28
Bibliography [1] FIELDVIEW Reference Manual, Software Release Version 10. Intelligent Light, 2004. [2] KINetics for Fluent, Version 1.0. Reaction Design, Inc., San Diego, CA, 2004. [3] P.J. O’Rourke A. A. Amsden and T. D. Butler. KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays. Technical Report LA-11560-MS, UC-96, Los Alamos National Laboratory, Los Alamos, New Mexico, May 1989. [4] A. Perera A. Antifora, M. Sala and L. Vigevano. NO x Emissions in Combustion Systems of Coal Fired Furnaces with a Reducing Environment: Predictions and Measurements. In Fourth International Conference on Technologies and Combus- tion for a Clean Environment, Lisbon, Portugal, 1997. [5] T. Ahmad, S. L. Plee, and J. P. Myers. Computation of Nitric Oxide and Soot Emissions from Turbulent Diffusion Flames. J. of Engineering for Gas Turbines and Power, 107:48–53, 1985. [6] B. J. Alder and T. E. Wainright. Studies in Molecular Dynamics. II: Behaviour of Small Number of Spheres. J. Chem. Phys., 33:1439, 1960. [7] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics II: Behaviour of a Small Number of Elastic Spheres. J. Chem. Phys., 33:1439, 1990. [8] A. A. Amsden. KIVA-3: A KIVA Program with Block-Structured Mesh for Com- plex Geometries. Technical Report LA-12503-MS, UC-361, Los Alamos National Laboratory, Los Alamos, New Mexico, March 1993. [9] T. B. Anderson and R. Jackson. A Fluid Mechanical Description of Fluidized Beds. I & EC Fundam., 6:527–534, 1967. [10] S. Armsfield and R. Street. The Fractional-Step Method for the Navier-Stokes Equations on Staggered Grids: Accuracy of Three Variations. Journal of Compu- tational Physics, 153:660–665, 1999. [11] R. H. Augnier. A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications. Journal of Fluids Engineering, 117:277–281, 1995. [12] F. Backmier, K. H. Eberius, and T. Just. Comb. Sci. Tech., 7:77, 1973. c Fluent Inc. January 11, 2005 Bib-1

Bibliography

  • Upload
    amrjoao

  • View
    587

  • Download
    0

Embed Size (px)

DESCRIPTION

Tutorial-bibliography

Citation preview

Page 1: Bibliography

Bibliography

[1] FIELDVIEW Reference Manual, Software Release Version 10. Intelligent Light,2004.

[2] KINetics for Fluent, Version 1.0. Reaction Design, Inc., San Diego, CA, 2004.

[3] P.J. O’Rourke A. A. Amsden and T. D. Butler. KIVA-2: A Computer Program forChemically Reactive Flows with Sprays. Technical Report LA-11560-MS, UC-96,Los Alamos National Laboratory, Los Alamos, New Mexico, May 1989.

[4] A. Perera A. Antifora, M. Sala and L. Vigevano. NOx Emissions in CombustionSystems of Coal Fired Furnaces with a Reducing Environment: Predictions andMeasurements. In Fourth International Conference on Technologies and Combus-tion for a Clean Environment, Lisbon, Portugal, 1997.

[5] T. Ahmad, S. L. Plee, and J. P. Myers. Computation of Nitric Oxide and SootEmissions from Turbulent Diffusion Flames. J. of Engineering for Gas Turbinesand Power, 107:48–53, 1985.

[6] B. J. Alder and T. E. Wainright. Studies in Molecular Dynamics. II: Behaviour ofSmall Number of Spheres. J. Chem. Phys., 33:1439, 1960.

[7] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics II: Behaviourof a Small Number of Elastic Spheres. J. Chem. Phys., 33:1439, 1990.

[8] A. A. Amsden. KIVA-3: A KIVA Program with Block-Structured Mesh for Com-plex Geometries. Technical Report LA-12503-MS, UC-361, Los Alamos NationalLaboratory, Los Alamos, New Mexico, March 1993.

[9] T. B. Anderson and R. Jackson. A Fluid Mechanical Description of Fluidized Beds.I & EC Fundam., 6:527–534, 1967.

[10] S. Armsfield and R. Street. The Fractional-Step Method for the Navier-StokesEquations on Staggered Grids: Accuracy of Three Variations. Journal of Compu-tational Physics, 153:660–665, 1999.

[11] R. H. Augnier. A Fast, Accurate Real Gas Equation of State for Fluid DynamicAnalysis Applications. Journal of Fluids Engineering, 117:277–281, 1995.

[12] F. Backmier, K. H. Eberius, and T. Just. Comb. Sci. Tech., 7:77, 1973.

c© Fluent Inc. January 11, 2005 Bib-1

Page 2: Bibliography

BIBLIOGRAPHY

[13] S. Badzioch and P. G. W. Hawksley. Kinetics of Thermal Decomposition of Pulver-ized Coal Particles. Ind. Eng. Chem. Process Design and Development, 9:521–530,1970.

[14] R. S. Barlow, G. J. Fiechtner, C. D. Carter, and J. Y. Chen. Experiments onthe Scalar Structure of Turbulent CO/H2/N2 Jet Flames. Combustion and Flame,120:549–569, 2000.

[15] F. J. Barnes, J. H. Bromly, T. J. Edwards, and R. Madngezewsky. NOx Emissionsfrom Radiant Gas Burners. Journal of the Institute of Energy, 155:184–188, 1988.

[16] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J Dongarra, V. Eijkhout,R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of LinearSystems: Building Blocks for Iterative Methods. SIAM, Philadelphia, Pennsylvania,2nd edition edition, 1994.

[17] T. J. Barth and D. Jespersen. The design and application of upwind schemeson unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th AerospaceSciences Meeting, Reno, Nevada, 1989.

[18] H. Barths, C. Antoni, and N. Peters. Three-Dimensional Simulation of PollutantFormation in a DI-Diesel Engine Using Multiple Interactive Flamelets. SAE Paper,accepted for publication 1998.

[19] H. Barths et al. Simulation of Pollutant Formation in a Gas Turbine CombustorUsing Unsteady Flamelets. In 27th Symp. (Int’l.) on Combustion. The CombustionInstitute, accepted for publication 1998.

[20] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press,Cambridge, England, 1967.

[21] D. L. Baulch, D. D. Drysdall, D. G. Horne, and A. C. Lloyd. Evaluated KineticData for High Temperature Reactions, volume 1,2,3. Butterworth, 1973.

[22] D. L. Baulch et al. Evaluated Kinetic Data for Combustion Modelling. J. Physicaland Chemical Reference Data, 21(3), 1992.

[23] M. M. Baum and P. J. Street. Predicting the Combustion Behavior of Coal Parti-cles. Combust. Sci. Tech., 3(5):231–243, 1971.

[24] L. L. Baxter. Turbulent Transport of Particles. PhD thesis, Brigham Young Uni-versity, Provo, Utah, 1989.

[25] L. L. Baxter and P. J. Smith. Turbulent Dispersion of Particles: The STP Model.Energy & Fuels, 7:852–859, 1993.

[26] W. Bechara, C. Bailly, P. Lafon, and S. Candel. Stochastic Approach to NoiseModeling for Free Turbulent Flows. AIAA Journal, 32:3, 1994.

Bib-2 c© Fluent Inc. January 11, 2005

Page 3: Bibliography

BIBLIOGRAPHY

[27] M. Behnia, S. Parneix, Y. Shabany, and P. A. Durbin. Numerical Study of Tur-bulent Heat Transfer in Confined and Unconfined Impinging Jets. InternationalJounal of Heat and Fluid Flow, 20:1–9, 1999.

[28] A. Bejan. Convection Heat Transfer. John Wiley and Sons, New York, 1984.

[29] R. W. Bilger and R. E. Beck. In 15th Symp. (Int’l.) on Combustion, page 541. TheCombustion Institute, 1975.

[30] R. W. Bilger, M. B. Esler, and S. H. Starner. On Reduced Mechanisms for Methane-Air Combustion. In Lecture Notes in Physics, volume 384, page 86. Springer-Verlag,1991.

[31] B. Binniger, M. Chan, G. Paczkko, and M. Herrmann. Numerical Simulation ofTurbulent Partially Premixed Hydrogen Flames with the Flamelet Model. Techni-cal report, Advanced Combustion Gmbh, Internal Report, 1998.

[32] J. Blauvens, B. Smets, and J. Peters. In 16th Symp. (Int’l.) on Combustion. TheCombustion Institute, 1977.

[33] R. M. Bowen. Theory of Mixtures. In A. C. Eringen, editor, Continuum Physics,pages 1–127. Academic Press, New York, 1976.

[34] C. T. Bowman. Chemistry of Gaseous Pollutant Formation and Destruction. InW. Bartok and A. F. Sarofim, editors, Fossil Fuel Combustion. J. Wiley and Sons,Canada, 1991.

[35] R. K. Boyd and J. H. Kent. Three-dimensional furnace computer modeling. In 21stSymp. (Int’l.) on Combustion, pages 265–274. The Combustion Institute, 1986.

[36] J. U. Brackbill, D. B. Kothe, and C. Zemach. A Continuum Method for ModelingSurface Tension. J. Comput. Phys., 100:335–354, 1992.

[37] A. Brandt. Multi-level Adaptive Computations in Fluid Dynamics. TechnicalReport AIAA-79-1455, AIAA, Williamsburg, VA, 1979.

[38] K. N. Bray and N. Peters. Laminar Flamelets in Turbulent Flames. In P. A. Libbyand F. A. Williams, editors, Turbulent Reacting Flows, pages 63–114. AcademicPress, 1994.

