZ

kTF *

Page 39: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

40

Loi de croissance en mode potentiostatique (Loi Logarithmique Directe)

log (I) = F(log (t)) pour éch.23 pH=6.6 sans bullage

0,0001

0,001

0,01

0,1

1

10

100

1 10 100 1000 10000 100000

t (secondes) échelle log.

I (m

A) é

ch

elle

lo

g.

Log t (sec)

Lo

g j (

µA

/cm

2)

Chronoampèremétrie potentiostatique

Réalisée sur Zry4 poli 4000 polarisé à 1 V/SCE dans Na2SO4 1M pH 6.6 23°C désaéré.

m = d (Ln j )/d (Ln t) -1 quand t

Loi de Mott:

dL/dt =cst. Exp F/F*

L-L0 = a. Ln(1+t/t)

(Où a et tsont des constantes vis-à-vis du temps, mais dépendent de Vf )

j = .dL/dt = a/(1+t/t)

LF=L0F0=Vf=cst. LdF+FdL=0

F0(L-L0)+ L0(F-F0) =0

F/F0=2 –L/L0

)1(11

0 t

t

jj

Approximation au premier ordre

Page 40: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

41

Compléments

L ’approximation au premier ordre pour le champ donne

F0-F = b. Ln(1+t/t)

En reportant cette valeur dans l ’équation

1/L= F/ Vf

on obtient une approximation au second ordre pour L:

1/L = 1/L0 - b. Ln(1+t/t)

Loi logarithmique inverse

(Approximation au second ordre )

Epaisseur limite

)(.1

*exp

3 Hdisfs VJdt

dL

F

FKJ

L = (t)

En mode potentiostatique stationnaire

fs

dis

K

JLnFFF *

_

Une épaisseur limite_

_

F

VL

f

est atteinte lorsque

_

_

1

FdV

Ld

f

~10-6cm/V=1Å/10mV

Loi de croissance

loin de l ’épaisseur limite:

*exp.

*exp. 33

LF

VK

F

FK

dt

dL f

fsfs

Page 41: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

42

Les électrons dans le film

L’hypothèse f=0 (film non chargé) esttotalement arbitraire

Le film passif est suceptible decontenir des charges ioniques et des

charges electroniques ( f 0 )

Les Charges ioniques sont constituéespar les défauts fonctuels (ions etlacunes) dues à la croissance, a lacorrosion , aux défauts de structure,etc…

Les charges électroniques résultentdu piègeage des électrons sur desniveaux accepteurs, ou à leurdépiegeage à aprtir de niveauxdonneurs, en équilibre avec le niveaude Fermi du métal et les niveaux devalence et de conduction de l’oxyde(comportement semi-conducteur)

E

E

E

E

E

E

C

T1

T2

F

T3

V

E

• Niveau de conduction (Ec)

• Niveau de valence (Ev)

• Niveaux pièges (ET)

• Niveau de Fermi (EF)

Page 42: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

43Loi d’action de masse et loi de Fermi Dirac à l’approximation semi classique

kT

EE

nN

n F

exp

A très basse température, on peut considérer les niveaux d ’énergiecomme pleins en dessous du niveau de Fermi, vides au dessus

Soit N(E) le nombre d ’ « états » électroniques à l ’énergie E

Chaque « état » électronique peut être vide (oxydé) ou occupé (réduit)

. Red Ox + e- (metal)

Un niveau peut être accepteur (neutre si vide, négatif si occupé) ou donneur (neutre si occupé, positif si vide)

On notera n le nombre d’états occupés et N-n = nombre d’états vides. La loi d’action de masse s’écrit:

n.exp -E/kT=cst.(N-n).exp -EF/kT

La probabilité d ’occupation n/Nd ’un état est donc donnée par:

Qui est formellement analogue à la loi de Fermi-Dirac:

kT

EENn

F

exp1

1/

Page 43: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

44Mise en évidence

des propriétés semi-conductrices des films passifs: comportement de Mott Schottky

Typical C-2 vs. V Diagram on an Fe electrode passivated in borate buffer (pH 8,4)

La Capacité d ’interface suit une loi de Mott –Schottky due au piegeage-dépiegage des electrons dans le film

Page 44: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

45

Effet du champ électrique sur le comportement semi-conducteur des films passifs

Modèle simplifié : Les niveaux sont remplis en dessous du niveau de Fermi, vides au dessus

La répartition desniveaux d ’énergie estfortement perturbée parle champ électrique quirègne dans le film

Page 45: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

46

Capacité de Charge d’espace.

