113
Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K. Knowles 1. Kinetic relations and the propagation of phase boundaries in solids. Arch. Ratio- nal Mech. Anal. 114 (1991), 119–154. 2. On the propagation of maximally dissipative phase boundaries in solids. Quart. Appl. Math. 50 (1992), 149–172. 3. Evolution of Phase Transitions: A Continuum Theory. Cambridge: Cambridge University Press 2006. Agemi, R. 1. Global existence of nonlinear elastic waves. Invent. Math. 142 (2000), 225–250. Airy, G.B. 1. Tides and waves. Encycl. Metrop. (1845), Arts. 192, 198, 308. 2. On a difficulty in the problem of sound. Philos. Magazine, Ser. 3, 34 (1849), 401–405. Alber, H.D. 1. Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), 249–276. 2. Global existence and large time behaviour of solutions for the equations of non- isentropic gas dynamics to initial values with unbounded support. Preprint No. 15, Sonderforschungsbereich 256, Bonn, 1988. Albeverio, S. and V.M. Shelkovich 1. On the delta-shock front problem. (To appear). Alekseyevskaya, T.V. 1. Study of the system of quasilinear equations for isotachophoresis. Adv. Appl. Math. 11 (1990), 63–107. Alinhac, S. 1. Blowup for Nonlinear Hyperbolic Equations. Boston: Birkh¨ auser, 1995.

Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography

Aavatsmark, I.1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327.Abeyaratne, R. and J.K. Knowles1. Kinetic relations and the propagation of phase boundaries in solids. Arch. Ratio-

nal Mech. Anal. 114 (1991), 119–154.2. On the propagation of maximally dissipative phase boundaries in solids. Quart.

Appl. Math. 50 (1992), 149–172.3. Evolution of Phase Transitions: A Continuum Theory. Cambridge: Cambridge

University Press 2006.Agemi, R.1. Global existence of nonlinear elastic waves. Invent. Math. 142 (2000), 225–250.Airy, G.B.1. Tides and waves. Encycl. Metrop. (1845), Arts. 192, 198, 308.2. On a difficulty in the problem of sound. Philos. Magazine, Ser. 3, 34 (1849),

401–405.Alber, H.D.1. Local existence of weak solutions to the quasilinear wave equation for large initial

values. Math. Z. 190 (1985), 249–276.2. Global existence and large time behaviour of solutions for the equations of non-

isentropic gas dynamics to initial values with unbounded support. Preprint No.15, Sonderforschungsbereich 256, Bonn, 1988.

Albeverio, S. and V.M. Shelkovich1. On the delta-shock front problem. (To appear).Alekseyevskaya, T.V.1. Study of the system of quasilinear equations for isotachophoresis. Adv. Appl.

Math. 11 (1990), 63–107.Alinhac, S.1. Blowup for Nonlinear Hyperbolic Equations. Boston: Birkhauser, 1995.

Page 2: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

598 Bibliography

Amadori, D.1. Initial-boundary value problems for nonlinear systems of conservation laws.

NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1–42.2. On the homogenization of conservation laws with resonant oscillatory source.

Asymptot. Anal. 46 (2006), 53–79.Amadori, D., Baiti, P., LeFloch, P.G. and B. Piccoli1. Nonclassical shocks and the Cauchy problem for nonconvex conservation laws.

J. Diff. Eqs. 151 (1999), 345–372.Amadori, D. and R. M. Colombo1. Continuous dependence for 2× 2 systems of conservation laws with boundary.

J. Diff. Eqs. 138 (1997), 229–266.2. Viscosity solutions and standard Riemann semigroup for conservation laws with

boundary. Rend. Semin. Mat. Univ. Padova 99 (1998), 219–245.Amadori, D. and A. Corli1. On a model of multiphase flow. SIAM J. Math. Anal. 40 (2008), 134–166.Amadori, D., Gosse L. and G. Guerra1. Global BV entropy solutions and uniqueness for hyperbolic systems of balance

laws. Arch. Rational Mech. Anal. 162 (2002), 327–366.2. Godunov type approximation for a general resonant balance law with large data.

J. Diff. Eqs. 198 (2004), 233–274.Amadori, D. and G. Guerra1. Global weak solutions for systems of balance laws. Applied Math. Letters 12

(1999), 123–127.2. Global BV solutions and relaxation limit for a system of conservation laws. Proc.

Roy. Soc. Edinburgh A131 (2001), 1–26.3. Uniqueness and continuous dependence for systems of balance laws with dissi-

pation. Nonlinear Anal. 49 (2002), 987–1014.Amadori, D. and D. Serre1. Asymptotic behavior of solutions to conservation laws with periodic forcing. J.

Hyperbolic Diff. Eqs. 3 (2006), 387–401.Amadori, D. and Wen Shen1. Global existence of large BV solutions in a model of granular flow. Comm. PDE.2. The slow erosion limit in a model of granular flow. Arch. Rational Mech. Anal.Ambrosio, L., Bouchut, F. and C. DeLellis1. Well-posedness for a class of hyperbolic systems of conservation laws in several

space dimensions. Comm. PDE. 29 (2004), 1635–1651.Ambrosio, L., Crippa, G., Figalli, A. and L.V. Spinolo1. Some new well-posedness results for continuity and transport equations, and ap-

plications to chromatography system. (To appear).Ambrosio, L. and C. De Lellis1. Existence of solutions for a class of hyperbolic systems of conservation laws in

several space dimensions. Int. Math. Res. Notices 41 (2003), 2205–2220.2. A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-

Jacobi equations. J. Hyperbolic Diff. Eqs. 1 (2004), 813–826.

Page 3: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 599

Ambrosio, L., Fusco, N. and D. Pallara1. Functions of Bounded Variation and Free Discontinuity Problems. Oxford:

Clarendon Press, 2000.Amorim, P., Ben-Artzi, M. and P.G. LeFloch1. Hyperbolic conservation laws on manifolds. Methods Appl. Anal. 12 (2005), 291–

323.Ancona, F. and A. Marson1. On the attainable set for scalar nonlinear conservation laws with boundary con-

trol. SIAM J. Control Optim. 36 (1998), 290–312.2. Scalar nonlinear conservation laws with integrable boundary data. Nonlinear

Anal. 35 (1999), 687–710.3. A wavefront tracking algorithm for N ×N nongenuinely nonlinear conservation

laws. J. Diff. Eqs. 177 (2001), 454–493.4. A note on the Riemann problem for general n× n conservation laws. J. Math.

Anal. Appl. 260 (2001), 279–293.5. Basic estimates for a front tracking algorithm for general 2×2 conservation laws.

Math. Models Methods Appl. Sci. 12 (2002), 155–182.6. Well-posedness for general 2× 2 systems of conservation laws. Memoirs AMS

169 (2004), No. 801.7. Existence theory by front tracking for general nonlinear hyperbolic systems.

Arch. Rational Mech. Anal. 185 (2007), 287–340.8. A locally quadratic Glimm functional and sharp convergence rate of the Glimm

scheme for nonlinear hyperbolic systems. Arch. Rational Mech. Anal. (To ap-pear).

Andreianov, B.P., Benilan, P. and S.N. Kruzhkov1. L1-theory of scalar conservation law with continuous flux function. J. Funct.

Anal. 171 (2000), 15–33.Andrianov, N. and G. Warnecke1. On the solution to the Riemann problem for the compressible duct flow. SIAM

J. Appl. Math. 64 (2004), 878–901.2. The Riemann problem for the Baer-Nunziato two-phase flow model. J.

Comput. Phys. 195 (2004), 434–464.Antman, S.S.1. The Theory of Rods. Handbuch der Physik, Vol. VIa/2. Berlin: Springer, 1972.2. The equations for the large vibrations of strings. Amer. Math. Monthly 87 (1980),

359–370.3. Nonlinear Problems of Elasticity. (Second Edition). New York: Springer, 2004.Antman, S.S. and Jian-Guo Liu1. Basic themes and pretty problems of nonlinear solid mechanics. Milan J. Math.

75 (2007), 135–176.Antman, S.S. and Tai-Ping Liu1. Traveling waves in hyperelastic rods. Quart. Appl. Math. 36 (1978), 377–399.

Page 4: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

600 Bibliography

Antman, S.S. and R. Malek-Madani1. Traveling waves in nonlinearly viscoelastic media and shock structure in elastic

media. Quart. Appl. Math. 46 (1988), 77–93.Anzellotti, G.1. Pairings between measures and bounded functions and compensated compact-

ness. Ann. Mat. Pura Appl. 135 (1983), 293–318.Arun, K.R. and Phoolan Prasad1. 3-D kinematical conservation laws: evolution of a surface. Wave Motion 46

(2009), 293–311.Asakura, F.1. Asymptotic stability of solutions with a single strong shock wave for hyperbolic

systems of conservation laws. Japan J. Indust. Appl. Math. 11 (1994), 225–244.2. Large time stability of the Maxwell states. Methods Appl. Anal. 6 (1999), 477–

503.Audusse, E. and B. Perthame1. Uniqueness for scalar conservation laws with discontinuous flux via adapted en-

tropies. Proc. Royal Soc. Edinburgh 135A (2005), 253–265.Avelaneda, M. and Weinan E1. Statistical properties of shocks in Burgers turbulence. Comm. Math. Phys. 172

(1995), 13–38.Aw, A. and M. Rascle1. Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60

(2000), 916–938.Ayad, S. and A. Heibig1. Global interaction of fields in a system of conservation laws. Comm. PDE 23

(1998), 701–725.2. Partition of waves in a system of conservation laws. Acta Appl. Math. 66 (2001),

191–207.Azevedo, A.V. and D. Marchesin1. Multiple viscous solutions for systems of conservation laws. Trans. AMS 347

(1995), 3061–3077.Azevedo, A.V., Marchesin, D., Plohr, B.J. and K. Zumbrun1. Nonuniqueness of solutions of Riemann problems. ZAMP 47 (1996), 977–998.2. Bifurcation of nonclassical viscous shock profiles from the constant state. Comm.

Math. Phys. 202 (1999), 267–290.Bae, M.-J., Chen, Gui-Qiang and M. Feldman1. Regularity of solutions to regular shock reflection for potential flows. Invent.

Math. 175 (2009), 505–543.Backer, M. and K. Dressler1. A kinetic method for strictly nonlinear scalar conservation laws. ZAMP 42

(1991), 243–256.Bagnerini, P. and M. Rascle1. A multiclass homogenized hyperbolic model of traffic flow. SIAM J. Math. Anal.

35 (2003), 949–973.

Page 5: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 601

Baiti, P.1. Non-classical global solutions for a class of scalar conservation laws. Proc. Royal

Soc. Edinburgh 134A (2004), 225–240.Baiti, P. and A. Bressan1. The semigroup generated by a Temple class system with large data. Diff. Integral

Eqs. 10 (1997), 401–418.2. Lower semicontinuity of weighted path length BV . Geometrical Optics and Re-

lated Topics, pp. 31–58, ed. F. Colombini and N. Lerner. Basel: Birkhauser,1997.