[39] K. S. Brentner and F. Farassat. An Analytical Comparison of the Acoustic Analogyand Kirchhoff Formulations for Moving Surfaces. AIAA Journal, 36(8), 1998.

[40] J. Brouwer, M. P. Heap, D. W. Pershing, and P. J. Smith. A Model for Predictionof Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, andCyanuric Acid with Mixing Limitations in the Presence of CO. In 26th Symposium(Int’l) on Combustion, The Combustion Institute, 1996.

c© Fluent Inc. January 11, 2005 Bib-3

Page 4: Bibliography

BIBLIOGRAPHY

[41] S. Brunauer. The Absorption of Gases and Vapors. Princeton University Press,Princeton, NJ, 1943.

[42] Trong T. Bui. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation ofTurbulent Flows. Technical Memorandum NASA/TM-1999-206570, 1999.

[43] M. Sommerfeld C. Mundo and C. Tropea. Droplet-Wall Collisions: ExperimentalStudies of the Deformation and Breakup Process. International Journal of Multi-phase Flow, 21(2):151–173, 1995.

[44] R. Cao and S. B. Pope. Numerical Integration of Stochastic Differential Equations:Weak Second-Order Mid-Point Scheme for Application in the Composition PDFMethod. Journal of Computational Physics, 185(1):194–212, 2003.

[45] N. F. Carnahan and K. E. Starling. Equations of State for Non-Attracting RigidSpheres. J. Chem. Phys., 51:635–636, 1969.

[46] M. G. Carvalho, T. Farias, and P. Fontes. Predicting Radiative Heat Transfer inAbsorbing, Emitting, and Scattering Media Using the Discrete Transfer Method.In W.A. Fiveland et al., editor, Fundamentals of Radiation Heat Transfer, volume160, pages 17–26. ASME HTD, 1991.

[47] J. R. Cash and A. H. Karp. A variable order Runge-Kutta method for initial valueproblems with rapidly varying right-hand sides. ACM Transactions on Mathemat-ical Software, 16:201–222, 1990.

[48] T. Cebeci and P. Bradshaw. Momentum Transfer in Boundary Layers. HemispherePublishing Corporation, New York, 1977.

[49] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases.Cambridge University Press, Cambridge, England, 3rd edition, 1990.

[50] S. Charpenay, M. A. Serio, and P. R. Solomon. In 24th Symp. (Int’l.) on Combus-tion, pages 1189–1197. The Combustion Institute, 1992.

[51] H. C. Chen and V. C. Patel. Near-Wall Turbulence Models for Complex FlowsIncluding Separation. AIAA Journal, 26(6):641–648, 1988.

[52] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method. AIAAJournal, 2:1662–1664, 1964.

[53] N. P. Cheremisinoff. Fluid Flow Pocket Handbook. Gulf Publishing Co., Houston,TX., 1984.

[54] D. Choudhury. Introduction to the Renormalization Group Method and TurbulenceModeling. Fluent Inc. Technical Memorandum TM-107, 1993.

Bib-4 c© Fluent Inc. January 11, 2005

Page 5: Bibliography

BIBLIOGRAPHY

[55] E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method. Numerical Heat Transfer, PartB, 23:269–288, 1993.

[56] Clift, Grace, and Weber. Bubbles, Drops, and Particles. Technical report, AcademicPress, 1978.

[57] P. J. Coelho and M. G. Carvalho. Modelling of Soot Formation and Oxidation inTurbulent Diffusion Flames. J. of Thermophysics and Heat Transfer, 9(4):644–652,1995.

[58] M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A Radiosity Solution forComplex Environments. Computer Graphics, 19(3):31–40, 1985.

[59] D. Cokljat, V. A. Ivanov, F. J. Sarasola, and S. A. Vasquez. Multiphase k-epsilonModels for Unstructured Meshes. In ASME 2000 Fluids Engineering Division Sum-mer Meeting, Boston, USA, 2000.

[60] A. Coppalle and P. Vervisch. The Total Emissivities of High-Temperature Flames.Combust. Flame, 49:101–108, 1983.

[61] S. M. Correa. A Review of NOx Formation Under Gas-Turbine Combustion Con-ditions. Combustion Science and Technology, 87:329–362, 1992.

[62] C. Crowe, M. Sommerfield, and Yutaka Tsuji. Multiphase Flows with Droplets andParticles. CRC Press, 1998.

[63] G. T. Csanady. Turbulent Diffusion of Heavy Particles in the Atmosphere. J.Atmos. Science, 20:201–208, 1963.

[64] N. Curle. The Influence of Solid Boundaries upon Aerodynamic Sound. Proceedingsof the Royal Society of London. Series A, Mathematical and Physical Sciences,231:505–514, 1955.

[65] E. H. Cuthill and J. McKee. Reducing Bandwidth of Sparse Symmetric Matrices.In Proc. ACM 24th National Conf., pages 157–172, New York, 1969.

[66] M. Slack D. Cokljat and S.A. Vasquez. Reynolds-Stress Model for Eulerian Multi-phase. In Y. Nagano K. Hanjalic and M.J. Tummers, editors, Proceedings of the 4thInternational Symposium on Turbulence Heat and Mass Transfer, pages 1047–1054.Begell House, Inc., 2003.

[67] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, and P. Bradshaw. Numeri-cal/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal,33(9):1561–1568, 1995.

[68] J. M. Dalla Valle. Micromeritics. Pitman, London, 1948.

c© Fluent Inc. January 11, 2005 Bib-5

Page 6: Bibliography

BIBLIOGRAPHY

[69] B. J. Daly and F. H. Harlow. Transport Equations in Turbulence. Phys. Fluids,13:2634–2649, 1970.

[70] J. F. Daunenhofer and J. R. Baron. Grid Adaption for the 2D Euler Equations.Technical Report AIAA-85-0484, American Institute of Aeronautics and Astronau-tics, 1985.

[71] J. E. Dec. A Conceptual Model of DI Diesel Combustion Based on Laser SheetImaging. SAE Technical Paper 970873, SAE, 1997.

[72] M. K. Denison and B. W. Webb. A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers. J. Heat Transfer, 115:1002–1012, 1993.

[73] J. Ding and D. Gidaspow. A Bubbling Fluidization Model Using Kinetic Theoryof Granular Flow. AIChE J., 36(4):523–538, 1990.

[74] G. Dixon-Lewis. Structure of Laminar Flames. In 23rd Symp. (Int’l.) on Combus-tion, pages 305–324. The Combustion Institute, 1990.

[75] N. Dombrowski and P. C. Hooper. The effect of ambient density or drop formationin sprays. Chemical Engineering Science, 17:291–305, 1962.

[76] N. Dombrowski and W. R. Johns. The aerodynamic Instability and Disintegrationof Viscous Liquid Sheets. Chemical Engineering Science, 18:203, 1963.

[77] C. Dopazo and E. E. O’Brien. Functional formulation of nonisothermal turbulentreactive flows. Phys. Fluids, 17:1968, 1975.

[78] A. M. Douaud and P. Eyzat. Four-Octane-Number Method for Predicting theAnti-Knock Behavior of Fuels in Engines. SAE Technical Paper, v87 780080, SAE,1978.

[79] M. C. Drake and R. J. Blint. Relative Importance of Nitrogen Oxide FormationMechanisms in Laminar Opposed-Flow Diffusion Flames. Combustion and Flame,83:185–203, 1991.

[80] M. C. Drake, S. M. Correa, R. W. Pitz, W. Shyy, and C. P. Fenimore. Superequi-librium and Thermal Nitric Oxide Formation in Turbulent Diffusion Flames. Com-bustion and Flame, 69:347–365, 1987.

[81] M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney,and N. M. Laurendeau. In 20th Symp. (Int’l.) on Combustion, page 327. TheCombustion Institute, 1984.

[82] D. A. Drew and R. T. Lahey. In Particulate Two-Phase Flow, pages 509–566.Butterworth-Heinemann, Boston, 1993.

Bib-6 c© Fluent Inc. January 11, 2005

Page 7: Bibliography

BIBLIOGRAPHY

[83] J.K. Dukowwicz and A.S. Dvinsky. Approximate Factorization as a High-OrderSplitting for the Implicit Incompressible Flow Equations. Journal of ComputationalPhysics, 102:336–347, 1992.

[84] P. A. Durbin. Separated Flow Computations with the k-ε-v2 Model. AIAA Journal,33(4):659–664, 1995.

[85] V.N. Vatsa E. Turkel. Choice of variables and preconditioning for time depen-dent problems. Technical Report AIAA-2003-3692, American Institute of Aero-nautics and Astronautics, 16th AIAA Computational Fluid Dynamics Conference,Orlando, Florida, June 2003.

[86] E.R.G. Eckert and R.M. Drake. Analysis of Heat and Mass Transfer. McGraw-HillCo., 1972.

[87] D. K. Edwards and R. Matavosian. Scaling Rules for Total Absorptivity and Emis-sivity of Gases. J. Heat Transfer, 106:684–689, 1984.

[88] J. K. Edwards, K. Jeremy, B. S. McLaury, S. Brenton, S. A. Shirazi, and A. Sia-mack. Supplementing a CFD Code with Erosion Prediction Capabilities. In Pro-ceedings of ASME FEDSM’98: ASME 1998 Fluids Engineering Division SummerMeeting, Washington D.C., June 1998.

[89] J. K. Edwards, B. S. McLaury, and S. A. Shirazi. Evaluation of Alternative PipeBend Fittings in Erosive Service. In Proceedings of ASME FEDSM’00: ASME2000 Fluids Engineering Division Summer Meeting, Boston, June 2000.