VqNQ e2 2

kTN

VV

C e

)(21 0

2

C= 1 µF/cm2

pour N= 1020 cm-3 et V-V0 = 200 mV

kTVq

X D

Capacité C = dQ/dV

Où V0 est le potentiel de bandes plates « apparent »

Page 46: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

47

Other Instances ofM.S. behaviour (1)

kTNVV

C e

2)(

102

M.S. Diagram obtained on a mechanically polished AISI430 type steel, in deaerated NaCl (0.02M) pH6.6 after polarising 16h at +200mV/SCE.

Impedance was measured using several frequencies: The frequency dispersion reflects the time needed for the trapping-detrapping process

-1,0 -0,5 0,0 0,5 1,0

V / V

C(

)-2

/ 1

01

1 F

-2.c

m-2

10Hz

23H

z

51H

z

198Hz

94H

z

313Hz

497Hz

685Hz

827Hz

3

2

1

0

Page 47: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

48

Effect of the polarisation time

Other Instances of M.S. behaviour (2,3)

Effect of the film thicknesskTN

VV

C e

)(21 0

2

Page 48: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

49

Photo-electrochemical effects

Formation of an electron hole pair

Pair anihilation : recombination on an electron trap energy level

photocurrent

Ec

ET

EV

métal film solution

h

e-

Page 49: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

50

An instance of PEC response of passive films

Potential dependence of the photocurrent () and dark current () for a

passive film formed in NaCl 0.02mol.dm-3 , Ar10%H2 (tp=15h30), pHf =

3.0. Experimental conditions: pHm = 5.2, sweep rate 0.1V/120s.

l=501.7nm, P=60mW.cm-2, light modulation frequency 45Hz.

0

1

2

3

-0,2 0 0,2 0,4 0,6 0,8

V / V

I ph /

nA

0,0

0,5

1,0I

da

rk / µA

Vpeak

Page 50: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

51

Corrosion of passive films:The acidic attack

• The first step of acidic attack results in thenet transfer of a negative charge (O--) fromthe film to the environment.

• The reaction rate is then expected todecrease when the electrode potentialincreases

• When the O– vacancies are in a sufficientamount, the cationic bond is weakenedleading to the film dissolution

• This corrosion is expected to beuniform on all the surface

O

M

M

O

M

O

M

O

MO

O

M

O

M

O

M

O

M

H2O

2 H+

Page 51: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

52

Corrosion in chloridecontaining electrolytes:

The vacancy Injection process

M

OM

OM

OM

OM

OM

M

OM

OM

O

O

OM

MO

M

O

OM

O

OM

Cl -

M

M

MCl ++

M M++ + Cl-

1) Choride ions favours the action dissolution et the atomic scale, creating cation vacancies inside the film.

2) Under the effect of the electric field, cation vacancies migrates toward the metal/film interface, where they eliminate proportionally to their concentration dX/dt = J -K.X leading to the stationnary concentration X= J/K

Page 52: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

53

Destabilising effect of cation vacancies

1) Choride ions favours the action dissolution et the atomic scale,creating cation vacancies inside the film.

2) Under the effect of the electric field, these vacancies migrate toward the metal/film interface, where they eliminate proportionally to their concentration dX/dt = J -K.X leading to the stationnary concentration X= J/K

3) When the vacancy concentration increases , the passive film cohesion decreases. At a critical value X crit the film may locally break down .

4) Electrostriction theory: When the cohesion forces do not counterbalance the electrostriction forces, «local» film breakdown may occur (cf. N.Sato) .

M

OM

O

O

O

OM

M

OM

O

O

O

OM

MO

M

O

OM

O

OM

Cl -

MCl +

M M++ + Cl-

NB: The mechanical breakdown should release the mechanical stresses around the breakdown point. This form of corrosion is then expected to be localized

(Role of the Chloride ions)

Page 53: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

54

The Pit nucleation potential

1) The vacancies creation rate J increases with the solution chloride content and electrode potential :

J = cst.cn.exp Vfs/f= cst.cn. exp (1-g)VE/f

where g dVf/dVE is a share coefficient

2) A pit nucleation potential may be defined as:

J(C,Vpit) = KXcrit

It decreases when the chloride concentration increases

Page 54: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

55

The Pit Nucleation potential (details)

Below the pitting potential:

Any increase in electrode potential is

concentrated inside the passive film.

Then the potential drop at the outer

interface keeps constant. The vacancy

concentration in the film is negligible and

does not depend on electrode potential

Above the pitting potential:

The metal Fermi level is pinned on the

electron surface states energy level.