Baiti, P., Bressan, A. and H.K. Jenssen1. Instability of traveling profiles for the Lax-Friedrichs scheme. Discrete Contin.

Dynam. Systems. 13 (2005), 877–899.Baiti, P. and H.K. Jenssen1. Well-posedness for a class of 2×2 conservation laws with L∞ data. J. Diff. Eqs.

140 (1997), 161–185.2. On the front tracking algorithm. J. Math. Anal. Appl. 217 (1998), 395–404.3. Blowup in L∞ for a class of genuinely nonlinear hyperbolic systems of conserva-

tion laws. Discrete Contin. Dynam. Systems 7 (2001), 837–853.Baiti, P., LeFloch, P.G. and B. Piccoli1. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic sys-

tems. J. Diff. Eqs. 172 (2001), 59–82.2. Existence theory of nonclassical entropy solutions: Scalar conservation laws.

ZAMP 55 (2004), 927–945.Bakhvarov, N.1. On the existence of regular solutions in the large for quasilinear hyperbolic sys-

tems. Zhur. Vychial. Mat. i Mathemat. Fiz. 10 (1970), 969–980.Ball, J.M.1. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ratio-

nal Mech. Anal. 63 (1977), 337–403.2. A version of the fundamental theorem for Young measures. Partial Differen-

tial Equations and Continuum Models of Phase Transitions, pp. 241–259, ed.M. Rascle, D. Serre and M. Slemrod. Lecture Notes in Physics No. 344. Berlin:Springer, 1989.

Ball, J.M., Currie, J.C. and P. J. Olver1. Null Lagrangians, weak continuity and variational problems of arbitrary order.

J. Funct. Anal. 41 (1981), 135–174.Ballmann, J. and R. Jeltsch (eds.)1. Nonlinear Hyperbolic Equations. Braunschweig: Vieweg 1989.Ballou, D.1. Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions.

Trans. AMS 152 (1970), 441–460.2. Weak solutions with a dense set of discontinuities. J. Diff. Eqs. 10 (1971), 270–

280.

Page 6: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

602 Bibliography

Bang, Seunghoon1. Interaction of three and four rarefaction waves of the presure-gradient system. J.

Diff. Eqs. 249 (2009), 453–481.Bank, M. and M. Ben-Artzi1. Scalar conservation laws on a half-line: a parabolic approach. J. Hyperbolic Diff.

Eqs. (To appear).Bardos, C., Leroux, A.-Y. and J.-C. Nedelec1. First order quasilinear equations with boundary conditions. Comm. PDE 4 (1979),

1017–1034.Barker, B., Humpherys, J., Rudd, K. and K. Zumbrun1. Stability of viscous shocks in isentropic gas dynamics. Comm. Math. Phys. 281

(2008), 231–249.Barker, L.M.1. A computer program for shock wave analysis. Sandia National Labs.

Albuquerque, 1963.Barnes, A.P., LeFloch, P.G., Schmidt, B.G. and J.M. Stewart1. The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes.

Class. Quant. Gravity. 21 (2004), 5043–5074.Baskar, S. and Phoolan Prasad1. Riemann problem for kinematical conservation laws and geometrical features of

nonlinear wavefronts. IMA J. Appl. Math. 69 (2004), 391–419.Bateman, H.1. Some recent researches on the motion of fluids. Monthly Weather Review 43

(1915), 163–170.Baudin, M., Coquel, F. and Quang Huy Tran1. A relaxation method via the Born-Infeld system. Math. Models Math. Appl. Sci.

19 (2009), 1203–1240.Bauman, P. and D. Phillips1. Large time behavior of solutions to a scalar conservation law in several space

dimensions. Trans. AMS 298 (1986), 401–419.Beale, T., Kato, T. and A. Majda1. Remarks on the breakdown of smooth solutions for the 3-d Euler equations.

Comm. Math. Phys. 94 (1984), 61–66.Becker, R.1. Stosswelle und Detonation. Zeit. f. Phys. 8 (1922), 321–362.Bedjaoui, N., Klingenberg, C. and P.G. LeFloch1. On the validity of Chapman-Enskog expansions for shock waves with small

strength. Port. Math. (N.S.) 61 (2004), 479–499.Bedjaoui, N. and P.G. LeFloch1. Diffusive-dispersive traveling waves and kinetic relations. I;II;III;IV;V. J. Diff.

Eqs. 178 (2002), 574–607; Proc. Royal Soc. Edinburgh 132A (2002), 545–565;Ann. Univ. Ferrara Sez. VII (N.S.) 47 (2001), 117–144; Chinese Ann. Math. 24B(2003), 17–34; Proc. Royal Soc. Edinburgh 134A (2004), 815–843.

Page 7: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 603

Benabdallah, A. and D. Serre1. Problemes aux limites pour des systemes hyperboliques nonlineaires de deux

equations a une dimension d’espace. C. R. Acad. Sci. Paris, Serie I, 305 (1987),677–680.

Ben-Artzi, M., Falcovitz, J. and P.G. LeFloch1. Hyperbolic conservation laws on the sphere. A geometry-compatible finite vol-

ume scheme. J. Comp. Phys. 228 (2009), 5650–5668.Ben-Artzi, M. and P.G. LeFloch1. Well-posedness theory for geometry-compatible hyperbolic conservation laws on

manifolds. Ann. I.H. Poincare-AN 24 (2007), 989–1008.Ben-Artzi, M. and Jiequan Li1. Hyperbolic balance laws: Riemann invariants and the generalized Riemann prob-

lem. Numer. Math. 106 (2007), 369–425.Ben-Dor, G.1. Shock Wave Reflection Phenomena. New York: Springer 1991.Benilan, Ph. and M.G. Crandall1. Regularizing effects of homogeneous evolution equations. Am. J. Math. Supple-

ment dedicated to P. Hartman (1981), 23–39.Benilan, Ph. and S. Kruzkov1. Conservation laws with continuous flux functions. NoDEA Nonlinear

Differential Equations Appl. 3 (1996), 395–419.Ben Moussa, Bachir and A. Szepessy1. Scalar conservation laws with boundary conditions and rough data measure solu-

tions. Methods Appl. Anal. 9 (2002), 579–598.Benzoni-Gavage, S.1. On a representation formula for B. Temple systems. SIAM J. Math. Anal. 27

(1996), 1503–1519.2. Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlin-

ear Anal. 31 (1998), 243–263.3. Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch.

Rational Mech. Anal. 150 (1999), 23–55.4. Nonuniqueness of phase transitions near the Maxwell line Proc. AMS 127 (1999),

1183–1190.5. Linear stability of propagating phase boundaries in capillary fluids. Phys. D 155

(2001), 235–273.6. Stability of semi-discrete shock profiles by means of an Evans function in infinite

dimensions. J. Dynam. Differential Eqs. 14 (2002), 613–674.Benzoni-Gavage, S. and R.M. Colombo1. An n-populations model for traffic flow. European J. Appl. Math. 14 (2003), 587–

612.Benzoni-Gavage, S., Colombo, R.M. and P. Gwiazda1. Measure valued solutions to conservation laws motivated by traffic modelling.

Proc. Royal Soc. Lond. 462A (2006), 1791–1803.

Page 8: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

604 Bibliography

Benzoni-Gavage, S. and H. Freistuhler1. Effects of surface tension on the stability of dynamical liquid-vapor interfaces.

Arch. Rational Mech. Anal. 174 (2004), 111–150.Benzoni-Gavage, S., Rousset, F., Serre, D. and K. Zumbrun1. Generic types and transitions in hyperbolic initial-boundary-value problems.

Proc. Royal Soc. Edinburgh 132A (2002), 1073–1104.Benzoni-Gavage, S. and D. Serre1. Compacite par compensation pour une classe de systemes hyperboliques de p lois

de conservation (p ≥ 3). Rev. Math. Iberoamericana 10 (1994), 557–579.2. Multi-dimensional Hyperbolic Partial Differential Equations. Oxford: Oxford

University Press 2007.3. Hyperbolic Problems. Berlin: Springer 2008.Benzoni-Gavage, S., Serre, D. and K. Zumbrun1. Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32

(2001), 929–962.2. Transition to instability of planar viscous shock fronts: the refined stability con-

dition. Z. Anal. Anwend. 27 (2008), 381–406.Bereux, F., Bonnetier, E. and P.G. LeFloch1. Gas dynamics equations. Two special cases. SIAM J. Math. Anal. 28 (1997), 499–

515.Bers, L.1. Existence and uniqueness of subsonic flows past a given profile. Comm. Pure

Appl. Math. 7 (1954), 441–504.Berthelin, F. and F. Bouchut1. Solution with finite energy to a BGK system relaxing to isentropic gas dynamics.

Ann. Fac. Sci. Toulouse Math. 9 (2000), 605–630.2. Weak Solutions for a hyperbolic system with unilateral constraint and mass loss.

Ann. Inst. H. Poincare ANL 20 (2003), 975–997.Berthelin, F., Degond, P., Delitala, M. and M. Rascle1. A model for the formation and evolution of traffic jams. Arch. Rational Mech.

Anal. 187 (2008), 185–220.Berthelin, F. and A. Vasseur1. From kinetic equations to multidimensional isentropic gas dynamics before

shocks. SIAM J. Math. Anal. 36 (2005), 1807–1835.Bertoin, J.1. The inviscid Burgers equation with Brownian initial velocity. Comm. Math. Phys.

193 (1998), 397–406.Bertozzi, A.L. and M. Shearer1. Existence of undercompressive traveling waves in thin film equations. SIAM J.

Math. Anal. 32 (2000), 194–213.Bethe, H.A.1. On the theory of shock waves for an arbitrary equation of state. Report No. 545

for the Office of Scientific Research and Development, Serial No. NDRC-B-237(May 4, 1942).

Page 9: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 605

Bethuel, F., Despres, B. and D. Smets1. Symmetrization of dissipative-dispersive traveling waves for systems of conser-

vation laws. Physica D 200 (2005), 105–123.Bianchini, S.1. On the shift differentiability of the flow generated by a hyperbolic system of

conservation laws. Discrete Contin. Dynam. Systems 6 (2000), 329–350.2. The semigroup generated by a Temple class system with non-convex flux func-

tion. Differential Integral Eqs. 13 (2000), 1529–1550.3. Stability of L∞ solutions for hyperbolic systems with coinciding shocks and rar-

efactions. SIAM J. Math. Anal. 33 (2001), 959–981.4. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst.

H. Poincare 18 (2001), 19–42.5. Interaction estimates and Glimm functional for general hyperbolic systems. Dis-

crete Contin. Dynam. Systems 9 (2003), 133–166.6. On the Riemann problem for non-conservative hyperbolic systems. Arch. Ratio-

nal Mech. Anal. 166 (2003), 1–26.7. BV solutions of the semidiscrete upwind scheme. Arch. Rational Mech. Anal. 167

(2003), 1–81.8. A note on singular limits to hyperbolic systems of conservation laws. Commun.