[90] S. E. Elgobashi and T. W. Abou-Arab. A Two-Equation Turbulence Model forTwo-Phase Flows. Phys. Fluids, 26(4):931–938, 1983.

[91] S. Ergun. Fluid Flow through Packed Columns. Chem. Eng. Prog., 48(2):89–94,1952.

[92] G. M. Faeth. Spray Atomization and Combustion. AIAA Journal, (86-0136), 1986.

[93] R. F. Fedors and R.F. Landell. An Empirical Method of Estimating the VoidFraction in Mixtures of Uniform Particles of Different Size. Powder Technology,23:225–231.

[94] C. P. Fenimore. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. In13th Symp. (Int’l.) on Combustion, page 373. The Combustion Institute, 1971.

[95] C. P. Fenimore. Destruction of NO by NH3 in Lean Burnt Gas. Combustion andFlame, 37:245, 1980.

[96] J. L. Ferzieger and M. Peric. Computational Methods for Fluid Dynamics. Springer-Verlag, Heidelberg, 1996.

c© Fluent Inc. January 11, 2005 Bib-7

Page 8: Bibliography

BIBLIOGRAPHY

[97] J. E. Ffowcs-Williams and D. L. Hawkings. Sound Generation by Turbulence andSurfaces in Arbitrary Motion. Proc. Roy. Soc. London, A264:321–342, 1969.

[98] M. A. Field. Rate of Combustion Of Size-Graded Fractions of Char from a LowRank Coal between 1200 K–2000 K. Combust. Flame, 13:237–252, 1969.

[99] I. Finnie. Erosion of Surfaces by Solid Particles. Wear, 3:87–103, 1960.

[100] W. A. Fiveland and A. S. Jamaluddin. Three-Dimensional Spectral Radiative HeatTransfer Solutions by the Discrete Ordinates Method. HTD Vol. 106, Heat TransferPhenomena in Radiation, Combustion and Fires, pp. 43–48, 1989.

[101] T. H. Fletcher and D. R. Hardesty. Compilation of Sandia coal devolatilizationdata: Milestone report. Sandia Report SAND92-8209, 1992.

[102] T. H. Fletcher and A. R. Kerstein. Chemical percolation model for devolatilization:3. Direct use of 13C NMR data to predict effects of coal type. Energy and Fuels,6:414, 1992.

[103] T. H. Fletcher, A. R. Kerstein, R. J. Pugmire, and D. M. Grant. Chemical percola-tion model for devolatilization: 2. Temperature and heating rate effects on productyields. Energy and Fuels, 4:54, 1990.

[104] W. L. Flower, R. K. Hanson, and C. H. Kruger. In 15th Symp. (Int’l.) on Com-bustion, page 823. The Combustion Institute, 1975.

[105] S. Fu, B. E. Launder, and M. A. Leschziner. Modeling Strongly Swirling Recircu-lating Jet Flow with Reynolds-Stress Transport Closures. In Sixth Symposium onTurbulent Shear Flows, Toulouse, France, 1987.

[106] J. Garside and M. R. Al-Dibouni. Velocity-Voidage Relationships for Fluidizationand Sedimentation. I & EC Process Des. Dev., 16:206–214, 1977.

[107] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. Dynamic Subgrid-ScaleEddy Viscosity Model. In Summer Workshop, Center for Turbulence Research,Stanford, CA, 1996.

[108] T. Gessner. Dynamic Mesh Adaption for Supersonic Combustion Waves Modeledwith Detailed Reaction Mechanisms. PhD thesis, University of Freiburg, Freiburg,Germany, 2001.

[109] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer. An algorithm for reducingthe bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal., 13:236–250,1976.

[110] M. M. Gibson and B. E. Launder. Ground Effects on Pressure Fluctuations in theAtmospheric Boundary Layer. J. Fluid Mech., 86:491–511, 1978.

Bib-8 c© Fluent Inc. January 11, 2005

Page 9: Bibliography

BIBLIOGRAPHY

[111] D. Gidaspow. Multiphase Flow and Fluidization. Academic Press, Boston, 1994.

[112] D. Gidaspow, R. Bezburuah, and J. Ding. Hydrodynamics of Circulating Flu-idized Beds, Kinetic Theory Approach. In Fluidization VII, Proceedings of the 7thEngineering Foundation Conference on Fluidization, pages 75–82, 1992.

[113] R.G. Gilbert, K. Luther, and J. Troe. Ber. Bunsenges. Phys. Chem., 87, 1983.

[114] M. Giles. Non-Reflecting Boundary Conditions for the Euler Equations. TechnicalReport TR 88-1-1988, Computational Fluid Dynamics Laboratory, MassachusettsInstitute of Technology, Cambridge, MA.

[115] P. Glarborg, J. E. Johnsson, and K. Dam-Johansen. Kinetics of HomogeneousNitrous Oxide Decomposition. Combustion and Flame, 99:523–532, 1994.

[116] M.E. Goldstein and B. Rosenbaum. Effect of Anisotropic Turbulence on Aerody-namic Noise. Journal of the Acoustical Society of America, 54:630–645, 1973.

[117] J. Gottgens, F. Mauss, and N. Peters. Analytic Approximations of Burning Ve-locities and Flame Thicknesses of Lean Hydrogen, Methane, Ethylene, Ethane,Acetylene and Propane Flames. In Twenty-Fourth Symposium (Int.) on Combus-tion, pages 129–135, Pittsburgh, 1992.

[118] I. R. Gran and B. F. Magnussen. A numerical study of a bluff-body stabilizeddiffusion flame. part 2. influence of combustion modeling and finite-rate chemistry.Combustion Science and Technology, 119:191, 1996.

[119] D. M. Grant, R. J. Pugmire, T. H. Fletcher, and A. R. Kerstein. Chemical per-colation model of coal devolatilization using percolation lattice statistics. Energyand Fuels, 3:175, 1989.

[120] P. M. Gresho, R. L. Lee, and R. L. Sani. On the Time-Dependent Solution of theIncompressible Navier-Stokes Equations in Two and Three Dimensions. In RecentAdvances in Numerical Methods in Fluids. Pineridge Press, Swansea, U.K., 1980.

[121] D. J. Gunn. Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds.Int. J. Heat Mass Transfer, 21:467–476, 1978.

[122] W. W. Hagerty and J. F. Shea. A Study of the Stability of Plane Fluid Sheets.Journal of Applied Mechanics, 22:509, 1955.

[123] A. Haider and O. Levenspiel. Drag Coefficient and Terminal Velocity of Sphericaland Nonspherical Particles. Powder Technology, 58:63–70, 1989.

[124] Z. Han, S. Perrish, P. V. Farrell, and R. D. Reitz. Modeling Atomization Processesof Pressure-Swirl Hollow-Cone Fuel Sprays. Atomization and Sprays, 7(6):663–684,Nov.-Dec. 1997.

c© Fluent Inc. January 11, 2005 Bib-9

Page 10: Bibliography

BIBLIOGRAPHY

[125] G. Hand, M. Missaghi, M. Pourkashanian, and A. Williams. Experimental Studiesand Computer Modelling of Nitrogen Oxides in a Cylindrical Furnace. In Pro-ceedings of the Ninth Members Conference, volume 2. IFRF Doc No K21/g/30,1989.

[126] R. K. Hanson and S. Salimian. Survey of Rate Constants in H/N/O Systems. InW. C. Gardiner, editor, Combustion Chemistry, page 361, 1984.

[127] H. O. Hardenburg and F. W. Hase. An Empirical Formula for Computing thePressure Rise Delay of a Fuel from its Cetane Number and from the RelevantParameters of Direct Injection Diesel Engines. SAE Technical Paper 790493, SAE,1979.

[128] R. A. W. M. Henkes and C. J. Hoogendoorn. Scaling of the Turbulent NaturalConvection Flow in a Heated Square Cavity. Trans. of the ASME, 116:400–408,May 1994.

[129] R. A. W. M. Henkes, F. F. van der Flugt, and C. J. Hoogendoorn. Natural Convec-tion Flow in a Square Cavity Calculated with Low-Reynolds-Number TurbulenceModels. Int. J. Heat Mass Transfer, 34:1543–1557, 1991.

[130] J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, NewYork, rev. edition, 1988.

[131] J.O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York, 1975.

[132] C. Hirsch. Numerical Computation of Internal and External Flows: ComputationalMethods for Inviscid and Viscous Flows, volume 2. John Wiley & Sons, New York,1984.

[133] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular Theory of Gases andLiquids. John Wiley & Sons, New York, 1954.

[134] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for the Dynamicsof Free Boundaries. J. Comput. Phys., 39:201–225, 1981.

[135] D. G. Holmes and S. D. Connell. Solution of the 2D Navier-Stokes Equations onUnstructured Adaptive Grids. Presented at the AIAA 9th Computational FluidDynamics Conference, June, 1989.

[136] T. J. Houser, M. Hull, R. Alway, and T. Biftu. Int. Journal of Chem. Kinet.,12:579, 1980.

[137] P. Huang, P. Bradshaw, and T. Coakley. Skin Friction and Velocity Profile Familyfor Compressible Turbulent Boundary Layers. AIAA Journal, 31(9):1600–1604,September 1993.

Bib-10 c© Fluent Inc. January 11, 2005

Page 11: Bibliography

BIBLIOGRAPHY

[138] B. R. Hutchinson and G. D. Raithby. A Multigrid Method Based on the AdditiveCorrection Strategy. Numerical Heat Transfer, 9:511–537, 1986.