Then the potential drop within the film is

constant and any increase in electrode

potential concentrates at the film

electrolyte interface. The vacancy

concentration in the film quickly

increases with electrode potential

EC

EV

EF

EF

EC

EV

SS

VE<Vpit Ess < EF

VE>Vpit Ess = EF

The pit nucleation potential could simplycorrespond to the pinning of the Fermi level onan electron acceptor level present at the filmsolution interface.

VE

Page 55: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Part III: Passivity breakdown

MO

+ 2H+

H20

MCl+

+ Cl-

Acidity

Chlorides M++ + Cl-

CORROSION

RISK

Quasi-

neutral

Acidic

Chloride free NO UNIFORM

CORROSION

Chloride

containing

LOCALISED

CORROSIO

N

HAZARD!!

Page 56: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Polarisation curves in acidic media

Al 1070

i (m

A/c

m-2

)

V (SCE)

Log i

(A

/cm

-2)

-7

-6

-5

-4

-3

-2

-1 -0.5 0 0.5 1 1.5

Courbe de polarisation de l'alu 1070dans H2SO4

0.5 M

0.1 M

0.05 M

0.02 M

H2SO4 0.02M to 0.5M

H2SO4 0.5M to 2M

AISI 430

mV (SCE)

Aluminium alloys

Stainless steels

Page 57: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Modelling the polarisation curve (1)

Passivation: M+H2O MO + 2H+ + 2e- (1)

Dissolution: M M++ + 2e- (2)

Loi d’action de masse (1) : 1 - 2 = /u2 avec:

uu

2

2

1

= 0 pour les potentiels cathodiques et/ou les milieux acides

= 1 pour les potentiels anodiques et/ou les milieux basiques

kT

qVH exp

Fraction passivée (recouverte par MO) =

Activité du proton en surface

kT

qVHu exp// 2/12/1

Loi cinétique (2)(Tafel) :

u

uH

kT

qVi

21

exp1

2/1/.exp HukT

qV

Page 58: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Modelling the polarisation curve (2)

Vcrit

icrit

Qui varie comme u pour les potentiels cathodiques et/ou les milieux acides

Qui varie comme u2 pour les potentiels anodiques et/ou les milieux basiques

Si < 2 , cette fonction présente un maximum icrit pour u=ucrit, V=Vcrit , avec:

ucrit2/(2)( = /2).Il en résulte que:

Exercice

Hicrit log icrit = cst. - .pH

(1) Vcrit suit une loi Nersnstienne :

kT

qVH crit exp =crit= 1/2/[/(2)1/2

(2) icrit décroit linéairement avec le pH :

u

uH

kT

qVi

21

exp1

kT

qVHu exp/2/1

avec

Page 59: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

pH effect (Stainless steels)

pH

Lo

g I

jcrit

Ip

pHd

pH

0 2 4 6 8 10

-6.5

-5.5

-4.5

-3.5

-2.5

pHd

1/2

(430 Ti in deaerated Na2SO4 1M)

Lo

g j

(A/c

m2)

Theory

Experience

Vcrit = cst. +2.3kT/q pH (Nernst)

And log jcrit = cst. - .pH

Page 60: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Polarisation Curve (general)

Le courant global i est la somme de 3 courants partiels:

1) Le courant de dissolution anodique iA

2) Le courant sur les sites oxydes, proportionnel a et

tendant vers une constante iP lorsque tend vers 1

3) Le courant cathodique iK

iP

icriti

V

Passivité de type

Fer, Cr, S.S. iP<<icrit

Al :iP>icrit

Exercice

Page 61: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Depassivation pH

Al 1070

0

2 10-7

4 10-7

6 10-7

8 10-7

1 10-6

1.2 10-6

1.4 10-6

2 3 4 5 6 7 8 9

Evolution du courant de corrosion de l'aluminum 1070dans Na

2SO

4 0.5 M en fonction du pH

pH

i (A

/cm

-2)

Corrosion current in acidified Na2SO4Log i

crit (A

/cm

2)

AISI 430

critical passivation current in acidified Na2SO4

Page 62: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Behaviour of S.S. in neutral chloride containing media:

the pitting Corrosion

Log C (mol/l)

V p

iq. (m

V/S

CE

)

0

100

200

300

400

500

600

-2,5 -2 -1,5 -1 -0,5 0 0,5

a

The pitting potentialdecreases when increasing the Chloride content

(430 Ti in deaerated NaCl pH6.6)

Page 63: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Behaviour of Al in neutral chloride containing media(Al1070 in deaerated NaCl pH6.6)

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5

V p

iq. (V

/SC

E)

Log C (mol/l)

As for Stainless steels, The pitting potential diminishes linearly with the logarithm of the chloride content.