Pure Appl. Anal. 2 (2003), 51–64.9. Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math. 59

(2006), 688–753.Bianchini S. and A. Bressan1. BV solutions for a class of viscous hyperbolic systems. Indiana U. Math. J.

49(2000), 1673–1713.2. A case study in vanishing viscosity. Discrete Contin. Dynam. Systems 7 (2001),

449–476.3. On a Lyapunov functional relating shortening curves and viscous conservation

laws. Nonlinear Anal. 51 (2002), 649–662.4. A center manifold technique for tracing viscous waves. Comm. Pure Appl. Anal.

1 (2002), 161–190.5. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161

(2005), 223–342.Bianchini, S. and R.M. Colombo1. On the stability of the standard Riemann semigroup. Proc. AMS 130 (2002),

1961–1973.Bianchini, S., Hanouzet, B. and R. Natalini1. Asymptotic behavior of smooth solutions for partially dissipative hyperbolic sys-

tems with a convex entropy. Comm. Pure Appl. Math. 60 (2007), 1559–1622.Bianchini, S. and L.V. Spinolo1. The boundary Riemann solver coming from the real vanishing viscosity approxi-

mation. Arch. Rational Mech. Anal. 191 (2009), 1–96.Blaser, M. and T. Riviere1. A minimality property of entropic solutions to scalar conservation laws in 1 + 1

dimensions. (To appear).

Page 10: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

606 Bibliography

Bloom, F.1. Mathematical Problems of Classical Nonlinear Electromagnetic Theory. Harlow:

Longman, 1993.Boillat, G.1. La Propagation des Ondes. Paris: Gauthier-Villars, 1965.2. Chocs characteristiques. C. R. Acad. Sci. Paris, Serie I, 274 (1972), 1018–1021.3. Convexite et hyperbolicite en electrodynamique non lineaire. C.R. Acad. Sci.

Paris 290 A (1980), 259–261.4. Involutions des systemes conservatifs. C. R. Acad. Sci. Paris, Serie I, 307 (1988),

891–894.5. Non linear hyperbolic fields and waves. Lecture Notes in Math. No. 1640 (1996),

1–47. Berlin: Springer.Boillat, G. and T. Ruggeri1. Hyperbolic principal subsystems: entropy convexity and subcharacteristic condi-

tions. Arch. Rational Mech. Anal. 137 (1997), 305–320.Bolley, F., Brenier, Y. and G. Loeper1. Contractive metrics for scalar conservation laws. J. Hyperbolic Diff. Eqs. 2

(2005), 91–107.Bonnefille, M.1. Propagation des oscillations dans deux classes de systemes hyperboliques (2×2

et 3× 3). Comm. PDE 13 (1988), 905–925.Born, M. and L. Infeld1. Foundations of a new field theory. Proc. Royal Soc. London, 144A (1934), 425–

451.Botchorishvilli, R., Perthame, B. and A. Vasseur1. Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp.

72 (2003), 131–157.Bouchut, F. and F. James1. Duality solutions for pressureless gases, monotone scalar conservation laws, and

uniqueness. Comm. PDE 24 (1999), 2173–2190.Bouchut, F. and B. Perthame1. Kruzkov’s estimates for scalar conservation laws revisited. Trans. AMS, 350

(1998), 2847–2870.Bourdarias, C., Gisclon, M. and S. Junca1. Existence of weak entropy solutions for gas chromatography system with one

or two active species and non convex isotherms. Commun. Math. Sci. 5 (2007),67–84.

Brenier, Y.1. Resolution d’ equations d’ evolutions quasilineaires en dimension n d’ espace a l’

aide d’ equations lineaires en dimension n + 1. J. Diff. Eqs. 50 (1983), 375–390.2. Hydrodynamic structure of the augmented Born-Infeld equations. Arch. Rational

Mech. Anal. 172 (2004), 65–91.3. Solutions with concentration to the Riemann problem for the one-dimensional

Chaplygin gas equations. J. Math. Fluid Mech. 7 (2005), S326–S331.

Page 11: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 607

4. Non relativistic strings may be approximated by relativistic strings. MethodsAppl. Anal. 12 (2005), 153–167.

5. L2 formulation of multidimensional scalar conservation laws. Arch. RationalMech. Anal. 193 (2009), 1–19.

Brenier, Y. and L. Corrias1. A kinetic formulation for multi-branch entropy solutions of scalar conservation

laws. Ann. Inst. Henri Poincare 15 (1998), 169–190.Brenier Y. and E. Grenier1. Sticky particles and scalar conservation laws. SIAM J. Num. Anal. 35 (1998),

2317–2328.Brenier, Y. and Wen-An Yong1. A derivation of particle, string and membrance motions from the Born-Infeld

electromagnetism. J. Math. Phys. 46 (2005), 062305, 17 p.Brenner, P.1. The Cauchy problem for the symmetric hyperbolic systems in Lp . Math. Scand.

19 (1966), 27–37.Bressan, A.1. Contractive metrics for nonlinear hyperbolic systems. Indiana U. Math. J. 37

(1988), 409–421.2. Global solutions of systems of conservation laws by wave-front tracking. J. Math.

Anal. Appl. 170 (1992), 414–432.3. A contractive metric for systems of conservation laws with coinciding shock and

rarefaction curves. J. Diff. Eqs. 106 (1993), 332–366.4. The unique limit of the Glimm scheme. Arch. Rational Mech. Anal. 130 (1995),

205–230.5. A locally contractive metric for systems of conservation laws. Ann. Scuola

Norm. Sup. Pisa, Cl. Sci (4) 22 (1995), 109–135.6. The semigroup approach to systems of conservation laws. Math. Contemp. 10

(1996), 21–74.7. Hyperbolic systems of conservation laws. Rev. Mat. Complut. 12 (1999), 135–

200.8. Stability of entropy solutions to n× n conservation laws. AMS/IP Stud. Adv.

Math. 15 (2000), 1–32.9. Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Prob-

lem. Oxford: Oxford University Press, 2000.10. Hyperbolic systems of conservation laws in one space dimension. Proceedings

ICM 2002, Beijing, Vol I, pp. 159–178. Beijing: Higher Ed. Press, 2002.11. An ill-posed Cauchy problem for a hyperbolic system in two space variables.

Rend. Sem. Mat. Univ. Padova 110 (2003), 103–117.12. The front tracking method for systems of conservation laws. Handbook of Differ-

ential Equations. Evolutionary Equations. Vol. I pp. 87–168, ed. C.M. Dafermosand E. Feireisl. Amsterdam: Elsevier 2004.

13. Some remarks on multidimensional systems of conservation laws. Atti Acad.Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), 225–233.

Page 12: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

608 Bibliography

14. BV solutions to hyperbolic systems by vanishing viscosity. Springer LectureNotes in Math. 1911 (2007), 1–77.

Bressan, A., Baiti, P. and H.K. Jenssen1. Instability of finite difference schemes for hyperbolic conservation laws. Ann. of

Math. Stud. 163 (2007), 43–53.Bressan, A. and G.M. Coclite1. On the boundary control of systems of conservation laws. SIAM J. Control Optim.

41 (2002), 607–622.Bressan, A. and R. M. Colombo1. The semigroup generated by 2×2 conservation laws. Arch. Rational Mech. Anal.

133 (1995), 1–75.2. Unique solutions of 2× 2 conservation laws with large data. Indiana U. Math. J.

44 (1995), 677–725.3. Decay of positive waves in nonlinear systems of conservation laws. Ann. Scu.

Norm. Sup. Pisa. IV-26 (1998), 133–160.Bressan, A., Crasta, G. and B. Piccoli1. Well posedness of the Cauchy problem for n× n systems of conservation laws.

Memoirs AMS. 146 (2000), No. 694.Bressan, A. and C. Donadello1. On the formation of scalar viscous shocks. Int. J. Dyn. Syst. Diff. Eqs. 1 (2007),

1–11.2. On the convergence of viscous approximations after shock interactions. Discrete

Contin. Dyn. Syst. 23 (2009), 29–48.Bressan, A. and P. Goatin1. Oleinik type estimates and uniqueness for n× n conservation laws. J. Diff. Eqs.

156 (1999), 26–49.2. Stability of L∞ solutions of Temple Class systems. Diff. Integral Eqs. 13 (2000),

1503–1528.Bressan, A. and G. Guerra1. Shift-differentiability of the flow generated by a conservation law. Discrete Con-

tin. Dynam. Systems 3 (1997), 35–58.Bressan, A. and H.K. Jenssen1. On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chi-

nese Ann. Math., Ser. B, 21 (2000), 269–284.Bressan, A., Jenssen, H.K. and P. Baiti1. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006), 1604–

1638.Bressan, A. and P.G. LeFloch1. Uniqueness of weak solutions to hyperbolic systems of conservation laws. Arch.

Rational Mech. Anal. 140 (1997), 301–317.2. Structural stability and regularity of entropy solutions to hyperbolic systems of

conservation laws. Indiana U. Math. J. 48 (1999), 43–84.Bressan, A. and M. Lewicka1. A uniqueness condition for hyperbolic systems of conservation laws. Discrete

Contin. Dynam. Systems 6 (2000), 673–682.

Page 13: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 609

Bressan, A., Liu, Tai-Ping and Tong Yang1. L1 stability estimates for n×n conservation laws. Arch. Rational Mech. Anal. 149

(1999), 1–22.Bressan, A. and A. Marson1. A maximum principle for optimally controlled systems of conservation laws.

Rend. Sem. Mat. Univ. Padova 94 (1995), 79–94.2. A variational calculus for discontinuous solutions of systems of conservation

laws. Comm. PDE 20 (1995), 1491–1552.3. Error bounds for a deterministic version of the Glimm scheme. Arch.

Rational Mech. Anal. 142 (1998), 155–176.Bressan, A. and Wen Shen1. Uniqueness for discontinuous ODE and conservation laws. Nonlinear Anal. 34

(1998), 637–652.2. BV estimates for multicomponent chromatography with relaxation. Discrete

Contin. Dynam. Systems 6 (2000), 21–38.Bressan, A. and Tong Yang1. On the convergence rate of vanishing viscosity approximations. Comm. Pure

Appl. Math. 57 (2004), 1075–1109.2. A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36

(2004), 659–677.Brio, M. and J.K. Hunter1. Rotationally invariant hyperbolic waves. Comm. Pure Appl. Math. 43 (1990),

1037–1053.Burger, R., Frid, H. and K.H. Karlsen1. On the well-posedness of entropy solutions to conservation laws with a zero-flux

boundary condition. J. Math. Anal. Appl. 326 (2007), 108–120.Burger, R. and W.L. Wendland1. Sedimentation and suspension flows: Historical perspective and some recent de-

velopments. J. Engin. Math. 41 (2001), 101–116.Burgers, J.1. Application of a model system to illustrate some points of the statistical theory

of free turbulence. Neder. Akad. Wefensh. Proc. 43 (1940), 2–12.Burton, C.V.1. On plane and spherical sound-waves of finite amplitude. Philos. Magazine, Ser.