[139] Hadjira Ibdir and Hamid Arastoopour. Modeling of multi-type particle flow usingkinetic approach. AICHE Journal, May 2005.

[140] R. I. Issa. Solution of Implicitly Discretized Fluid Flow Equations by OperatorSplitting. J. Comput. Phys., 62:40–65, 1986.

[141] R.I. Issa. Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting. Journal of Computational Physics, 62:40–65, 1985.

[142] G. W. Jackson and D. F. James. The Permeability of Fibrous Porous Media.Canadian Journal of Chem. Eng., 64(3):364–374, June 1986.

[143] S. Jain. Three-Dimensional Simulation of Turbulent Particle Dispersion. PhDthesis, University of Utah, Utah, 1995.

[144] A. Jameson. Solution of the Euler Equations for Two Dimensional Transonic Flowby a Multigrid Method. MAE Report 1613, Princeton University, June 1983.

[145] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solution of the Euler Equationsby Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. TechnicalReport AIAA-81-1259, AIAA 14th Fluid and Plasma Dynamics Conference, PaloAlto, California, June 1981.

[146] J Janicka, W. Kolbe, and W. Kollmann. Closure of the transport equation forthe pdf of turbulent scalar fields. Journal Non-Equilibrium Thermodynamics, 4:47,1978.

[147] J. Janicka and W. Kollmann. A Two-Variable Formulation for the Treatment ofChemical Reactions in Turbulent H2-Air Diffusion Flames. In 17th Symp. (Int’l.)on Combustion. The Combustion Institute, 1978.

[148] J. Janicka and W. Kollmann. A Numerical Study of Oscillating Flow Around aCircular Cylinder. Combustion and Flame, 44:319–336, 1982.

[149] C. Jayatilleke. The Influence of Prandtl Number and Surface Roughness on theResistance of the Laminar Sublayer to Momentum and Heat Transfer. Prog. HeatMass Transfer, 1:193–321, 1969.

[150] H.M. Glaz J.B. Bell, P. Colella. Second-Order Projection Method for the Incom-pressible Navier-Stokes Equations. Journal of Computational Physics, 85:257, 1989.

[151] H.M. Glaz J.B. Bell, P. Colella. An Analysis of the Fractional-Step Method. Journalof Computational Physics, 108:51–58, 1993.

c© Fluent Inc. January 11, 2005 Bib-11

Page 12: Bibliography

BIBLIOGRAPHY

[152] P. C. Johnson and R. Jackson. Frictional-Collisional Constitutive Relations forGranular Materials, with Application to Plane Shearing. J. Fluid Mech., 176:67–93, 1987.

[153] W. P. Jones and J. H. Whitelaw. Calculation Methods for Reacting TurbulentFlows: A Review. Combust. Flame, 48:1–26, 1982.

[154] T. Jongen. Simulation and Modeling of Turbulent Incompressible Flows. PhDthesis, EPF Lausanne, Lausanne, Switzerland, 1992.

[155] T. Just and S. Kelm. Die Industry, 38:76, 1986.

[156] A. Ronald K. Haugen, O. Kvernvold and R. Sandberg. Sand Erosion of Wear-resistant Materials: Erosion in Choke Valves. Wear, 186-187:179–188, 1995.

[157] H. Daiguji K. Ishazaki, T. Ikohagi. A High-Resolution Numerical Method for Tran-sonic Non-equilibrium Condensation Flows Through a Steam Turbine Cascade. InProceedings of the 6th International Symposium on Computational Fluid Dynamics,volume 1, pages 479–484, 1995.

[158] B. Kader. Temperature and Concentration Profiles in Fully Turbulent BoundaryLayers. Int. J. Heat Mass Transfer, 24(9):1541–1544, 1981.

[159] N. Kandamby, G. Lazopoulos, F. C. Lockwood, A. Perera, and L. Vigevano. Math-ematical Modeling of NOx Emission Reduction by the Use of Reburn Technology inUtility Boilers. In ASME Int. Joint Power Generation Conference and Exhibition,Houston, Texas, 1996.

[160] K. C. Karki and S. V. Patankar. Pressure-Based Calculation Procedure for ViscousFlows at All Speeds in Arbitrary Configurations. AIAA Journal, 27:1167–1174,1989.

[161] G. Karypis and V. Kumar. METIS - A Software Package for Partitioning Un-structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderingsof Sparse Matrices, Version 3.0. Manual, University of Minnesota and Army HPCResearch Center, 1997.

[162] W. M. Kays. Loss coefficients for abrupt changes in flow cross section with lowreynolds number flow in single and multiple tube systems. Transactions of theASME, 72:1067–1074, January 1950.

[163] W. M. Kays. Turbulent Prandtl Number - Where Are We? J. Heat Transfer,116:284–295, 1994.

[164] W. M. Kays and A. L. London. Compact Heat Exchangers. McGraw-Hill, NewYork, 1964.

Bib-12 c© Fluent Inc. January 11, 2005

Page 13: Bibliography

BIBLIOGRAPHY

[165] R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K.Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans,R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios,W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, S. F.Miller, P. Ho, and D. J. Young. CHEMKIN v. 4.0. Technical Report San Diego,CA, Reaction Design, Inc., 2004.

[166] R.J. Kee, F.M. Rupley, and J.A. Miller. SURFACE CHEMKIN: A Software Pack-age for the Analysis of Heterogeneous Chemical Kinetics at a Solid-Surface - Gas-Phase Interface. Technical Report SAND 96-8217, Sandia National Labs, 2000.

[167] I. M. Khan and G. Greeves. A Method for Calculating the Formation and Com-bustion of Soot in Diesel Engines. In N. H. Afgan and J. M. Beer, editors, HeatTransfer in Flames, chapter 25. Scripta, Washington DC, 1974.

[168] J.S. Kim and F.A. Williams. Extinction of Diffusion Flames with Non-Unity LewisNumber. Eng. Math, 31:101–118, 1997.

[169] S.-E. Kim. Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. Technical Report AIAA-2004-2548, American Institute ofAeronautics and Astronautics, 34th Fluid Dynamics Conference and Exhibit, June2004.

[170] S.-E. Kim and D. Choudhury. A Near-Wall Treatment Using Wall Functions Sensi-tized to Pressure Gradient. In ASME FED Vol. 217, Separated and Complex Flows.ASME, 1995.

[171] S.-E. Kim, D. Choudhury, and B. Patel. Computations of Complex Turbulent FlowsUsing the Commercial Code FLUENT. In Proceedings of the ICASE/LaRC/AFOSRSymposium on Modeling Complex Turbulent Flows, Hampton, Virginia, 1997.

[172] W.-W. Kim and S. Menon. Application of the localized dynamic subgrid-scalemodel to turbulent wall-bounded flows. Technical Report AIAA-97-0210, AmericanInstitute of Aeronautics and Astronautics, 35th Aerospace Sciences Meeting, Reno,NV, January 1997.

[173] H. Kobayashi, J. B. Howard, and A. F. Sarofim. Coal Devolatilization at HighTemperatures. In 16th Symp. (Int’l.) on Combustion. The Combustion Institute,1976.

[174] R. Kraichnan. Diffusion by a Random Velocity Field. Physics of Fluids, 11:21–31,1970.

[175] K. K. Y. Kuo. Principles of Combustion. John Wiley and Sons, New York, 1986.

[176] V. R. Kuznetsov and V. A. Sabelnikov. Turbulence and Combustion, 1990.

[177] H. Lamb. Hydrodynamics, Sixth Edition. Dover Publications, New York, 1945.

c© Fluent Inc. January 11, 2005 Bib-13

Page 14: Bibliography

BIBLIOGRAPHY

[178] M. E. Larsen and J. R. Howell. Least Squares Smoothing of Direct Exchange Areasin Zonal Analysis. J. Heat Transfer, 108:239–242, 1986.

[179] B. E. Launder. Second-Moment Closure and Its Use in Modeling Turbulent In-dustrial Flows. International Journal for Numerical Methods in Fluids, 9:963–985,1989.

[180] B. E. Launder. Second-Moment Closure: Present... and Future? Inter. J. HeatFluid Flow, 10(4):282–300, 1989.

[181] B. E. Launder, G. J. Reece, and W. Rodi. Progress in the Development of aReynolds-Stress Turbulence Closure. J. Fluid Mech., 68(3):537–566, April 1975.

[182] B. E. Launder and N. Shima. Second-Moment Closure for the Near-Wall Sublayer:Development and Application. AIAA Journal, 27(10):1319–1325, 1989.

[183] B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence.Academic Press, London, England, 1972.

[184] B. E. Launder and D. B. Spalding. The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering, 3:269–289, 1974.

[185] N. M. Laurendeau. Heterogeneous Kinetics of Coal Char Gasification and Com-bustion. Prog. Energy Comb. Sci., 4:221–270, 1978.

[186] J. L. Lebowitz. Exact Solution of Generalized Percus-Yevick Equation for a Mixtureof Hard Spheres. The Phy. Rev., 133(4A):A895–A899, 1964.

[187] A. H. Lefebvre. Atomization and Sprays. Hemisphere Publishing Corporation,1989.

[188] B. P. Leonard and S. Mokhtari. ULTRA-SHARP Nonoscillatory ConvectionSchemes for High-Speed Steady Multidimensional Flow. NASA TM 1-2568(ICOMP-90-12), NASA Lewis Research Center, 1990.

[189] B.P. Leonard. The ULTIMATE conservative difference scheme applied to unsteadyone-dimensional advection. Comp. Methods Appl. Mech. Eng., 88:17–74, 1991.

[190] K. M. Leung and R. P. Lindsted. Detailed Kinetic Modeling of C1-C3 AlkaneDiffusion Flames. Combustion and Flame, 102:129–160, 1995.