-9

-8

-7

-6

-5

-4

-3

-2

-1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Potentiel de piqûre de l'aluminium 1070dans des solutions de NaCl(milieux neutrres chlorurés)

0.5 M

0.1M

0.05 M

0.02 M

0.004 M

V (SCE)

Log i

(A

/cm

-2)

Page 64: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

The Corrosion risk in chloride containing acidic media

• The fall in pH and the increase in the Cl- content reduces the passive range

Page 65: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

The successive stages of localised corrosion

• Initiation

– The generic modes (Pitting, Crevice,SCC…)

– Environment effects (Marine, atmospheric, MIC…)

– Effect of the material (specific)

• Propagation (common mode)

– Chloride enrichment

– Hydrolysis of dissolved cations

– High propagation rate

Page 66: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Pitting Corrosion in neutral chloride containing media

(AISI 304)

The pitting potential is an appropriate criterion for pitting

corrosion resistance

The successive steps of pitting corrosion

- Pit nucleation (nanometric scale)Local passive film breakdown.

- Metastable pitting (micrometric scale)Possible repassivation, current transients.

- Irreversible damage (milimetric scale)Pit propagation

Page 67: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Crevice corrosion?

M++ H+Cl-

What happens in a crevice?

1) Cathodic reaction quickly exhaust oxygen in the crevice. Further cathodic reaction occurs then outside

2) Anodic dissolution across the passive surface, leads to an enrichment in dissolved cations

3)Chloride enrichment : Influx of the majority anion to compensate for the positive charges (electromigration)

4) Hydrolysis of cations ( Hydrochloric acidity)

limited by the migration and the diffusion of reaction products outside the zone.

Corroded zone

The remedies:

1) Material selection (for a “sufficient” resistance to acidic corrosion)

2) To avoid crevices!

Page 68: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Mechanical EffectsThe Detrimental effect of Stress …

• Stress corrosion cracking

• Corrosion-Fatigue

• Fretting Corrosion …etc…

Stress corrosion cracking

Conditions of occurrence:hot chloride containing environment.

Remedy: selection of appropriate grades. For instance, the use of

austeno-ferritic or ferritic steels is preferable to FeCrNi austenitic steels.

The association of mechanical stress and corrosive conditions:may lead to damage which neither the mechanical stress nor the corrosion would

have caused separately.

Page 69: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

72

SCC facies

Optical microscopy

crack propagation rate

Cracks in stainless steels can either be intergranular or transgranular or sometimes mixed.

Transgranular cracks often show continuous striations, perpendicular to the crack growth direction, which are generally considered to mark successive stages of propagation

(discontinuous propagation rate).

30 µm

SEM Transgranular cracking

Effect of residual stresses

Page 70: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

73

IV) Metalurgical effects

Intergranular Corrosion of stainless steels: Carbide Precipitation and Chromium depletion

Chromium depletion in the vicinity of a

grain boundary in an austenitic steel:

a) transmission electron microscope image

b) corresponding iron and chrornium

concentration profiles..

Page 71: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

74

Heat Affected Zoneclose to the weldments

Example: Several secondary tubes are welded on a

main tube. No post welding treatment was performed.

Welds were then sensitised to intergranular corrosion,

due to intergranular precipitation of chromium

carbides in the heat affected zones.

The corrosion looks locally « uniform » all around the

tube weldments

Page 72: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

75

IGC:The remedies

• Heat Treatments

– solution treatment

– annealing after welding (rarely used)

• Low Carbon Steels: C<0.03%

– (304L, 316L , etc ..)

• Stabilised Steels

– Stabilising elements : Ti, Nb, Zr.

– Ex: Ti stabilised steel (grade 321) : Ti/C > 5 ?Maturation heat treatment

• Impossible solutions

– Solution treatment

– low carbon

• Possible solutions

– annealing after welding

– Stabilisation (Ti, Nb, Zr)

• Ex: Titanium stabilised steel

Ti>0.15% +4(C+N)

Other effect: sulfur trapping improvement of the pitting resistance

Austenitic Steels Ferritic Steels

Page 73: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

76

Pitting potentials of stainless steels

290 290

330

400420

600

0

100

200

300

400

500

600

700

17Cr 17CrNb 17CrNbLS 17CrTi 304 316

V (m

V/E

CS

)

(In NaCl 0.02M)