5, 35 (1893), 317–333.Cabannes, H.1. Theoretical Magnetofluiddynamics. New York: Academic Press, 1970.Caflisch, R.E. and B. Nicolaenko1. Shock profile solutions of the Boltzmann equation. Comm. Math. Phys. 86

(1982), 161–194.Caginalp, G.1. Nonlinear equations with coefficients of bounded variation in two space variables.

J. Diff. Eqs. 43 (1982), 134–155.

Page 14: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

610 Bibliography

Canic, S.1. On the influence of viscosity on Riemann solutions. J. Dyn. Diff. Eqs. 10 (1998),

109–149.2. Nonexistence of Riemann solutions for a quadratic model deriving from petro-

leum engineering. Nonl. Anal. Real World Appl. 3 (2002), 629–665.Canic, S. and B.L. Keyfitz1. Quasi-one-dimensional Riemann problems and their role in self-similar two-

dimensional problems. Arch. Rational Mech. Anal. 144 (1998), 233–258.2. Riemann problems for the two-dimensional unsteady transonic small disturbance

equation. SIAM J. Appl. Math. 58 (1998), 636–665.Canic, S., Keyfitz, B.L. and Eun Heui Kim1. Free boundary problems for the unsteady transonic small disturbance equation:

transonic regular reflection. Methods Appl. Anal. 7 (2000) 313–335.2. Mixed hyperbolic-elliptic systems in self-similar flows. Bol. Soc. Brasil Mat.

(N.S.) 32 (2001), 377–399.3. A free boundary problem for a quasi-linear degenerate elliptic equation: regular

reflection of weak shocks. Comm. Pure Appl. Math. 55 (2002), 71–92.4. Free boundary problems for nonlinear wave systems: Mach stems for interacting

shocks. SIAM J. Math. Anal. 37 (2006), 1947–1977.Canic, S., Keyfitz, B.L. and G.M. Lieberman1. A proof of existence of perturbed steady transonic shocks via a free boundary

problem. Comm. Pure Appl. Math. 53 (2000), 484–511.Canic, S. and G.R. Peters1. Nonexistence of Riemann solutions and Majda-Pego instability. J. Diff. Eqs. 172

(2001), 1–28.Canic, S. and B.J. Plohr1. Shock wave admissibility for quadratic conservation laws. J. Diff. Eqs. 118

(1995), 293–335.Carasso, C., Raviart, P.-A. and D. Serre (eds.)1. Nonlinear Hyperbolic Problems. Springer Lecture Notes in Mathematics No.

1270 (1987).Caravenna, L.1. An entropy-based Glimm-type functional. J. Hyperbolic Diff. Eqs. 5 (2008), 643–

662.Carrillo, J.A.1. Conservation laws with discontinuous flux functions and boundary conditions. J.

Evol. Equ. 3 (2003), 283–301.Carrillo, J.A., DiFrancesco, M. and C. Lattanzio1. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conserva-

tion laws. J. Diff. Eqs. 231 (2006), 425–458.Cauchy, A.-L.1. Recherches sur l’ equilibre et le mouvement interieur des corps solides ou fluides,

elastiques ou non elastiques. Bull. Soc. Philomathique (1823), 9–13.

Page 15: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 611

2. De la pression ou tension dans un corps solide. Exercises de Mathematiques 2(1827), 42–56.

3. Sur les relations qui existent dans l’ etat d’ equilibre d’ un corps solide oufluide, entre les pressions ou tensions et les forces acceleratrices. Exercises deMathematiques 2 (1827), 108–111.

4. Sur l’ equilibre et le mouvement interieur des corps consideres comme des massescontinues. Exercises de Mathematiques 4 (1829), 293–319.

Cercignani, C.1. The Boltzmann Equation and its Applications. New York: Springer 1988.Chae, Dongho and Hyungjin Huh1. Global existence for small initial data in the Born-Infeld equations. J. Math. Phys.

44 (2003). 6132–6139.Chae, Dongho and E. Tadmor1. On the finite time blow-up of the Euler-Poisson equations in R

n. Commun. Math.Sci. 6 (2008), 785–789.

Challis, J.1. On the velocity of sound. Philos. Magazine, Ser. 3, 32 (1848), 494–499.Chalons, C. and F. Coquel1. The Riemann problem for the multi-pressure Euler system. J. Hyperbolic Diff.

Eqs. 2 (2005), 745–782.Chang, Tung, Chen, Gui-Qiang, and Shuili Yang1. On the 2-D Riemann problem for the compressible Euler equations. I;II. Discrete

Contin. Dynam. Systems 1 (1995), 555–584; 6 (2000), 419–430.Chang, Tung and Ling Hsiao1. A Riemann problem for the system of conservation laws of aerodynamics without

convexity. Acta Math. Sinica 22 (1979), 719–732.2. Riemann problem and discontinuous initial value problem for typical quasilinear

hyperbolic system without convexity. Acta Math. Sinica 20 (1977), 229–231.3. The Riemann Problem and Interaction of Waves in Gas Dynamics. Harlow:

Longman, 1989.Chaplygin, S.A.1. On gas jets. Sci. Mem. Moscow U. Math. Phys. Sec. 21 (1902), 1–121.Chasseigne, E.1. Fundamental solutions and singular shocks in scalar conservation laws. Revista

Mat. Complutense 16 (2003), 443–463.Chemin, J.-Y.1. Dynamique des gaz a masse totale finie. Asymptotic Anal. 3 (1990), 215–220.2. Remarque sur l’apparition de singularites fortes dans les ecoulements compress-

ibles. Comm. Math. Phys. 133 (1990), 323–329.Chen, Gui-Qiang1. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III).

Acta Math. Scientia 6 (1986), 75–120.2. The compensated compactness method and the system of isentropic gas dynam-

ics. Berkeley: Math. Sci. Res. Inst. Preprint #00527–91, 1990.

Page 16: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

612 Bibliography

3. Propagation and cancellation of oscillations for hyperbolic systems of conserva-tion laws. Comm. Pure Appl. Math. 44 (1991), 121–139.

4. Hyperbolic systems of conservation laws with a symmetry. Comm. PDE 16(1991), 1461–1487.

5. The method of quasidecoupling for discontinuous solutions to conservation laws.Arch. Rational Mech. Anal. 121 (1992), 131–185.

6. Remarks on global solutions to the compressible Euler equations with sphericalsymmetry. Proc. Royal Soc. Edinburgh 127A (1997), 243–259.

7. Vacuum states and global stability of rarefaction waves for compressible flow.Methods Appl. Anal. 7 (2000), 337–361.

8. Compactness methods and nonlinear hyperbolic conservation laws.AMS/IP Stud. Adv. Math. 15 (2000), 33–75.

9. On the theory of divergence-measure fields and its applications. Bol. Soc. Bras.Mat. 32 (2001), 401–433.

10. Some recent methods for partial differential equations of divergence form. Bull.Braz. Math. Soc. (N.S.) 34 (2003), 107–144.

11. Euler equations and related hyperbolic conservation laws. Handbook of Differ-ential Equations: Evolutionary Equations, Vol. II, pp. 1–104, ed. C.M. Dafermosand E. Feireisl. Amsterdam: Elsevier 2005.

Chen, Gui-Qiang and Jun Chen1. Stability of rarefaction waves and vacuum states for the multidimensional Euler

equations. J. Hyperbolic Diff. Eqs. 4 (2007), 105–122.Chen, Gui-Qiang, Chen, Jun and M. Feldman1. Transonic shocks and free boundary problems for the full Euler equations in infi-

nite nozzles. J. Math. Pures Appl. 88 (2007), 191–218.Chen, Gui-Qiang, Chen, Jun and Kyungwoo Song1. Transonic nozzle flows and free boundary problems for the full Euler equations.

J. Diff. Eqs. 229 (2006), 92–120.Chen, Gui-Qiang, Chen, Shu-Xing, Wang, Dehua and Zejun Wang1. A multidimensional piston problem for the Euler equations for compressible flow.

Discrete Contin. Dyn. Syst. 13 (2005), 361–383.Chen, Gui-Qiang and C. Christoforou1. Solutions for a nonlocal conservation law with fading memory. Proc. AMS 135

(2007), 3905–3915.Chen, Gui-Qiang, Christoforou, C. and Yongqian Zhang1. Dependence of entropy solutions in the large for the Euler equations on nonlinear

flux functions. Indiana U. Math. J. 56 (2007), 2535–2567.2. Continuous dependence of entropy solutions to the Euler equations on the adia-

batic exponent and Mach number. Arch. Rational Mech. Anal. 189 (2008), 97–130.

Chen, Gui-Qiang and C.M. Dafermos1. The vanishing viscosity method in one-dimensional thermoelasticity. Trans. AMS

347 (1995), 531–541.

Page 17: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 613

Chen, Gui-Qiang, Dafermos, C.M., Slemrod, M. and Dehua Wang1. On two-dimensional sonic-subsonic flow. Commun. Math. Phys. 271 (2007),

635–647.Chen, Gui-Qiang, Du, Qiang and E. Tadmor1. Spectral viscosity approximations to multidimensional scalar conservation laws.

Math. Comp. 61 (1993), 629–643.Chen, Gui-Qiang, Even, N. and C. Klingenberg1. Hyperbolic conservation laws with discontinuous fluxes and hydrodynamic limit

for particle systems. J. Diff. Eqs. 245 (2008), 3095–3126.Chen, Gui-Qiang and Beixiang Fang1. Stability of transonic shock-fronts in three dimensional conical steady potential

flow past a perturbed cone. Discrete and Continuous Dyn. Syst. 23 (2009), 85–114.

Chen, Gui-Qiang and M. Feldman1. Multidimensional transonic shocks and free boundary problems for nonlinear

equations of mixed type. J. AMS 16 (2003), 461–494.2. Steady transonic shocks and free boundary problems in infinite cylinders for the

Euler equations. Comm. Pure Appl. Math. 57 (2004), 310–336.3. Free boundary problems and transonic shocks for the Euler equations in un-

bounded domains. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (3) 4 (2004), 827–869.4. Potential theory for shock reflection by a large-angle wedge. Proc. Natl. Acad.

Sci. USA 102 (2005), 15368–15372.5. Existence and stability of multi-dimensional transonic flows through an infinite

nozzle of arbitrary cross-section. Arch. Rational Mech. Anal. 184 (2007), 185–242.