[191] J. M. Levy, L. K. Chen, A. F. Sarofim, and J. M. Beer. NO/Char Reactions atPulverized Coal Flame Conditions. In 18th Symp. (Int’l.) on Combustion. TheCombustion Institute, 1981.

[192] A. Li and G. Ahmadi. Dispersion and Deposition of Spherical Particles from PointSources in a Turbulent Channel Flow. Aerosol Science and Technology, 16:209–226,1992.

Bib-14 c© Fluent Inc. January 11, 2005

Page 15: Bibliography

BIBLIOGRAPHY

[193] X. Li and R. S. Tankin. On the Temporal Instability of a Two-Dimensional ViscousLiquid Sheet. Journal of Fluid Mechanics, 226:425, 1991.

[194] A. K. Lichtarowicz, R. K. Duggins, and E. Markland. Discharge Coefficients forIncompressible Non-Cavitating Flow Through Long Orifices. Journal of MechanicalEngineering Science, 7:2, 1965.

[195] F. S. Lien and M. A. Leschziner. Assessment of Turbulent Transport Models Includ-ing Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure.Computers and Fluids, 23(8):983–1004, 1994.

[196] M. J. Lighthill. On Sound Generated Aerodynamically. Proc. Roy. Soc. London,A211:564–587, 1952.

[197] G. M. Lilley. The radiated noise from isotropic turbulence revisited. NASA Con-tract Report 93-75, NASA Langley Research Center, Hampton, VA, 1993.

[198] D. K. Lilly. A Proposed Modification of the Germano Subgrid-Scale Closure Model.Physics of Fluids, 4:633–635, 1992.

[199] F. Lindemann. Trans. Faraday Soc., 7, 1922.

[200] A. N. Lipatnikov and J. Chomiak. Turbulent Flame Speed and Thickness:Phenomenology, Evaluation and Application in Multi-dimensional Simulations.Progress in Energy & Combustion Science, 28:1–74, January 2002.

[201] R. J. Litchford and S.M. Jeng. Efficient Statistical Transport Model for TurbulentParticle Dispersion in Sprays. AIAA Journal, 29:1443, 1991.

[202] A. B. Liu, D. Mather, and R. D. Reitz. Modeling the Effects of Drop Drag andBreakup on Fuel Sprays. SAE Technical Paper 930072, SAE, 1993.

[203] H. Liu and B. M. Gibbs. Modeling of NO and N2O Emissions from Biomass-FiredCirculating Fluidized Bed Combustors. Fuel, 81:271–280, 2002.

[204] F. C. Lockwood, S. M. A. Rizvi, and N. G. Shah. Comparative Predictive Expe-rience of Coal Firing. In Proceedings Inst. Mechanical Engns., volume 200, pages79–87.

[205] F. C. Lockwood and C. A. Romo-Millanes. Mathematical Modelling of Fuel - NOEmissions From PF Burners. J. Int. Energy, 65:144–152, September 1992.

[206] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy. Kinetic Theories forGranular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particlesin a General Flow Field. J. Fluid Mech., 140:223–256, 1984.

[207] J. Y. Luo, R. I. Issa, and A. D. Gosman. Prediction of Impeller-Induced Flows inMixing Vessels Using Multiple Frames of Reference. In IChemE Symposium Series,number 136, pages 549–556, 1994.

c© Fluent Inc. January 11, 2005 Bib-15

Page 16: Bibliography

BIBLIOGRAPHY

[208] A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley. OPPDIF: A FORTRANProgram for Computing Opposed-Flow Diffusion Flames. Sandia National Labo-ratories Report SAND96-8243, 1997.

[209] J. F. Lynn. Multigrid Solution of the Euler Equations with Local Preconditioning.PhD thesis, University of Michigan, 1995.

[210] R. K. Lyon. The NH3-NO-O2 Reaction. Int. Journal of Chem. Kinetics, 8:315–318,1976.

[211] C. H. Sieverding M. J. Moore. Two-Phase Steam Flow in Turbines and Separator.McGraw-Hill, 1976.

[212] L. J. Kirsch M. P. Halstead and C. P. Quinn. Autoignition of Hydrocarbon Fuels atHigh Temperatures and Pressures – Fitting of a Mathematical Model. Combustionand Flame, 30:45–60, 1977.

[213] D. Ma and G. Ahmadi. A Thermodynamical Formulation for Dispersed MultiphaseTurbulent Flows. Int. J. Multiphase Flow, 16:323–351, 1990.

[214] B. F. Magnussen. On the Structure of Turbulence and a Generalized Eddy Dissipa-tion Concept for Chemical Reaction in Turbulent Flow. Nineteeth AIAA Meeting,St. Louis, 1981.

[215] B. F. Magnussen and B. H. Hjertager. On mathematical models of turbulent com-bustion with special emphasis on soot formation and combustion. In 16th Symp.(Int’l.) on Combustion. The Combustion Institute, 1976.

[216] M. Manninen, V. Taivassalo, and S. Kallio. On the mixture model for multiphaseflow. VTT Publications 288, Technical Research Centre of Finland, 1996.

[217] B. J. McBride, S. Gordon, and M. A. Reno. Coefficients for Calculating Thermo-dynamic and Transport Properties of Individual Species. NASA TM-4513, October1993.

[218] H. A. McGee. Molecular Engineering. McGraw-Hill, New York, 1991.

[219] B. S. McLaury, J. Wang, S. A. Shirazi, J. R. Shadley, and E. F. Rybicki. SolidParticle Erosion in Long Radius Elbows and Straight Pipes. SPE Paper 38842,SPE Annual Technical Conference and Exhibition, II Production Operations andEngineering/General, San Antonio, Texas, October 1997.

[220] P. C. Melte and D. T. Pratt. Measurement of Atomic Oxygen and Nitrogen Ox-ides in Jet Stirred Combustion. In 15th Symposium (Int’l) on Combustion, TheCombustion Institute, pages 1061–1070, 1974.

[221] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for EngineeringApplications. AIAA Journal, 32(8):1598–1605, August 1994.

Bib-16 c© Fluent Inc. January 11, 2005

Page 17: Bibliography

BIBLIOGRAPHY

[222] F. R. Menter, M. Kuntz, and R. Langtry. Ten Years of Experience with the SSTTurbulence Model. In K. Hanjalic, Y. Nagano, and M. Tummers, editors, Turbu-lence, Heat and Mass Transfer 4, pages 625–632. Begell House Inc., 2003.

[223] H. J. Merk. The Macroscopic Equations for Simultaneous Heat and Mass Transferin Isotropic, Continuous and Closed Systems. Appl. Sci. Res., 8:73–99, 1958.

[224] R. Merz, J. Kruckels, J. Mayer, and H. Stetter. Computation of Three DimensionalViscous Transonic Turbine Stage Flow Including Tip Clearance Effects. ASME 95-GT-76, 1995.

[225] J. A. Miller and C. T. Bowman. Mechanism and Modeling of Nitrogen Chemistryin Combustion. Prog. in Energy and Comb. Sci., 15:287–338, 1989.

[226] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, andR. J. Kee. In 20th Symp. (Int’l.) on Combustion, page 673. The CombustionInstitute, 1985.

[227] J. A. Miller and G. A. Fisk. Chemical and Engineering News, 31, 1987.

[228] M. Missaghi. Mathematical Modelling of Chemical Sources in Turbulent Combus-tion. PhD thesis, The University of Leeds, England, 1987.

[229] M. Missaghi, M. Pourkashanian, A. Williams, and L. Yap. In Proceedings of Amer-ican Flame Days Conference, USA, 1990.

[230] M. F. Modest. The Weighted-Sum-of-Gray-Gases Model for Arbitrary SolutionMethods in Radiative Transfer. J. Heat Transfer, 113:650–656, 1991.

[231] M. F. Modest. Radiative Heat Transfer. Series in Mechanical Engineering. McGraw-Hill, 1993.

[232] J. P. Monat, R. K. Hanson, and C. H. Kruger. In 17th Symp. (Int’l.) on Combustion,page 543. The Combustion Institute, 1979.

[233] M. J. Moran and H. N. Shapiro. Fundamentals of Engineering Thermodynamics.John Wiley & Sons, Inc, 1988.

[234] S. A. Morsi and A. J. Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech., 55(2):193–208, September 26 1972.

[235] C. M. Muller, H. Breitbach, and N. Peters. Partially Premixed Turbulent FlamePropagation in Jet Flames. Technical report, 25th Symposium (Int) on Combus-tion, The Combustion Institute, 1994.

[236] J. Y. Murthy and S. R. Mathur. A Finite Volume Method For Radiative HeatTransfer Using Unstructured Meshes. AIAA-98-0860, January 1998.

c© Fluent Inc. January 11, 2005 Bib-17

Page 18: Bibliography

BIBLIOGRAPHY

[237] S. Muzaferija, M. Peric, P. Sames, and T. Schellin. A Two-Fluid Navier-StokesSolver to Simulate Water Entry. In Proc 22nd Symposium on Naval Hydrodynamics,pages 277–289, Washington, DC, 1998.

[238] J. D. Naber and R. D. Reitz. Modeling Engine Spray/Wall Impingement. Tech-nical Report 880107, Society of Automotive Engineers, General Motors ResearchLaboratories, Warren, MI, 1988.

[239] M. Namazian and J. B. Heywood. Flow in the Piston Cylinder Ring Crevices ofa Spark Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency, and Power.SAE Technical Paper 820088, SAE, 1982.