Page 74: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

77

Effect of the chromium content in an Fe - Cr alloy

• A: Steels with MnS (40 ppm S)

• B:Steels without MnS (+0,4%Ti)

110

160

210

260

310

360

410

11 12 13 14 15 16 17 18

V (m

V/E

CS

)

% Cr

B

A

Page 75: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

78

Scanning electron microscopy (x 3000)

Pitting on a manganese sulphide Pitting at the boundary of a Ti nitride

Ti=0

Fe16Cr Mn=0.45% S= 40ppm

Ti=0.4%

Pitting on sulphide inclusions

Page 76: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

79

Prepitting events

during a polarisation at 200mV/SCE in NaCl 0.02M pH6.6

• Left: Typical anodic current variations for MnS containing steels.• Right: Typical anodic micro-events for Ti bearing steels

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I

200 400 600

i (µ

A)

Polarisation time (sec)

10b

Time (s e c)

0

4

8

12

16

20

24

0 200 400 600 800 1000 1200 1400

i (µ

A)

10c

Page 77: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

80Effect of the sulfides solubility on the pitting potential

C % Cr % Ni % Mn S (ppm)

0.07 16.4 1.6 7.3 9

0

10

20

30

40

50

60

70

80

FeCrMnLNi+

200ppm CeLa

304 FeCrMnLNi FeCrMnLNi+14 ppm Ca

t = 15 mn

t = 24 h

% of dissolved inclusions after immersion in

neutral 0.02M NaCl (observed by SEM)

CeS (Mn,Cr)S MnS CaS

Low Ni austenitic stainless steel

400

450

500

550

CaS MnS CeS

Vp

it (

mV

/SC

E)

304

Pitting potential

The variations in pitting potential reveal

1) A significant effect of the sulfide solubility

+

2) An effect of the matrix composition (Ni in 304)

In ”Critical Factors in localized corrosion IV”: Salt lake city 2002. The importance of being a metallurgist

Page 78: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

81Modeling the effect of sulfides

•The sulfides dissolve more or less rapidly , depending on their stability and on the solution

corrosivity. In pitting initation the sulfides act simply as sulfur species provider

•Sulfur containing species adsorb on the passive film close to the sulfide inclusion,

initiation on the

passive film

-

initiation close to

a sulfide

inclusion ?

Dissolution

MnS, CaS,

CeS, TiS ...

adsorption of

sulfur species

Promoting pit nucleation(local film breakdown) or

Preventing repassivationof nanopits

The pitting potential characterizes either

- the pit nucleation or

- the stabilization of pit nuclei

Page 79: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

82

Modeling the effect of sulfides (2)

• The earlier theories

– Sulfide dissolution, producing an unfilmed bare metal surface

– Does not take into account the effect of passive film on pit initiation. Passive film could act only through the cathodic reaction (in OCP conditions)

• Effect of thiosulfates

– Sulfide dissolution produce thiosulfates which prevent repassivation in the occluded zone formed by a metastable pit.

• The effect of sulfide solubility

– Sulfide inclusions may act simply as sulfur species sources.

• Sulfur containing species (elemental sulfur, thiosulfates…???) redeposit around the

inclusion and make the passive film sensitive to pitting corrosion

• Steel resistance to pitting decreases as sulfide inclusion solubility increases:

• CaS < MnS < (Mn,Cr)S < CrS < TiS < CeS

• The Cr depletion theory (Nature, Vol 415, 14 Feb. 2002) does not meet basic metallurgical evidences. More the effect of steel making process is ignored

– In SS, Mn sulfides content a small amount of Cr (~5% in 304). The larger the Cr content or the smaller the Mn content, the larger the pitting resistance.

– Ti containing steel, free from MnS but containing TixS, resist better to pitting than MnS containing steels. They can pit however, but at higher potential , temperature or chloride content. Inclusions other than sulfides can also initiate pits

– Metastable pitting was also observed even on « pure » (inclusion free) Fe17Cr alloys

Page 80: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

83Conteracting the sulfur effects on pitting initation

0

20

40

60

80

100

NaCl 0,02M CuCl2 0,01M

Tra

nsi

ents

aft

er 2

4h

Nu

mb

er

of O

CP

Tra

nsie

nts

LNi

+100mV/SCE

When added in aqueous solution,

Cu Inhibits pits initiation

(formation of insoluble CuS-Cu2S)