6. Global solutions to shock reflection by large-angle wedges for potential flow.Ann. of Math. (To appear).

Chen, Gui-Qiang and H. Frid1. Asymptotic Stability and Decay of Solutions of Conservation Laws. Lecture

Notes, Northwestern U., 1996.2. Existence and asymptotic behavior of the measure-valued solutions for degener-

ate conservation laws. J. Diff. Eqs. 127 (1996), 197–224.3. Asymptotic stability of Riemann waves for conservation laws. ZAMP 48 (1997),

30–44.4. Large time behavior of entropy solutions of conservation laws. J. Diff. Eqs. 152

(1999), 308–357.5. Divergence measure fields and conservation laws. Arch. Rational Mech. Anal.

147 (1999), 89–118.6. Decay of entropy solutions of nonlinear conservation laws. Arch. Rational Mech.

Anal. 146 (1999), 95–127.7. Uniqueness and asymptotic stability of Riemann solutions for the compressible

Euler equations. Trans. AMS 353 (2001), 1103–1117.8. On the theory of divergence-measure fields and its applications. Bol. Soc. Brasil

Mat. (N.S.) 32 (2001), 1–33.

Page 18: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

614 Bibliography

9. Extended divergence-measure fields and the Euler equations of gas dynamics.Comm. Math. Phys. 236 (2003), 251–280.

Chen, Gui-Qiang, Frid, H. and Yachun Li1. Uniqueness and stability of Riemann solutions with large oscillations in gas dy-

namics. Comm. Math. Phys. 228 (2002), 201–217.Chen, Gui-Qiang and J. Glimm1. Global solutions to the compressible Euler equations with geometric structure.

Comm. Math. Phys. 180 (1996), 153–193.2. Global solutions to the cylindrically symmetric rotating motion of isentropic gas.

ZAMP 47 (1996), 353–372.Chen, Gui-Qiang, Junca, S. and M. Rascle1. Validity of nonlinear geometric optics for entropy solutions of multidimensional

scalar conservation laws. J. Diff. Eqs. 222 (2006), 439–475.Chen, Gui-Qiang and Pui-Tak Kan1. Hyperbolic conservation laws with umbilic degeneracy, I;II. Arch. Rational Mech.

Anal. 130 (1995), 231–276; 160 (2001), 325–354.Chen, Gui-Qiang and P.G. LeFloch1. Entropy flux-splitting for hyperbolic conservation laws. I. General framework.

Comm. Pure Appl. Math. 48 (1995), 691–729.2. Compressible Euler equations with general pressure law. Arch. Rational Mech.

Anal. 153 (2000), 221–259.3. Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal.

166 (2003), 81–98.Chen, Gui-Qiang, Levermore, C.D. and Tai-Ping Liu1. Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm.

Pure Appl. Math. 47 (1994), 787–830.Chen, Gui-Qiang, Li, Bang-He and Tian-Hong Li1. Entropy solutions in L∞ for the Euler equations in nonlinear elastodynamics and

related equations. Arch. Rational Mech. Anal. 170 (2003), 331–357.Chen, Gui-Qiang, Li, Dening and Dechun Tan1. Structure of Riemann solutions for two-dimensional scalar conservation laws.

J. Diff. Eqs. 127 (1996), 124–147.Chen, Gui-Qiang, and Tian-Hong Li1. Global entropy solutions in L∞ to the Euler equations and Euler-Poisson equa-

tions for isothermal fluids with spherical symmetry. Methods Appl. Anal. 10(2003), 215–243.

2. Well-posedness for two-dimensional steady supersonic Euler flows past a Lips-chitz wedge. J. Diff. Eqs. 244 (2008), 1521–1550.

Chen, Gui-Qiang, and Yachun Li1. Stability of Riemann solutions with large oscillation for the relativistic Euler

equations. J. Diff. Eqs. 202 (2004), 332–353.2. Relativistic Euler equations for isentropic fluids: Stability of Riemann solutions

with large oscillations. ZAMP 55 (2004), 903–926.

Page 19: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 615

Chen, Gui-Qiang and Hailiang Liu1. Formation of delta shocks and vacuum states in the vanishing pressure limit of

solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34(2003), 925–938.

2. Concentration and cavitation in the vanishing pressure limit of solutions to theEuler equations for nonisentropic fluids. Phys. D 189 (2004), 141–165.

Chen, Gui-Qiang and Tai-Ping Liu1. Zero relaxation and dissipation limits for hyperbolic conservation laws. Comm.

Pure Appl. Math. 46 (1993), 755–781.Chen, Gui-Qiang and Yun-Guang Lu1. The study on application way of the compensated compactness theory. Chinese

Sci. Bull. 34 (1989), 15–19.Chen, Gui-Qiang and M. Rascle1. Initial layers and uniqueness of weak entropy solutions to hyperbolic conserva-

tion laws. Arch. Rational Mech. Anal. 153 (2000), 205–220.Chen, Gui-Qiang, Slemrod, M. and Dehua Wang1. Vanishing viscosity method for transonic flow. Arch. Rational Mech. Anal. 189

(2008), 159–188.2. Isometric immersion and compensated compactness. Comm. Math. Phys. 294

(2010), 411–437.Chen, Gui-Qiang and M. Torres1. Divergence-measure fields, sets of finite perimeter and conservation laws. Arch.

Rational Mech. Anal. 175 (2005), 245–267.Chen, Gui-Qiang, Torres, M. and W.P. Ziemer1. Measure-theoretic analysis and nonlinear conservation laws. Pure Appl. Math. Q.

3 (2007), 841–879.2. Gauss-Green theorem for weakly differentiable vector fields, sets of finite perime-

ter, and balance laws. Comm. Pure Appl. Math. 62 (2009), 242–304.Chen, Gui-Qiang and D.H. Wagner1. Global entropy solutions to exothermically reacting compressible Euler equa-

tions. J. Diff. Eqs. 191 (2003), 277–322.Chen, Gui-Qiang and Dehua Wang1. Convergence of shock capturing schemes for the compressible Euler-Poisson

equations. Comm. Math. Phys. 179 (1996), 333–364.2. Shock capturing approximations to the compressible Euler equations with geo-

metric structure and related equations. ZAMP 49 (1998), 341–362.3. The Cauchy problem for the Euler equations for compressible fluids. Handbook

of Mathematical Fluid Dynamics, Vol. I, pp. 421–543, ed. S. Friedlander andD. Serre. Amsterdam: North Holland 2002.

4. Global solutions of nonlinear magnetohydrodynamics with large initial data. J.Diff. Eqs. 182 (2002), 344–376.

5. Existence and continuous dependence of large solutions for magnetohydrody-namic equations. ZAMP 54 (2003), 608–632.

Page 20: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

616 Bibliography

Chen, Gui-Qiang, Wang, Dehua and Xiaozhou Yang1. Evolution of discontinuity and triple shock structure for a system of two-

dimensional conservation laws. SIAM J. Math. Anal. 41 (2009), 1–25.Chen, Gui-Qiang and Ya-Guang Wang1. Existence and stability of compressible current-vortex sheets in three-dimensional

magnetohydrodynamics. Arch. Rational Mech. anal. 187 (2008), 369–408.Chen, Gui-Qiang and Hairong Yuan1. Uniqueness of transonic shock solutions in a duct for steady potential flow. J.

Diff. Eqs. 247 (2009), 564–573.Chen, Gui-Qiang, Zhang, Yongqian and Dianwen Zhu1. Existence and stability of supersonic Euler flows past Lipschitz wedges. Arch.

Rational Mech. Anal. 181 (2006), 261–310.2. Stability of compressible vortex sheets in steady supersonic Euler flows over

Lipschitz walls. SIAM J. Math. Anal. 38 (2006), 1660–1693.Chen, Jing1. Conservation laws for the relativistic p-system. Comm. PDE 20 (1995), 1605–

1646.Chen, Peter J.1. Growth and Decay of Waves in Solids. Handbuch der Physik, Vol. VIa/3. Berlin:

Springer 1973.Chen, Shuxing1. Construction of solutions to M-D Riemann problem for a 2×2 quasilinear hy-

perbolic system. Chin. Ann. of Math. 18B (1997), 345–358.2. Asymptotic behavior of supersonic flow past a convex combined wedge. Chinese

Ann. Math. 19B (1998), 255–264.3. Existence of stationary supersonic flow past a pointed wedge. Arch. Rational

Mech. Anal. 156 (2001), 141–181.4. A free boundary value problem of Euler system arising in supersonic flow past a

curved cone. Tohoku Math. J. 54 (2002), 105–120.5. A singular multi-dimensional piston problem in compressible flow. J. Diff. Eqs.

189 (2003), 292–317.6. A free boundary problem of elliptic equation arising in supersonic flow past a

conical body. ZAMP 54 (2003), 387–409.7. Stability of transonic shock fronts in two-dimensional Euler systems. Trans.

AMS 357 (2005), 287–308.8. Stability of a Mach configuration. Comm. Pure Appl. Math. 59 (2006), 1–35.9. Mach configuration in pseudo-stationary compressible flow. J. AMS 21 (2008),

63–100.10. Transonic shocks in 3-D compressible flow passing a duct with a general section

for Euler systems. Trans. AMS 360 (2008), 5265–5289.Chen, Shuxing and Beixiang Fang1. Stability of transonic shocks in supersonic flow past a wedge. J. Diff. Eqs. 233

(2007), 105–135.

Page 21: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 617

2. Stability of reflection and refraction of shocks on interface. J. Diff. Eqs. 244(2008), 1946–1984.

Chen, Shuxing, Geng, Zhenwen and Dening Li1. The existence and stsability of conic shock waves. J. Math. Anal. Appl. 277

(2003), 512–532.Chen, Shuxing and Dening Li1. Supersonic flow past a symmetrically curved cone. Indiana U. Math. J. 49 (2000),

1411–1435.2. Conical shock waves for an isentropic Euler system. Proc. Royal Soc. Edinburgh

135A (2005), 1109–1127.Chen, Shuxing, Min, Jianzhong and Yongqian Zhang1. Weak shock solution in supersonic flow past a wedge. Discrete Contin. Dyn. Syst.

23 (2009), 115–132.Chen, Shuxing, Wang, Zejun and Yongqian Zhang1. Global existence of shock front solutions to the axially symmetric piston problem

for compressible fluids. J. Hyperbolic Diff. Eqs. 1 (2004), 51–84.2. Global existence for shock front solution to axially piston problem in compress-

ible flow. ZAMP 59 (2008), 434–456.Chen, Shuxing, Xin, Zhouping and Huicheng Yin1. Global shock waves for the supersonic flow past a perturbed cone. Comm. Math.

Phys. 228 (2002), 47–84.Chen Shuxing and Hairong Yuan1. Transonic shocks in compressible flow passing a duct for three-dimensional Euler

systems. Arch. Rational Mech. Anal. 187 (2008), 523–556.Cheng, Bin and E. Tadmor1. Long time existence of smooth solutions for the rapidly rotating shallow-water

and Euler equations. SIAM J. Math. Anal. 39 (2008), 1668–1685.Cheng, Kuo Shung1. Asymptotic behavior of solutions of a conservation law without convexity condi-

tions. J. Diff. Eqs. 40 (1981), 343–376.2. Decay rate of periodic solutions for a conservation law. J. Diff. Eqs. 42 (1981),

390–399.3. A regularity theorem for a nonconvex scalar conservation law. J. Diff. Eqs. 61

(1986), 79–127.Chern, I-Liang and Tai-Ping Liu1. Convergence to diffusion waves of solutions for viscous conservation laws.