[240] I. Naruse, Y. Yamamoto, Y. Itoh, and K. Ohtake. Fundamental Study on N2OFormation/Decomposition Characteristics by Means of Low-Temperature Pulver-ized Coal Combustion. In 26th Symposium (Int’l) on Combustion, The CombustionInstitute, pages 3213–3221, 1996.

[241] P. F. Nelson, A. N. Buckley, and M. D. Kelly. Functional Forms of Nitrogen inCoals and the Release of Coal Nitrogen as NOx Precursors (HCN and NH3). In 24thSymposium (Int’l) on Combustion, The Combustion Institute, page 1259, 1992.

[242] F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square ofthe Velocity Gradient Tensor. Flow, Turbulence, and Combustion, 62(3):183–200,1999.

[243] L. Nokleberg and T. Sontvedt. Erosion of Oil and Gas Industry Choke ValvesUsing Computational Fluid Dynamics and Experiment. International Journal ofHeat and Fluid Flow, 19:636–643, 1998.

[244] P. A. Nooren, H. A. Wouters, T. W. J. Peeters, D. Roekaerts, U. Maas, andD. Schmidt. Monte carlo pdf modeling of a turbulent natural-gas diffusion flame.Combustion Theory and Modeling, 1:79–96, 1997.

[245] W. H. Nurick. Orifice Cavitation and Its Effects on Spray Mixing. Journal of FluidsEngineering, page 98, 1976.

[246] S. Ogawa, A. Umemura, and N. Oshima. On the Equation of Fully FluidizedGranular Materials. J. Appl. Math. Phys., 31:483, 1980.

[247] P. J. O’Rourke. Collective Drop Effects on Vaporizing Liquid Sprays. PhD thesis,Princeton University, Princeton, New Jersey, 1981.

[248] P.J. O’Rourke and A. A. Amsden. The TAB Method for Numerical Calculation ofSpray Droplet Breakup. SAE Technical Paper 872089, SAE, 1987.

[249] P.J. O’Rourke and A.A. Amsden. A Particle Numerical Model for Wall Film Dy-namics in Port-Fuel Injected Engines. SAE Paper 961961, 1996.

Bib-18 c© Fluent Inc. January 11, 2005

Page 19: Bibliography

BIBLIOGRAPHY

[250] P.J. O’Rourke and A.A. Amsden. A Spray/Wall Interaction Submodel for theKIVA-3 Wall Film Model. SAE Paper 2000-01-0271, 2000.

[251] M. Ostberg and K. Dam-Johansen. Empirical Modeling of the Selective Non-Catalytic Reduction of NO: Comparison with Large-Scale Experiments and De-tailed Kinetic Modeling. Chem. Engineering Science, 49(12):1897–1904, 1994.

[252] H. Ounis, G. Ahmadi, and J. B. McLaughlin. Brownian Diffusion of Submicrom-eter Particles in the Viscous Sublayer. Journal of Colloid and Interface Science,143(1):266–277, 1991.

[253] M. N. Ozisik. Radiative Transfer and Interactions with Conduction and Convection.Wiley, New York, 1973.

[254] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington,D.C., 1980.

[255] S. V. Patankar, C. H. Liu, and E. M. Sparrow. Fully Developed Flow and HeatTransfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area.ASME J. of Heat Transfer, 99:180–186, 1977.

[256] R. H. Perry, D. W. Gree, and J. O. Maloney. Perry’s Chemical Engineers’ Hand-book. McGraw-Hill, New York, 6th edition, 1984.

[257] N. Peters. Laminar Diffusion Flamelet Models in Non Premixed Combustion. Prog.Energy Combust. Sci., 10:319–339, 1984.

[258] N. Peters. Laminar Flamelet Concepts in Turbulent Combustion. In 21st Symp.(Int’l.) on Combustion, pages 1231–1250. The Combustion Institute, 1986.

[259] N. Peters and S. Donnerhack. In 18th Symp. (Int’l.) on Combustion, page 33. TheCombustion Institute, 1981.

[260] N. Peters and B. Rogg. Reduced Kinetic Mechanisms for Applications in Combus-tion Systems. In Lecture Notes in Physics, volume m15. Springer-Verlag, 1992.

[261] K. K. Pillai. The Influence of Coal Type on Devolatilization and Combustion inFluidized Beds. J. Inst. Energy, page 142, 1981.

[262] H. Pitsch, H. Barths, and N. Peters. Three-Dimensional Modeling of NOx and SootFormation in DI-Diesel Engines Using Detailed Chemistry Based on the InteractiveFlamelet Approach. SAE Paper 962057, 1996.

[263] H. Pitsch and N. Peters. A Consistent Flamelet Formulation for Non-PremixedCombustion Considering Differential Diffusion Effects. Combust. Flame, 114:26–40, 1998.

c© Fluent Inc. January 11, 2005 Bib-19

Page 20: Bibliography

BIBLIOGRAPHY

[264] T. J. Poinsot and S. K. Lele. Boundary Conditions for Direct Simulation of Com-pressible Viscous Flows. Journal of Computational Physics, 101:104–129, 1992.

[265] T. J. Poinsot and L. Selle. Actual Impedence of Nonreflecting Boundary Conditions:Implications for Computation of Resonators. AIAA Journal, 42(5):958–964, May2004.

[266] S. B. Pope. Pdf methods for turbulent reactive flows. Progress Energy CombustionScience, 11:119, 1985.

[267] S. B. Pope. Computationally efficient implementation of combustion chemistryusing in-situ adaptive tabulation. Combustion Theory and Modeling, 1:41–63, 1997.

[268] S.B. Pope. Isat-ck (version 3.0) user’s guide and reference manual, 2000.

[269] I. Proudman. The Generation of Noise by Isotropic Turbulence. Proc. Roy. Soc.,A214:119, 1952.

[270] G. D. Raithby and E. H. Chui. A Finite-Volume Method for Predicting a RadiantHeat Transfer in Enclosures with Participating Media. J. Heat Transfer, 112:415–423, 1990.

[271] W. E. Ranz. Some Experiments on Orifice Sprays. Canadian Journal of ChemicalEngineering, page 175, 1958.

[272] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops, Part I. Chem. Eng.Prog., 48(3):141–146, March 1952.

[273] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops, Part II. Chem. Eng.Prog., 48(4):173–180, April 1952.

[274] R. D. Rauch, J. T. Batira, and N. T. Y. Yang. Spatial Adaption Procedures onUnstructured Meshes for Accurate Unsteady Aerodynamic Flow Computations.Technical Report AIAA-91-1106, aiaa, 1991.

[275] R. D. Reitz. Mechanisms of Atomization Processes in High-Pressure VaporizingSprays. Atomization and Spray Technology, 3:309–337, 1987.

[276] R. D. Reitz and F. V. Bracco. Mechanism of Atomization of a Liquid Jet. Phys.Fluids., 26(10), 1982.

[277] R. D. Reitz and F. V. Bracco. Mechanisms of Breakup of Round Liquid Jets. TheEncyclopedia of Fluid Mechanics, ed. N. Cheremisnoff, 3:223–249, 1986.

[278] W. C. Reynolds. Thermodynamic Properties in SI: Graphs, Tables, and Com-putational Equations for 40 Substances. Department of Mechanical Engineering,Stanford University, 1979.

Bib-20 c© Fluent Inc. January 11, 2005

Page 21: Bibliography

BIBLIOGRAPHY

[279] W. C. Reynolds. Fundamentals of turbulence for turbulence modeling and simula-tion. Lecture Notes for Von Karman Institute Agard Report No. 755, 1987.

[280] C. M. Rhie and W. L. Chow. Numerical Study of the Turbulent Flow Past an Airfoilwith Trailing Edge Separation. AIAA Journal, 21(11):1525–1532, November 1983.

[281] H.S. Ribner. The Generation of Sound by turbulent jets. In Advances in AppliedMathematics. Academic, New York, 1964.

[282] J. R. Richardson and W. N. Zaki. Sedimentation and Fluidization: Part I. Trans.Inst. Chem. Eng., 32:35–53, 1954.

[283] C. E. Roberts and R. D. Matthews. Development and Application of an ImprovedRing Pack Model for Hydrocarbon Emissions Studies. SAE Technical Paper 961966,SAE, 1996.

[284] P. L. Roe. Characteristic based schemes for the Euler equations. Annual Reviewof Fluid Mechanics, 18:337–365, 1986.

[285] J. W. Rose and J. R. Cooper, editors. Technical Data on Fuels. Wiley, 7th edition,1977.

[286] H. Rouse and J. S. McNown. Cavitation and Pressure Distribution, Head Formsat Zero Angle of Yaw. Iowa Institute of Hydraulic Research, State Univ. of Iowa,Iowa City, 1948.

[287] F.C. Lockwood R.P. Lindsted and M.A. Selim. Rate Constants Based on Par-tial Equilibrium Assumptions. Technical report, Imperial College, London, UK,Internal Report No. TF/95/3, 1995.

[288] T. H. Pulliam S. A. Pandya, S. Venkateswaran. Implementation of dual-time proce-dures in overflow. Technical Report AIAA-2003-0072, American Institute of Aero-nautics and Astronautics, 2003.

[289] P. G. Saffman. The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech.,22:385–400, 1965.

[290] M. M. Salama and E. S. Venkatesh. Evaluation of api rp14e erosional velocitylimitations for offshore gas wells. In OTC Conference, pages 371–376. Houston,May 1983.

[291] S. Sarkar and L. Balakrishnan. Application of a Reynolds-Stress Turbulence Modelto the Compressible Shear Layer. ICASE Report 90-18, NASA CR 182002, 1990.