When added as alloying element

No effect is found on the number of transients

0

200

-200 -100 0 100 200 300

Vpol (mV/ECS)

no

mb

re

de

tra

nsito

ire

s s

ur

24

h

Vpol (mV/SCE)N

um

ber

of

PS

tra

nsie

nts

by T.Sourisseau and alias, Cors.Sci. 2005, 47, p1097

The favourable effect of dissolved copper in preventing pit initiation is revealed by the number of pitting transients

The possible effect of alloyed copper in preventing pit initiation is not revealed by the number of transients

Page 81: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

84

Such an alloying addition of Cu is even found to decrease the pitting potential , and

overmore the repassivation potential

-40

0

40

80

120

160

200

304 304 + Cu bNi + MnS bNi + MnS +

Cu

Vre

p (

mV

/SC

E)

304 304+Cu LNi Lni+Cu

repassivation potential

1) Metalic Copper hinders repassivation

It was suggested that metallic Copper redeposits at pit bottom , inhibiting further Chromium

oxidation, then preventing pit repassivation. The lower the pitting potential, the smaller the amount

of dissolved Cu ions and then the larger the detrimental influence of Cu on the final result.

2) From the material performance viewpoint, it is worthy to note that this detrimental effect of Cu is

revealed by both repassivation and pitting potential

200

250

300

350

400

450

500

550

coulée bNi +

MnS

coulée bNi +

MnS + Cu

coulée 304 coulée 304 +

Cu

Vp

it (m

V/E

CS

)

LNi LNi+Cu 304 304+Cu

pitting potential

Effect of metallic copper on the pitting potentialby T.Sourisseau and alias, Cors.Sci 2005.

Page 82: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

85

Chemical composition of the investigated material in weight %.

Grade Elaboration % C % Mn % Ni % Cr % Mo % Cu S (ppm) % N

AISI 304 Laboratory 0.026 1.45 8.57 17.86 0.20 0.20 51 0.036

INGOTS

(25Kg)

PLATES

(section : 16mm120mm)

HOT ROLLED PLATES

(thickness: 1.5mm)

Forging (1250°C)

Hot rolling (1250°C)

ANNEALED PLATES

(thickness: 1.5mm)

Thermal treatment in salt bath (1100°C)

Pickling in acid bath (HNO3, HF)

COLD ROLLED PLATES

(reduction : 10, 20, 30, 70%)

Cold rolling (multi-pass)

The effect of cold rolling by L..Peguet and alias, Cor.sci. In press)

Page 83: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

86

0,2

0,25

0,3

0,35

0% 10% 20% 30% 70%

cold rolling

Vp

it(V

/EC

S)

In this case, the pitting potential is then

correlated to stable pitting

but not to the pit initiation sensitivity

50

100

150

200

250

0% 10% 20% 30% 70%

cold rolling

nu

mb

er o

f st

able

pit

sN

b o

fsta

ble

pit

sThe effect of cold rolling: results

A fair correlation is evidenced between the pitting potential and Stable pitting but not with the number of metastable pitting transients

0

200

400

600

800

1000

0% 10% 20% 30% 70%

Nb

of

meta

sta

ble

pit

s

Page 84: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

87

Chemical composition of the investigated materials in weight %.

Grade Elaboration % C % Mn % Ni % Cr % Mo % Cu S

(ppm) % N

AISI 304 Industrial 0.037 1.42 8.66 18.18 0.25 0.22 12 0.038

AISI 430 Industrial 0.042 0.38 0.16 16.26 0.03 0.04 21 0.027

Number of metastable pits initiated during 24h at free potential in NaCl 1M + FeCl3 10-3

M.

annealed 10% 20% 35% 60%

AISI 304 116 297 - 64 40

AISI 430 371 515 309 - -

Even a ferritic grade exhibits a maximum in pit initiation.

Annealed

10%

35%

60%

Disks stamped from strained

samples to be used in

electrochemical characterization.

Tensile deformation of a ferritic grade (no deformation martensite)

Page 85: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

88

0

200

400

600

800

1000

0% 10% 20% 30% 70%

cold rolling reduction

num

ber

of

met

asta

ble

pits

.

N20

N0

Dislocations substructure

1 mm

Annealed

500 nm

20% colled-rolledModerate strain : Fine lamellar structure by

twinning, shear bands favoring dislocation pile-ups

200 nm

70% colled rolledLarge strain : Recovery

process illustrated by

dislocations cells and

pile-ups destruction.

dislocations cells

Page 86: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

89

n

inducing large

stress concentration:

nzFR

Rn

't

causing local electrochemical

heterogeneities:Dislocation Pile-ups

Mechano-electrochemical modeling

0

200

400

600

800

1000

0% 10% 20% 30% 70%

cold rolling reduction

num

ber

of

met

asta

ble

pits

.