Comm. Math. Phys. 110 (1987), 153–175.Cheverry, C.1. The modulation equations of nonlinear geometric optics. Comm. PDE 21 (1996),

1119–1140.2. Justification de l’ optique geometrique non lineaire pour un systeme de lois de

conservations. Duke Math. J. 87 (1997), 213–263.3. Systeme de lois de conservations et stabilite BV . Memoires Soc. Math. France.

No. 75 (1998).

Page 22: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

618 Bibliography

4. Regularizing effects for multidimensional scalar conservation laws. Anal. Non-Lineaire 16 (2000), 413–472.

Choksi, R.1. The conservation law ∂yu + ∂x

√1−u2 = 0 and deformations of fibre reinforced

materials. SIAM J. Appl. Math. 56 (1996), 1539–1560.Choquet-Bruhat, V.1. Ondes asymptotiques et approchees pour systemes d’ equations aux

derivees paratielles nonlineaires. J. Math. Pures Appl. 48 (1969), 117–158.Chorin, A.J.1. Random choice solution of hyperbolic systems. J. Comp. Physics 22 (1976), 517–

533.Chorin, A.J. and J.E. Marsden1. A Mathematical Introduction to Fluid Mechanics. (Second Edition). New York:

Springer, 1990.Christodoulou, D.1. Global solutions for nonlinear hyperbolic equations for small data. Comm. Pure

Appl. Math. 39 (1986), 267–282.2. The Formation of Shocks in 3-Dimensional Fluids. Zurich: European Mathemat-

ical Society 2007.Christoffel, E.B.1. Untersuchungen uber die mit der Fortbestehen linearer partieller Differen-

tialgleichungen vertraglichen Unstetigkeiten. Ann. Mat. Pura Appl. 8 (1877),81–113.

Christoforou, C.C.1. Hyperbolic systems of balance laws via vanishing viscosity. J. Diff. Eqs. 221

(2006), 470–541.2. Uniqueness and sharp estimates on solutions to hyperbolic systems with dissipa-

tive source. Commun. Partial Differential Equations 31 (2006), 1825–1839.3. Systems of hyperbolic conservation laws with memory. J. Hyperbolic Diff. Eqs.

4 (2007), 435–478.Christoforou, C.C. and K. Trivisa1. Sharp decay estimates for hyperbolic balance laws. J. Diff. Eqs. 247 (2009), 401–

423.Chueh, K.N., Conley, C.C. and J.A. Smoller1. Positively invariant regions for systems of nonlinear diffusion equations. Indiana

U. Math. J. 26 (1977), 372–411.Ciarlet, P.G.1. Mathematical Elasticity. Amsterdam: North-Holland, 1988.Clausius, R.1. Uber einer veranderte Form des zweiten Hauptsatzes der mechanischen Warmeth-

eorie. Ann. Physik 93 (1854), 481–506.Cockburn, B., Coquel, F. and P.G. LeFloch1. Convergence of the finite volume method for multidimensional conservation

laws. SIAM J. Numer. Anal. 32 (1995), 687–705.

Page 23: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 619

Coclite, G.M., Garavello, M. and B. Piccoli1. Traffic flow on a road network. SIAM J. Math. Anal. 36 (2005), 1862–1886.Coclite, G.M. and K.H. Karlsen1. A singular limit problem for conservation laws related to the Camassa-Holm shal-

low water equation. Comm. PDE 31 (2006), 1253–1272.Coclite, G.M., Karlsen, K.H. and Y.-S. Kwon1. Initial-boundary value problems for conservation laws with source terms and the

Degasperis-Procesi equation. (To appear).Coclite, G.M. and N.H. Risebro1. Conservation laws with time dependent discontinuous coefficients. SIAM J. Math.

Anal. 36 (2005), 1293–1309.Cole, J.D.1. On a quasilinear parabolic equation occuring in aerodynamics. Quart. Appl.

Math. 9 (1951), 225–236.Coleman, B.D. and E.H. Dill1. Thermodynamic restrictions on the constitutive equations of electromagnetic the-

ory. ZAMP 22 (1971), 691–702.Coleman, B.D. and M.E. Gurtin1. Thermodynamics with internal state variables. J. Chem. Physics 47 (1967), 597–

613Coleman, B.D. and V.J. Mizel1. Existence of caloric equations of state in thermodynamics. J. Chem. Physics 40

(1964), 1116–1125.Coleman, B.D. and W. Noll1. The thermodynamics of elastic materials with heat conduction and viscosity.

Arch. Rational Mech. Anal. 13 (1963), 167–178.Collet, J.F. and M. Rascle1. Convergence of the relaxation approximation to a scalar nonlinear hyperbolic

equation arising in chromatography. ZAMP 47 (1996), 400–409.Colombo, R.M.1. Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63 (2002), 708–

721.Colombo, R.M. and A. Corli1. Continuous dependence in conservation laws with phase transitions. SIAM

J. Math. Anal. 31 (1999), 34–62.2. On 2× 2 conservation laws with large data. NoDEA, Nonl. Diff. Eqs. Appl. 10

(2003), 255–268.3. Stability of the Riemann semigroup with respect to the kinetic condition. Quart.

Appl. Math. 62 (2004), 541–551.4. On a class of hyperbolic balance laws. J. Hyperbolic Diff. Eqs. 1 (2004),

725–745.Colombo, R.M. and M. Garavello1. On the Cauchy problem for the p-system at a junction. SIAM J. Math. Anal. 39

(2008), 1456–1471.

Page 24: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

620 Bibliography

2. Phase transition model for traffic at a junction. (To appear).Colombo, R.M. and P. Goatin1. A well-posed conservation law with a variable unilateral constraint. J. Diff. Eqs.

234 (2007), 654–675.Colombo, R.M., Goatin, P. and F.S. Priuli1. Global wellposedness of traffic flow models with phase transitions. Nonlinear

Anal. 66 (2007), 2413–2426.Colombo, R.M. and G. Guerra1. Hyperbolic balance laws with a non local source. Comm. PDE 32 (2007), 1917–

1939.2. Hyperbolic balance laws with a dissipative non local source. Commun. Pure Appl.

Anal. 7 (2008), 1077–1090.Colombo, R.M. and C. Mauri1. Euler system for compressible fluids at a junction. J. Hyperbolic Diff. Eqs. 5

(2008), 547–568.Colombo, R.M. and N.H. Risebro1. Continuous dependence in the large for some equations of gas dynamics. Comm.

PDE 23 (1998), 1693–1718.Conley, C.C. and J.A. Smoller1. Viscosity matrices for two-dimensional nonlinear hyperbolic systems.

Comm. Pure Appl. Math. 23 (1970), 867–884.2. Shock waves as limits of progressive wave solutions of high order equations I;II.

Comm. Pure Appl. Math. 24 (1971), 459–471; 25 (1972), 131–146.3. Viscosity matrices for two-dimensional nonlinear hyperbolic systems, II. Amer.

J. Math. 94 (1972), 631–650.Conlon, J.G.1. Asymptotic behavior for a hyperbolic conservation law with periodic initial data.

Comm. Pure Appl. Math. 32 (1979), 99–112.2. A theorem in ordinary differential equations with application to hyperbolic con-

servation laws. Adv. in Math. 35 (1980) 1–18.Conlon, J.G. and Tai-Ping Liu1. Admissibility criteria for hyperbolic conservation laws. Indiana U. Math. J. 30

(1981), 641–652.Conway, E.D.1. The formation and decay of shocks of a conservation law in several dimensions.

Arch. Rational Mech. Anal. 64 (1977), 47–57.Conway, E.D. and J.A. Smoller1. Global solutions of the Cauchy problem for quasi-linear first order equations in

several space variables. Comm. Pure Appl. Math. 19 (1966), 95–105.Coquel, F. and P.G. LeFloch1. Convergence of finite difference schemes for conservation laws in several space

variables: a general theory. SIAM J. Num. Anal. 30 (1993), 675–700.

Page 25: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 621

Coquel, F. and B. Perthame1. Relaxation of energy and approximate Riemann solvers for general pressure laws

in fluid dynamics. SIAM J. Num. Anal. 35 (1998), 2223–2249.Corli, A.1. Asymptotic analysis of contact discontinuities. Ann. Mat. Pura Appl. 173 (1997),

163–202.2. Non-characteristic phase boundaries for general systems of conservation laws.

Ital. J. Pure Appl. Math. 6 (1999), 43–62.Corli, A. and Haitao Fan1. The Riemann problem for reversible reactive flows with metastability. SIAM J.

Appl. Math. 65 (2005), 426–457.Corli, A. and O. Gues1. Stratified solutions for systems of conservation laws. Trans. AMS 353 (2001),

2459–2486.Corli, A. and M. Sable-Tougeron1. Perturbations of bounded variation of a strong shock wave. J. Diff. Eqs. 138

(1997), 195–228.2. Stability of contact discontinuities under perturbations of bounded variation.

Rend. Sem. Mat. Univ. Padova 97 (1997), 35–60.3. Kinetic stabilization of a nonlinear sonic phase boundary. Arch. Rational Mech.

Anal. 152 (2000), 1–63.Correia, J., LeFloch, P.G. and Mai Duc Thanh1. Hyperbolic systems of conservation laws with Lipschitz continuous flux

functions: the Riemann problem. Bol. Soc. Brasil Mat. (N.S) 32 (2001),271–301.

Cosserat, E. and F.1. Theorie des Corps Deformables. Paris: Hermann, 1909.Costanzino, N., Jenssen, H.K., Lyng, G. and M. Williams1. Existence and stability of curved multidimensional detonation fronts. Indiana U.

Math. J. 56 (2007), 1405–1461.Coulombel, J.-F.1. Weak stability of nonuniformly stable multi-dimensional shocks. SIAM J. Math.

Anal. 34 (2002), 142–172.2. Weakly stable multidimensional shocks. Analyse Non Lineaire 21 (2004), 401–

443.Courant, R. and K.O. Friedrichs1. Supersonic Flow and Shock Waves. New York: Wiley-Interscience, 1948.Courant, R. and D. Hilbert1. Methods of Mathematical Physics Vol. II. New York:Wiley-Interscience, 1962.Crandall, M.G.1. The semigroup approach to first-order quasilinear equations in several space vari-

ables. Israel J. Math. 12 (1972), 108–132.