[292] S. Sarkar and M. Y. Hussaini. Computation of the sound generated by isotropic tur-bulence. NASA Contract Report 93-74, NASA Langley Research Center, Hampton,VA, 1993.

c© Fluent Inc. January 11, 2005 Bib-21

Page 22: Bibliography

BIBLIOGRAPHY

[293] A. Saxer. A Numerical Analysis of a 3D Inviscid Stator/Rotor Interaction Us-ing Non-Reflecting Boundary Conditions. PhD thesis, Massachusetts Institute ofTechnology, Cambridge, Massachusetts, March 1992.

[294] S. S. Sazhin. An Approximation for the Absorption Coefficient of Soot in a Radi-ating Gas. Manuscript, Fluent Europe, Ltd., 1994.

[295] D. G. Schaeffer. Instability in the Evolution Equations Describing IncompressibleGranular Flow. J. Diff. Eq., 66:19–50, 1987.

[296] R. W. Schefer, M. Namazian, and J. Kelly. In Combustion Research Facility News,volume 3, number 4. Sandia, 1991.

[297] L. Schiller and Z. Naumann. Z. Ver. Deutsch. Ing., 77:318, 1935.

[298] H. Schlichting. Boundary-Layer Theory. McGraw-Hill, New York, 1979.

[299] D. P. Schmidt and M. L. Corradini. Analytical Prediction of the Exit Flow ofCavitating Orifices. Atomization and Sprays, 7:6, 1997.

[300] D. P. Schmidt, M. L. Corradini, and C. J. Rutland. A Two-Dimensional, Non-Equilibrium Model of Flashing Nozzle Flow. In 3rd ASME/JSME Joint FluidsEngineering Conference, 1999.

[301] D. P. Schmidt, I. Nouar, P. K. Senecal, C. J. Rutland, J. K. Martin, and R. D.Reitz. Pressure-Swirl Atomization in the Near Field. SAE Paper 01-0496, SAE,1999.

[302] P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, and R. D. Reitz. ModelingHigh Speed Viscous Liquid Sheet Atomization. International Journal of MultiphaseFlow, in press.

[303] E. Sergent. Vers une methodologie de couplage entre la Simulation des GrandesEchelles et les modeles statistiques. PhD thesis, L’Ecole Centrale de Lyon, Lyon,France, 2002.

[304] A. A. Shabana. Computational Dynamics. John Wiley and Sons, New York, 1994.

[305] N. G. Shah. A New Method of Computation of Radiant Heat Transfer in Combus-tion Chambers. PhD thesis, Imperial College of Science and Technology, London,England, 1979.

[306] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Developmentand Validation. Computers Fluids, 24(3):227–238, 1995.

[307] M. Shur, P. R. Spalart, M. Strelets, and A. Travin. Detached-Eddy Simulation ofan Airfoil at High Angle of Attack. In 4th Int. Symposium on Eng. Turb. Modelingand Experiments, Corsica, France, May 1999.

Bib-22 c© Fluent Inc. January 11, 2005

Page 23: Bibliography

BIBLIOGRAPHY

[308] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Pub-lishing Corporation, Washington D.C., 1992.

[309] R. Siegel and C. M. Spuckler. Effect of Refractive Index and Diffuse or SpecularBoundaries on a Radiating Isothermal Layer. J. Heat Transfer, 116:787–790, 1994.

[310] C. Simonin and P. L. Viollet. Predictions of an Oxygen Droplet Pulverizationin a Compressible Subsonic Coflowing Hydrogen Flow. Numerical Methods forMultiphase Flows, FED91:65–82, 1990.

[311] A. K. Singhal, H. Y. Li, M. M. Athavale, and Y. Jiang. Mathematical Basisand Validation of the Full Cavitation Model. ASME FEDSM’01, New Orleans,Louisiana, 2001.

[312] Y. R. Sivathanu and G. M. Faeth. Generalized State Relationships for ScalarProperties in Non-Premixed Hydrocarbon/Air Flames. Combust. Flame, 82:211–230, 1990.

[313] J. Smagorinsky. General Circulation Experiments with the Primitive Equations. I.The Basic Experiment. Month. Wea. Rev., 91:99–164, 1963.

[314] R. Smirnov, S. Shi, and I. Celik. Random Flow Generation Technique for LargeEddy Simulations and Particle-Dynamics Modeling. Journal of Fluids Engineering,123:359–371, 2001.

[315] Smith and Van Winkle. Am. Inst. Chem. Eng. J., 4:266–268, 1958.

[316] I. W. Smith. Comb. Flame, 17:421, 1971.

[317] I. W. Smith. The Intrinsic Reactivity of Carbons to Oxygen. Fuel, 57:409–414,1978.

[318] I. W. Smith. The Combustion Rates of Coal Chars: A Review. In 19th Symp.(Int’l.) on Combustion, pages 1045–1065. The Combustion Institute, 1982.

[319] T. F. Smith, Z. F. Shen, and J. N. Friedman. Evaluation of Coefficients for theWeighted Sum of Gray Gases Model. J. Heat Transfer, 104:602–608, 1982.

[320] L. D. Smoot and P. J. Smith. NOx Pollutant Formation in a Turbulent Coal System.In Coal Combustion and Gasification, page 373, Plenum, Plenum, NY, 1985.

[321] D. O. Snyder, E. K. Koutsavdis, and J. S. R. Anttonen. Transonic store separationusing unstructured cfd with dynamic meshing. Technical Report AIAA-2003-3913,American Institute of Aeronautics and Astronautics, 33th AIAA Fluid DynamicsConference and Exhibit, 2003.

[322] G. G. De Soete. Overall Reaction Rates of NO and N2 Formation from Fuel Ni-trogen. In 15th Symp. (Int’l.) on Combustion, pages 1093–1102. The CombustionInstitute, 1975.

c© Fluent Inc. January 11, 2005 Bib-23

Page 24: Bibliography

BIBLIOGRAPHY

[323] M. S. Solum, R. J. Pugmire, and D. M. Grant. Energy and Fuels, 3:187, 1989.

[324] C. Soteriou, R. Andrews, and M. Smith. Direct Injection Diesel Sprays and theEffect of Cavitation and Hydraulic Flip on Atomization. SAE Paper 950080, SAE,1995.

[325] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamicflows. Technical Report AIAA-92-0439, American Institute of Aeronautics andAstronautics, 1992.

[326] D. B. Spalding. Mixing and chemical reaction in steady confined turbulent flames.In 13th Symp. (Int’l.) on Combustion. The Combustion Institute, 1970.

[327] M. R. Speigel. Mathematical Handbook of Formulas and Tables. Shaum’s OutlineSeries, McGraw-Hill Co, 1968.

[328] C. G. Speziale, S. Sarkar, and T. B. Gatski. Modelling the Pressure-Strain Corre-lation of Turbulence: An Invariant Dynamical Systems Approach. J. Fluid Mech.,227:245–272, 1991.

[329] H. B. Squire. Investigation of the Instability of a Moving Liquid Film. BritishJournal of Applied Physics, 4:167, 1953.

[330] D.W. Stanton and C.J. Rutland. Modeling Fuel Film Formation and Wall Interac-tion in Diesel Engines. SAE Paper 960628, 1996.

[331] D.W. Stanton and C.J. Rutland. Multi-Dimensional Modeling of Thin Liquid Filmsand Spray-Wall Interactions Resulting from Impinging Sprays. International Jour-nal of Heat and Mass Transfer, 41:3037–3054, 1998.

[332] R. C. Steele, P. C. Malte, D. G. Nichol, and J. C. Kramlich. NOx and N2O inLean-Premixed Jet-Stirred Flames. Combustion and Flame, 100:440–449, 1995.

[333] P.H. Steward, C.W. Larson, and D. Golden. Combustion and Flame, 75, 1989.

[334] K. Stueben. Introduction to Algebraic Multigrid. In C. W. Oosterlee U. Trottenbergand A. Schuller, editors, Multigrid, pages 413–532. Academic Press, New York,2001.

[335] S. Subramaniam and S. B. Pope. A Mixing Model for Turbulent Reactive FlowsBased on Euclidean Minimum Spanning Trees. Combust. Flame, 115:487–514, 1998.

[336] K. Sutton and P. A. Gnoffo. Multi-component Diffusion with Application to Com-putational Aerothermodynamics. AIAA Paper 98-2575, AIAA, 1998.

[337] C. R. Swaminathan and V. R. Voller. A General Enthalpy Method for ModelingSolidification Processes. Metallurgical Transactions B, 23B:651–664, October 1992.

Bib-24 c© Fluent Inc. January 11, 2005

Page 25: Bibliography

BIBLIOGRAPHY

[338] M. Syamlal. The Particle-Particle Drag Term in a Multiparticle Model ofFluidization. National Technical Information Service, Springfield, VA, 1987.DOE/MC/21353-2373, NTIS/DE87006500.

[339] M. Syamlal and T. J. O’Brien. Computer Simulation of Bubbles in a FluidizedBed. AIChE Symp. Series, 85:22–31, 1989.

[340] M. Syamlal, W. Rogers, and O’Brien T. J. MFIX Documentation: Volume 1,Theory Guide. National Technical Information Service, Springfield, VA, 1993.DOE/METC-9411004, NTIS/DE9400087.

[341] D. Tabacco, C. Innarella, and C. Bruno. Theoretical and Numerical Investigationon Flameless Combustion. Combustion Science and Technology, 2002.

[342] W. Tabakoff and T. Wakeman. Measured particle rebound characteristics usefulfor erosion prediction. ASME paper 82-GT-170, 1982.