N20

N0

S.F.E. Dislocation Pile-ups

dissociation

cross slip

To work on selected SS

grades with various S.F.E.

state annealed in the pits metastable ofNumber

20%at pits metastable ofNumber

0

2020

N

NR

Page 87: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

90

100

200

300

400

500

600

700

5 15 25 35 45 55S.F.E. (mJ.m-2)

R20 r

ati

o (

%)

LowNi

304-Cu

LowNi-Cu

304

C N S (ppm) Cr Mn Ni Cu

304 0.03 0.04 51 17.9 1.5 8.5 0.2

LowNi 0.07 0.24 9 16.4 7.3 1.6 0.2

304-Cu 0.04 0.04 45 18.2 1.4 8.7 3.0

LowNi-Cu 0.06 0.19 20 16.5 7.7 1.8 2.9

S.F.E. Pile-up

R20

SFE (mJ.m-2) = 25.7+2(%Ni)+410(%C)-0.9(%Cr)-77(%N)-13(%Si)-1.2(%Mn)+4(%Cu)

Pickering (1984) - Dulieu, Nutting (1964)

Alloying elements affect the extent of pit initiation frequency maximum via their influence on dislocation pile-ups stability.

Page 88: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

91

50

100

150

200

250

0% 10% 20% 30% 70%

cold rolling reduction

num

ber

of

stab

le p

its.

0

200

400

600

800

1000

0% 10% 20% 30% 70%

cold rolling reduction

nu

mb

er

of

meta

stab

le p

its

.

Initiation Propagation

Plastic deformation acts differently depending on the pitting stage

under consideration.

The unexpected maximum in pit initiation frequency does not depend

on the deformation process nor on the presence of induced-martensite.

A major influence of dislocation pile-ups via the mecano-electrochemical

effect is suspected. This explanation is supported by the role of alloying

elements in the extent of pit initiation frequency maximum.

The effect of cold rolling: Conclusions

Page 89: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

92

Number of pitting transients:

As rolled > 2B > BA

Effect of the surface finish condition on metastable pittingby G.Berthomé and alias, Cors Sci.

2B condition:

Cold rolled sheet + annealing in oxidizing atmosphere

+ pickling in acidic bath then rinsing + skin pass

BA condition:

Cold rolled sheet + annealing in H2

containing atmosphere + skin pass

The last stage of steel making process after cold rolling is the final annealing.

Two main conditions are of industrial interest for S.S. sheets:

This produces some passive films of different Cr content and of different pitting corrosion

resistances

The pitting potential is larger for BA than for 2B and the number of OCP pitting transients

is smallerNaCl 1M + FeCl3 2E-4M pH3.5 (after 24h in NaCl 1M pH6.6)

0

50

100

150

200

250

300

350

400

1 10 100

Log t (h)

Num

ber o

f tr

ansie

nts

2B

BA

Ecroui

Log t

2B

BAN

um

ber

of

pit

s

Potentiels de piqûre

NaCl 0.02 M, pH = 6.6

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

-1 0 1 2

Potentiel (V/ECS)

Co

ura

nt

(mA

cm

-2)

304 RD

304 RB

NaCl 0.02M pH 6.6

Pitting potential:BA > 2B

Page 90: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

93

Rapport oxydes de fer/ oxydes de chrome

1,66

1,36

1,17

0,89

30° 90°

Fe/Cr oxide ratio

(XPS measurements)2B

BA

The passive films fromed on 2B and BA differ by their chromium content and their semi conductive properties

In the two cases the Cr content is higher in the inner passive film than in the outer, and larger for BA than for 2B condition

XPS analysis

Page 91: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

94

2B : Nd = 8.74 . 1020 cm3

BA : Nd = 5.11 . 1020 cm3

)(...

21

0

2 fb

qrsc

VVNqC

ee

Mott-Schottky plots

0

2

4

6

8

10

-1 -0,8 -0,6 -0,4 -0,2 0 0,2

V (SCE)

1/C

2S

C(F

-2.c

m4.1

09)

NaCl 0.02M pH 6.6 f=100Hz

The passive film exhibits a p-type inner part and a n-type outer part. The electron states densities (acceptors in the inner part,

donnors in the outer part) are given by the Mott Schottky plots

Semiconductive behaviourbyJ.Amri and alias: in preparation

Thhe electron donnor concentration in the outer passive film (which is likely related to the concentration in point defects) is smaller for BA than for 2B,

Page 92: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

95

ND (cm-3

x 1020

)