Page 26: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

622 Bibliography

Crandall, M.G. and T.M. Liggett1. Generation of semi-groups of nonlinear transformations of general Banach spa-

ces. Amer. J. Math. 93 (1971), 265–298.Crandall, M.G. and A. Majda1. The method of fractional steps for conservation laws. Math. Comput. 34 (1980),

285–314.Crasta G. and P.G. LeFloch1. Existence results for a class of nonconservative and nonstrictly hyperbolic sys-

tems. Commun. Pure Appl. Anal. 1 (2002), 513–530.Crasta G. and B. Piccoli1. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws.

Discrete Contin. Dynam. Systems 3 (1997), 477–502.Crippa, G., Otto, F. and M. Westdickenberg1. Regularizing effect of nonlinearity in multidimensional scalar conservation laws.

Proceedings of the Lectures on Transport Equations and Multi-D HyperbolicConservation Laws. Bologna, 2005.

Dacorogna, B.1. Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals.

Lecture Notes in Math. No. 922 (1982). Berlin: Springer.Dafermos, C.M.1. Asymptotic behavior of solutions of a hyperbolic conservation law. J. Diff. Eqs.

11 (1972), 416–424.2. Polygonal approximations of solutions of the initial value problem for a conser-

vation law. J. Math. Anal. Appl. 38 (1972), 33–41.3. The entropy rate admissibility criterion for solutions of hyperbolic conservation

laws. J. Diff. Eqs. 14 (1973), 202–212.4. Solution of the Riemann problem for a class of hyperbolic systems of conserva-

tion laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973), 1–9.5. Structure of solutions of the Riemann problem for hyperbolic systems of conser-

vation laws. Arch. Rational Mech. Anal. 53 (1974), 203–217.6. Quasilinear hyperbolic systems that result from conservation laws. Nonlinear

Waves, pp. 82–102, ed. S. Leibovich and A. R. Seebass. Ithaca: Cornell U. Press,1974.

7. Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Me-chanics: Heriot-Watt Symposium, Vol. I, pp. 1–58, ed. R.J. Knops. London: Pit-man, 1977.

8. Generalized characteristics and the structure of solutions of hyperbolic conser-vation laws. Indiana U. Math. J. 26 (1977), 1097–1119.

9. Stability of motions of thermoelastic fluids. J. Thermal Stresses 2 (1979), 127–134.

10. The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(1979), 167–179.

11. Hyperbolic systems of conservation laws. Systems of Nonlinear Partial Differ-ential Equations, pp. 25–70, ed. J.M. Ball. Dordrecht: D. Reidel 1983.

Page 27: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 623

12. Global smooth solutions to the initial boundary value problem for the equa-tions of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal.13 (1982), 397–408.

13. Regularity and large time behavior of solutions of a conservation law withoutconvexity. Proc. Royal Soc. Edinburgh 99A (1985), 201–239.

14. Quasilinear hyperbolic systems with involutions. Arch. Rational Mech. Anal. 94(1986), 373–389.

15. Development of singularities in the motion of materials with fading memory.Arch. Rational Mech. Anal. 91 (1986), 193–205.

16. Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18(1987), 409–421.

17. Trend to steady state in a conservation law with spatial inhomogeneity. Quart.Appl. Math. XLV (1987), 313–319.

18. Admissible wave fans in nonlinear hyperbolic systems. Arch. Rational Mech.Anal. 106 (1989), 243–260.

19. Generalized characteristics in hyperbolic systems of conservation laws. Arch.Rational Mech. Anal. 107 (1989), 127–155.

20. Equivalence of referential and spatial field equations in continuum physics.Notes Num. Fluid Mech. 43 (1993), 179–183.

21. Large time behavior of solutions of hyperbolic systems of conservation lawswith periodic initial data. J. Diff. Eqs. 121 (1995), 183–202.

22. Stability for systems of conservation laws in several space dimensions. SIAMJ. Math. Anal. 26 (1995), 1403–1414.

23. A system of hyperbolic conservation laws with frictional damping. ZAMP, Spe-cial Issue, 46 (1995), S294-S307.

24. Entropy and the stability of classical solutions of hyperbolic systems of conser-vation laws. Lecture Notes in Math. No. 1640 (1996), 48–69. Berlin: Springer.

25. Hyperbolic systems of balance laws with weak dissipation. J. Hyperbolic Diff.Eqs. 3 (2006), 505–527.

26. Continuous solutions for balance laws. Ricerche di Matematica, 55 (2006), 79–91.

27. Hyperbolic conservation laws with involutions and contingent entropies. Proc.Symp. Appl. Math. AMS 65 (2007), 193–217.

28. Wave fans are special. Acta Math. Appl. Sinica, English Series 24 (2008), 369–374.

29. A variational approach to the Riemann problem for hyperbolic conservationlaws. Discrete and Continuous Dyn. Systems 23 (2009), 185–195.

30. Strong shocks in nonisentropic gas dynamics. Acta Math. Scientia 29 (2009),973–979.

Dafermos, C.M. and R.J. DiPerna1. The Riemann problem for certain classes of hyperbolic systems of conservation

laws. J. Diff. Eqs. 20 (1976), 90–114.Dafermos, C.M. and Xiao Geng1. Generalized characteristics in hyperbolic systems of conservation laws with spe-

cial coupling. Proc. Royal Soc. Edinburgh 116A (1990), 245–278.

Page 28: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

624 Bibliography

2. Generalized characteristics, uniqueness and regularity of solutions in a hy-perbolic system of conservation laws. Ann. Inst. Henri Poincare 8 (1991),231–269.

Dafermos, C.M. and W.J. Hrusa1. Energy methods for quasilinear hyperbolic initial-boundary value problems. Ap-

plications to elastodynamics. Arch. Rational Mech. Anal. 87 (1985), 267–292.

Dafermos, C.M. and Ling Hsiao1. Hyperbolic systems of balance laws with inhomogeneity and dissipation. Indiana

U. Math. J. 31 (1982), 471–491.2. Global smooth thermomechanical processes in one-dimensional nonlinear ther-

moviscoelasticity. J. Nonl. Anal. 6 (1982), 435–454.3. Development of singularities in solutions of the equations of nonlinear thermoe-

lasticity. Quart. Appl. Math. XLIV (1986), 463–474.Dafermos, C.M. and J.A. Nohel1. A nonlinear hyperbolic Volterra equation in viscoelasticity. American J. Math.,

Supplement dedicated to P. Hartman (1981), 87–116.Dafermos, C.M. and Ronghua Pan1. Global BV solutions for the p-system with frictional damping. SIAM J. Math.

Anal. 41 (2009), 1190–1205.Dalibard, A.-L.1. Kinetic formulation for heterogeneous scalar conservation laws. Ann. Inst.

H. Poincare: ANL 23 (2006), 475–498.2. Homogenization of non-linear scalar conservation laws. Arch. Rational Mech.

Anal. 192 (2009), 117–164.Dal Maso, G., LeFloch, P. and F. Murat1. Definition and weak stability of nonconservative products. J. Math. Pures Appl.

74 (1995), 483–548.Danilov, V.G. and D. Mitrovich1. Weak asymptotics of shock wave formation process. Nonlinear Anal. 61 (2005),

613–635.Danilov, V.G. and V.M. Shelkovich1. Dynamics of propagation and interaction of δ -shock waves in conservation laws

systems. J. Diff. Eqs. 211 (2005), 333–381.2. Delta-shock wave type solution of hyperbolic systems of conservation laws.

Quart. Appl. Math. LXIII (2005), 401–427.D’Apice, C., Manzo, R. and B. Piccoli1. A fluid dynamic model for telecommunication networks with sources and desti-

nations. SIAM J. Appl. Math. 68 (2008), 981–1003.Degiovanni, M., Marzocchi, A. and A. Musesti1. Cauchy fluxes associated with tensor fields having divergence measure. Arch.

Rational Mech. Anal. 147 (1999), 197–223.De Lellis, C.1. Blow-up of the BV norm in the multidimensional Keyfitz and Kranzer system.

Duke Math. J. 127 (2005), 313–339.

Page 29: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 625

2. Notes on hyperbolic systems of conservation laws and transport equations. Hand-book of Differential Equations: Evolutionary Equations, Vol. III, pp. 277–382, ed.C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2007.

De Lellis, C. and F. Golse1. A quantitative compactness estimate for scalar conservation laws. Comm. Pure

Appl. Math. 58 (2005), 989–998.De Lellis, C., Otto, F. and M. Westdickenberg1. Structure of entropy solutions for multi-dimensional scalar conservation laws.

Arch. Rational Mech. Anal. 170 (2003), 137–184.2. Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62 (2004),

687–700.De Lellis, C. and T. Riviere1. The rectifiability of entropy measures in one space dimension. J. Math. Pure

Appl. 82 (2003), 1343–1367.De Lellis, C. and L. Szekelyhidi1. The Euler equations as a differential inclusion. Ann. of Math. 170 (2009), 1417–

1436.2. On admissibility criteria for weak solutions of the Euler equations. Arch. Rational

Mech. Anal. 195 (2010), 261–309.Demengel, F. and D. Serre1. Nonvanishing singular parts of measure-valued solutions for scalar hyperbolic

equations. Comm. PDE 16 (1991), 221–254.Demoulini, S., Stuart, D. M.A. and A. E. Tzavaras1. Construction of entropy solutions for one-dimensional elastodynamics via time

discretization. Ann. Inst. Henri Poincare 17 (2000), 711–731.2. A variational approximation scheme for three-dimensional elastodynamics with

polyconvex energy. Arch. Rational Mech. Anal. 157 (2001), 325–344.DeVore, R.A. and B.J. Lucier1. On the size and smoothness of solutions to nonlinear hyperbolic conservation

laws. SIAM J. Math. Anal. 27 (1996), 684–707.Dias, J.-P. and P.G. LeFloch1. Some existence results for conservation laws with source-term. Math. Methods

Appl. Sci. 25 (2002), 1149–1160.Diehl, S.1. A conservation law with point source and discontinuous flux function modelling

continuous sedimentation. SIAM J. Appl. Math. 56 (1996), 388–419.DiFrancesco, M. and C. Lattanzio1. Diffusive relaxation 3× 3 model for a system of viscoelasticity. Asymptot. Anal.

40 (2004), 235–253.Ding, Xia Xi, Chen, Gui-Qiang and Pei Zhu Luo1. Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics

(I)-(II). Acta Math. Scientia 5 (1985), 415–472; 6 (1986), 75–120; 9 (1989),43–44.

Page 30: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

626 Bibliography

Ding, Yi, and Feimin Huang1. On a nonhomogeneous system of pressureless flow. Quart. Appl. Math. 62

(2004), 509–528.DiPerna, R.J.1. Global solutions to a class of nonlinear hyperbolic systems of equations. Comm.

Pure Appl. Math. 26 (1973), 1–28.2. Existence in the large for quasilinear hyperbolic conservation laws. Arch. Ratio-

nal Mech. Anal. 52 (1973), 244–257.3. Singularities of solutions of nonlinear hyperbolic systems of conservation laws.