[343] L. Talbot et al. Thermophoresis of Particles in a Heated Boundary Layer. J. FluidMech., 101(4):737–758, 1980.

[344] R. I. Tanner. Engineering Rheology. Clarendon Press, Oxford, rev. edition, 1988.

[345] G. I. Taylor. The Shape and Acceleration of a Drop in a High Speed Air Stream.Technical report, In the Scientific Papers of G. I. Taylor, ed., G. K. Batchelor,1963.

[346] P. B. Taylor and P. J. Foster. Some Gray Weighting Coefficients for CO2-H2O-SootMixtures. Int. J. Heat Transfer, 18:1331–1332, 1974.

[347] R. Taylor and R. Krishna. Multicomponent Mass Transfer. Wiley, New York, 1993.

[348] C. Temperton. Implementation of a Self-Sorting In-Place Prime Factor FFT Algo-rithm. Journal of Computational Physics, 58:283–299, 1985.

[349] P. A. Tesner, T. D. Snegiriova, and V. G. Knorre. Kinetics of Dispersed CarbonFormation. Combust. Flame, 17:253–260, 1971.

[350] K. W. Thompson. Time Dependent Boundary Conditions for Hyperbolic Systems.Journal of Computational Physics, 68:1–24, 1987.

[351] K. W. Thompson. Time Dependent Boundary Conditions for Hyperbolic SystemsII. Journal of Computational Physics, 89:439–461, 1990.

[352] B. Van Leer. Toward the Ultimate Concervative Difference Scheme. IV. A SecondOrder Sequel to Godunov’s Method. Jounal of Computational Physics, 32:101–136,1979.

[353] J. P. Vandoormaal and G. D. Raithby. Enhancements of the SIMPLE Method forPredicting Incompressible Fluid Flows. Numer. Heat Transfer, 7:147–163, 1984.

c© Fluent Inc. January 11, 2005 Bib-25

Page 26: Bibliography

BIBLIOGRAPHY

[354] S. A. Vasquez and V. A. Ivanov. A Phase Coupled Method for Solving MultiphaseProblems on Unstructured Meshes. In Proceedings of ASME FEDSM’00: ASME2000 Fluids Engineering Division Summer Meeting, Boston, June 2000.

[355] S. Venkateswaran, J. M. Weiss, and C. L. Merkle. Propulsion Related FlowfieldsUsing the Preconditioned Navier-Stokes Equations. Technical Report AIAA-92-3437, AIAA/ASME/SAE/ASEE 28th Joint Propulsion Conference, Nashville, TN,July 1992.

[356] J. R. Viegas, M. W. Rubesin, and C. C. Horstman. On the Use of Wall Functions asBoundary Conditions for Two-Dimensional Separated Compressible Flows. Techni-cal Report AIAA-85-0180, AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada,1985.

[357] V. R. Voller. Modeling Solidification Processes. Technical report, MathematicalModeling of Metals Processing Operations Conference, American Metallurgical So-ciety, Palm Desert, CA, 1987.

[358] V. R. Voller, A. D. Brent, and K. J. Reid. A Computational Modeling Frameworkfor the Analysis of Metallurgical Solidification Process and Phenomena. Tech-nical report, Conference for Solidification Processing, Ranmoor House, Sheffield,September 1987.

[359] V. R. Voller and C. Prakash. A Fixed-Grid Numerical Modeling Methodology forConvection-Diffusion Mushy Region Phase-Change Problems. Int. J. Heat MassTransfer, 30:1709–1720, 1987.

[360] V. R. Voller and C. R. Swaminathan. Generalized Source-Based Method for Solid-ification Phase Change. Numer. Heat Transfer B, 19(2):175–189, 1991.

[361] K. S. Vorres. User’s handbook for the Argonne premium coal sample bank. ArgonneNational Laboratory, supported by DOE contract W-31-109-ENG-38, September1989. Also K. S. Vorres, ACS Div. Fuel Chem. preprint, 32:4, 1987.

[362] Rose J. W. and Cooper J. R. Technical Data on Fuel. Scottish Academic Press,Edinburgh, 1977.

[363] H. Wagner. Soot Formation in Combustion. In 17th Symp. (Int’l.) on Combustion,pages 3–19. The Combustion Institute, 1979.

[364] L. P. Wang. On the Dispersion of Heavy Particles by Turbulent Motion. PhDthesis, Washington State University, 1990.

[365] J. Warnatz. NOx Formation in High Temperature Processes. University ofStuttgart, Germany.

Bib-26 c© Fluent Inc. January 11, 2005

Page 27: Bibliography

BIBLIOGRAPHY

[366] G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist. Grid convergence foradaptive methods. Technical Report AIAA-91-1592, American Institute of Aero-nautics and Astronautics, AIAA 10th Computational Fluid Dynamics Conference,Honolulu, Hawaii, June 1991.

[367] C. Weber. Zum Zerfall eines Flussigkeitsstrahles. ZAMM, 11:136–154, 1931.

[368] J. M. Weiss. Calculations of Reacting Flowfield Involving Stiff Chemical Kinetics.AIAA-99-3369, January 1999.

[369] J. M. Weiss, J. P. Maruszewski, and W. A. Smith. Implicit Solution of the Navier-Stokes Equations on Unstructured Meshes. Technical Report AIAA-97-2103, 13thAIAA CFD Conference, Snowmass, CO, July 1997.

[370] J. M. Weiss, J. P. Maruszewski, and W. A. Smith. Implicit Solution of Pre-conditioned Navier-Stokes Equations Using Algebraic Multigrid. AIAA Journal,37(1):29–36, 1999.

[371] J. M. Weiss and W. A. Smith. Preconditioning Applied to Variable and ConstantDensity Flows. AIAA Journal, 33(11):2050–2057, November 1995.

[372] C.-Y. Wen and Y. H. Yu. Mechanics of Fluidization. Chem. Eng. Prog. Symp.Series, 62:100–111, 1966.

[373] H. Werner and H. Wengle. Large-Eddy Simulation of Turbulent Flow Over andAround a Cube in a Plate Channel. In Eighth Symposium on Turbulent ShearFlows, Munich, Germany, 1991.

[374] C. Westbrook and F. Dryer. Simplified Reaction Mechanisms for Oxidation ofHydrocarbon Fuels in Flames. Comb. Sci. Tech, 27:31–43, 1981.

[375] C. Westbrook and F. Dryer. Chemical Kinetic Modelling of Hydrocarbon Combus-tion. Prog. Energy Comb. Sci., page 1, 1984.

[376] A. A. Westenberg. Comb. Sci. Tech., 4:59, 1971.

[377] F. White and G. Christoph. A Simple New Analysis of Compressible TurbulentSkin Friction Under Arbitrary Conditions. Technical Report AFFDL-TR-70-133,February 1971.

[378] D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada,California, 1998.

[379] F. A. Williams. Turbulent Mixing in Nonreactive and Reactive Flows. PlenumPress, New York, 1975.

c© Fluent Inc. January 11, 2005 Bib-27

Page 28: Bibliography

BIBLIOGRAPHY

[380] F. Winter, C. Wartha, G. Loffler, and H. Hofbauer. The NO and N2O FormationMechanism During Devolatilization and Char Combustion Under Fluidized BedConditions. In 26th Symposium (Int’l) on Combustion, The Combustion Institute,pages 3325–3334, 1996.

[381] M. Wolfstein. The Velocity and Temperature Distribution of One-DimensionalFlow with Turbulence Augmentation and Pressure Gradient. Int. J. Heat MassTransfer, 12:301–318, 1969.

[382] P.-K. Wu, L.-K. Tseng, and G. M. Faeth. Primary Breakup in Gas/Liquid MixingLayers for Turbulent Liquids. Atomization and Sprays, 2:295–317, 1995.

[383] V. Yakhot and S. A. Orszag. Renormalization Group Analysis of Turbulence: I.Basic Theory. Journal of Scientific Computing, 1(1):1–51, 1986.

[384] J. B. Young. The Spontaneous Condensation od Steam in Supersonic Nozzles.Physico Chemical Hydrodynamics, 3(2):57–82, July 1982.

[385] J. B. Young. An Equation of State for Steam for Turbomachinery and OtherFlow Calculations. Journal of Engineering for Gas Turbines and Power, 110:1–7,January 1988.

[386] J. B. Young. Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Noz-zles and Turbine Cascades. Journal of Turbomachinery, 114:569–579, July 1992.

[387] D. L. Youngs. Time-Dependent Multi-Material Flow with Large Fluid Distortion.In K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics.Academic Press, 1982.

[388] Q. Zhou and M. A. Leschziner. Technical report, 8th Turbulent Shear Flows Symp.,Munich, 1991.

[389] V. Zimont. Gas Premixed Combustion at High Turbulence. Turbulent Flame Clo-sure Model Combustion Model. Experimental Thermal and Fluid Science, 21:179–186, 2000.

[390] V. Zimont, W. Polifke, M. Bettelini, and W. Weisenstein. An Efficient Compu-tational Model for Premixed Turbulent Combustion at High Reynolds NumbersBased on a Turbulent Flame Speed Closure. J. of Gas Turbines Power, 120:526–532, 1998.

[391] V. L. Zimont, F. Biagioli, and K. J. Syed. Modelling Turbulent Premixed Combus-tion in the Intermediate Steady Propagation Regime. Progress in ComputationalFluid Dynamics, 1(1):14–28, 2001.

[392] V. L. Zimont and A. N. Lipatnikov. A Numerical Model of Premixed TurbulentCombustion of Gases. Chem. Phys. Report, 14(7):993–1025, 1995.

Bib-28 c© Fluent Inc. January 11, 2005