NaCl, pH = 6.6, f = 100 Hz

5.11

8.74

11.25 11.3011.6

12.97

RD RB

0.02 M

0.2 M

2 M

2B BA

The density of donnor states increases with the electrolyte chloride content,

Suggesting that the corresponding point defects are due to Chloride ions adsorption or incorporation in the outer passive film

Following this idea, the 2B film is less corrosion resistant due to its larger affinity for chloride ions

In this case the rate determining step is likely the nucleation step, and

the pitting potential and the number of transients are fairly correlated to the Pit nucleation sensitivity

Going further (2)byJ.Amri and alias: in preparation

Page 93: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Material: Fe17Cr

Surface finishing :

BA (Bright annealed)2B (Pickled surface)

Test conditions: NaCl 0.5M pH 6.6 / 50°C

Screw/wing systemtightening = 0,2 N.m

Screv = 0.85 cm2

Effect of the Surface Condition on the resistance to CC

The active area 2B is ~ 5 times larger for 2B than for BA

Then jcrev(2B) = jcrev(2B)

Potential

V

WECE

zero impedance ammeter

I

(SCE)

joint

metal

Page 94: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

joint

Metal

Passive film

(A)

RI

Active area

Measured V

x

pH

6.6

pHc2.5

A/P transition point

Effect of the Surface Condition (2)

! Cathodic Reaction

Jcrev (composition) = f (V) A = f (pHc)

BA finish exhibits better crevice corrosion resistance then 2B.

The corrosion current is controlled by the the active area, depending on

the critical depassivation pH 0

20

40

60

80

100

120

BA 2B

Com

positio

n (

%)

Cr

Fe

Page 95: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

Taille optimale de précipités

Alliages 7000 (aéronautique) à durcissement structural : précipitation durcissante type MgZn2

Franchissement des obstacles (précipités) par les dislocations:

- Cisaillement

- Contournement

21

21

.. rfK vt

rfK v

1.. 2

1

t

0 1 2 3 4 5 6 7 8

R

σ

σ max

R 1

R

cisaillement contournement

Tps de revenu

R0.2T6

T76

~15%

•T6 : Revenu au pic = maximum de caractéristiques mécaniques

•T76 : Sur-revenu = compromis entre CM et sensibilité à la corrosion feuilletante

. Excellentes propriétés mécaniques (R0.2 : 430-700 Mpa ) MAIS sensibilité

à la corrosion feuilletante

Corrosion feuilletante des allaiges d’aluminium

Page 96: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

99

Solution : NaCl 1M, NaNO3 0.25M, AlCl3 0.033M

Intensité : 2.5mA/cm2

Aspect: T6 = feuillets, T76 = poudre

-0,690

-0,680

-0,670

-0,660

-0,650

-0,640

-0,630

-0,620

-0,610

8000 8050 8100 8150 8200 8250 8300 8350 8400 8450

t(s)

E(V

)

PAT76 PAT6

3 min

~50 mV

-0,700

-0,680

-0,660

-0,640

-0,620

0 10000 20000 30000 40000 t (s)

E(V)

PA766 T76

PA766 T6

Les transitoires en potentiel =

Corrosion feuilletante

Essai galvanostatique

0

200

400

600

800

1000

1200

0 5 10 t (h)

cu

mul d

es t

ran

sito

ires PA T6

PA T76

Seuil : 2mV

Cumul du nombre de transitoires supérieurs à un seuil de 2mV à droite

Page 97: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

100

Conclusion:The importance of being a metallurgist

Corrosion Science and

Technology

Material and

Surface Science

Electrochemistry

Chemistry Physics

Page 98: Bernard Baroux - bbaroux.free.frbbaroux.free.fr/enseignements/argeles/corpas_plastox.pdf · 2. 2.3 c q kT V cst Assuming local equilibria, the mass action law writes pH log(c) cst

101Délamination des peintures

peintureoxyde

Al

Zone cathodique

aérée alcaline

H2O

O2

Al 3+

Zone anodique désaéréeChargée en Cl - et acide

Cl-

AlCl4-

Al(OH)3

Délamination cathodique (Propagation à l ’interface peinture/oxyde)

Al 3+

H +peintureoxyde

Al

La propagation se fait

dans la direction opposée

à la zone aérée

Zone anodique désaérée

Chargée en Cl - et acide

Formation d’un

complexe chloruré soluble

Cl-

AlCl4 -

Al(OH)3

Déformation du film

par les produits de

corrosion

Délaminage

mécanique

Zone

cathodique

aérée alcaline

H2O

O2

Délamination anodique