Arch. Rational Mech. Anal. 60 (1975), 75–100.4. Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of

conservation laws. Indiana U. Math. J. 24 (1975), 1047–1071.5. Global existence of solutions to nonlinear hyperbolic systems of conservation

laws. J. Diff. Eqs. 20 (1976), 187–212.6. Decay of solutions of hyperbolic systems of conservation laws with a convex

extension. Arch. Rational Mech. Anal. 64 (1977), 1–46.7. Uniqueness of solutions to hyperbolic conservation laws. Indiana U. Math. J. 28

(1979), 137–188.8. Convergence of approximate solutions to conservation laws. Arch. Rational

Mech. Anal. 82 (1983), 27–70.9. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math.

Phys. 91 (1983), 1–30.10. Compensated compactness and general systems of conservation laws. Trans.

A.M.S. 292 (1985), 283–420.11. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88

(1985), 223–270.DiPerna, R.J. and P.-L. Lions1. On the Cauchy problem for Boltzmann equations: Global existence and weak

stability. Ann. of Math. 130 (1989), 321–366.DiPerna, R. and A. Majda1. The validity of nonlinear geometric optics for weak solutions of conservation

laws. Comm. Math. Phys. 98 (1985), 313–347.Donadello, C. and A. Marson1. Stability of front tracking solutions to the initial and boundary value problem

for systems of conservation laws. NoDEA Nonl. Diff. Eqs. Appl. 14 (2007),569–592.

Donatelli, D. and P. Marcati1. Relaxation of semilinear hyperbolic systems with variable coefficients. Ricerche

Mat. 48 (1999), suppl., 295–310.Donato A. and F. Oliveri (eds.)1. Nonlinear Hyperbolic Problems. Braunschweig: Vieweg 1993.Douglis, A.1. Some existence theorems for hyperbolic systems of partial differential equations

in two independent variables. Comm. Pure Appl. Math. 5 (1952), 119–154.2. Layering methods for nonlinear partial differential equations of first order. Ann.

Inst. Fourier, Grenoble 22 (1972), 141–227.

Page 31: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 627

Dressel, A. and Wen-An Yong1. Existence of traveling-wave solutions for hyperbolic systems of balance laws.

Arch. Rational Mech. Anal. 182 (2006), 49–75.DuBois, F. and P.G. LeFloch1. Boundary conditions for nonlinear hyperbolic systems of conservation laws.

J. Diff. Eqs. 71 (1988), 93–122.Dubroca, B. and G. Gallice1. Resultats d’ existence et d’ unicite du probleme mixte pour des systemes hy-

perbolique de lois de conservation monodimensionels. Comm. PDE 15 (1990),59–80.

Duhem, P.1. Recherches sur l’ Hydrodynamique, Premiere et Deuxiemes Serie, Paris: Gauthier-

Villars 1903–1904.2. Sur la propagation des ondes de choc au sein des fluides. Zeit. Physikal. Chemie

69 (1909), 169–186.E, Weinan1. Propagation of oscillations in the solutions of 1−d compressible fluid equations.

Comm. PDE 17 (1992), 347–370.2. Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM

J. Appl. Math. 52 (1992), 959–972.3. Aubry-Mather theory and periodic solutions of the forced Burgers equation.

Comm. Pure Appl. Math. 52 (1999), 811–828.E, Weinan, Khanin, K., Mazel, A. and Ya. G. Sinai1. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math.

151 (2000), 877–960.E, Weinan, Rykov, Yu. and Ya. G. Sinai1. Generalized variational principles, global existence of weak solutions and behav-

ior with random initial data for systems of conservation laws arising in adhesionparticle dynamics. Comm. Math. Phys. 177 (1996), 349–380.

E, Weinan and D. Serre1. Correctors for the homogenization of conservation laws with oscillatory forcing

terms. Asymptotic Analysis 5 (1992), 311–316.Earnshaw, S.1. On the mathematical theory of sound. Trans. Royal Soc. London 150 (1860),

133–148.Ehrt, J. and J. Harterich1. Asymptotic behavior of spatially inhomogeneous balance laws. J. Hyperbolic

Diff. Eqs. 2 (2005), 645–672.Elling, V.1. Regular reflection in self-similar potential flow and the sonic criterion. (To ap-

pear).Elling, V. and Tai-Ping Liu1. The ellipticity principle for self-similar potential flows. J. Hyperbolic Diff. Eqs.

2 (2005), 909–917.

Page 32: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

628 Bibliography

2. Supersonic flow onto a solid wedge. Comm. Pure Appl. Math. 61 (2008), 1347–1448.

Endres E. and H.K. Jenssen1. Compressible 1-D Euler equations with large data: A case study. J. Hyperbolic

Diff. Eqs. 6 (2009), 389–406.Endres, E., Jenssen, H.K. and M. Williams1. Symmetric Euler and Navier-Stokes shocks in stationary barotropic flow on a

bounded domain. J. Diff. Eqs. 245 (2008), 3025–3067.Engelberg, S., Liu, Hailiang and E. Tadmor1. Critical thresholds in Euler-Poisson equations. Indiana U. Math. J. 50 (2001),

109–157.Engquist, B. and B. Gustafsson (eds.)1. Third International Conference on Hyperbolic Problems, Vols. I-II. Lund:

Chartwell-Bratt 1991.Engquist, B. and Weinan E1. Large time behavior and homogenization of solutions of two-dimensional con-

servation laws. Comm. Pure Appl. Math. 46 (1993), 1–26.Ercole, G.1. Delta-shock waves as self-similar viscosity limits. Quart. Appl. Math. 58 (2000),

177–199.Erpenbeck, J.1. Stability of stress shocks. Phys. Fluids 5 (1962), 1181–1187.Euler, L.1. Opera Omnia, Ser. II, Vols. XII-XIII, ed. C.A. Truesdell. Lausanne: Orell Fussli

Turici 1954–1955.Evans, L.C.1. Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS

Regional Conference Series in Mathematics No. 74. Providence: American Math-ematical Society, 1990.

2. Partial Differential Equations. Providence: AMS, 1998.Evans, L.C. and R.F. Gariepy1. Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press,

1992.Fan, Haitao1. A limiting “viscosity” approach to the Riemann problem for materials exhibiting

change of phase. Arch. Rational Mech. Anal. 116 (1992), 317–338.2. One-phase Riemann problems and wave interactions in systems of conservation

laws of mixed type. SIAM J. Math. Anal. 24 (1993), 840–865.3. Global versus local admissibility criteria for dynamic phase boundaries. Proc.

Royal Soc. Edinburg 123A (1993), 927–944.4. A vanishing viscosity approach on the dynamics of phase transitions in van der

Waals fluids. J. Diff. Eqs. 103 (1993), 179–204.5. One-phase Riemann problem and wave interactions in systems of conservation

laws of mixed type. SIAM J. Math. Anal. 24 (1993), 840–865.

Page 33: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 629

6. Traveling waves, Riemann problems and computations of a model of the dynam-ics of liquid/vapor phase transitions. J. Diff. Eqs. 150 (1998), 385–437.

Fan, Haitao and J. Harterich1. Conservation laws with a degenerate source: traveling waves, large-time behavior

and zero relaxation limit. Nonlinear Anal. 63 (2005), 1042–1069.Fan, Haitao and J.K. Hale1. Large time behavior in inhomogeneous conservation laws. Arch. Rational Mech.

Anal. 125 (1993), 201–216.2. Attractors in inhomogeneous conservation laws and parabolic regularizations.

Trans. AMS 347 (1995), 1239–1254.Fan, Haitao and Tao Luo1. Convergence to equilibrium rarefaction waves for discontinuous solutions of shal-

low water wave equations with relaxation. Quart. Appl. Math. LXIII (2005),575–600.

Fan, Haitao, Jin Shi and Zhen-huan Teng1. Zero reaction limit for hyperbolic conservation laws with source terms. J. Diff.

Eqs. 168 (2000), 270–294.Fan, Haitao and M. Slemrod1. Dynamic flows with liquid/vapor phase transitions. Handbook of Mathematical

Fluid Dynamics, Vol. I, pp. 373–420, ed. S. Friedlander and D. Serre. Amsterdam:North Holland 2002.

Federer, H.1. Geometric Measure Theory. New York: Springer, 1969.Feireisl, E.1. Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press,

2004.Feireisl, E. and H. Petzeltova1. Long-time behaviour for multidimensional scalar conservation laws. J. Reine

Angew. Math. 519 (2000), 1–16.Feldman, M., Ha, Seung-Yeal and M. Slemrod1. Self-similar isothermal irrotational motion for the Euler, Euler-Poisson system

and the formation of the plasma sheath. J. Hyperbolic Diff. Eqs. 3 (2006), 233–246.

Ferrari, C. and F. Tricomi1. Transonic Aerodynamics. New York: Academic Press 1968.Ferziger, J.H. and H.G. Kaper1. Mathematical Theory of Transport Processes in Gases, §5.5. Amsterdam: North-

Holland, 1972.Fey, M. and R. Jeltsch (eds.)1. Hyperbolic Problems, Vols. I-II. Basel: Birkhauser 1999.Fife, P.C. and Xiao Geng1. Mathematical aspects of electrophoresis. Reaction-Diffusion Equations, pp.139–

172, eds. K.J. Brown and A.A. Lacey. Oxford: Clarendon Press, 1990.

Page 34: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

630 Bibliography

Filippov, A.F.1. Differential Equations with Discontinuous Righthand Sides. Dordrecht: Kluwer,

1988.Foy, R.L.1. Steady state solutions of hyperbolic systems of conservation laws with viscosity

terms. Comm. Pure Appl. Math. 17 (1964), 177–188.Francheteau, J. and G. Metivier1. Existence des Chocs Faibles pour des Systemes Quasi-Lineaires Hyperboliques

Multidimensionnels. Asterisque 268 (2000).Freistuhler, H.1. Instability of vanishing viscosity approximation to hyperbolic systems of conser-

vation laws with rotational invariance. J. Diff. Eqs. 87 (1990), 205–226.2. Linear degeneracy and shock waves. Math. Z. 207 (1991), 583–596.3. Rotational degeneracy of hyperbolic systems of conservation laws. Arch. Rational

Mech. Anal. 113 (1991), 39–64.4. Dynamical stability and vanishing viscosity. A case study of a non-strictly hyper-

bolic system. Comm. Pure Appl. Math. 45 (1992), 561–582.5. Hyperbolic systems of conservation laws with rotationally equivariant flux func-

tion. Mat. Aplic. Comp. 11 (1992), 45–71.6. Nonuniformity of vanishing viscosity approximation. Appl. Math. Letters 6 (2)

(1993), 35–41.7. On the Cauchy problem for a class of hyperbolic systems of conservation laws.

J. Diff. Eqs. 112 (1994), 170–178.8. Some results on the stability of nonclassical shock waves. J. Partial Differential

Equations 11 (1998), 25–38.Freistuhler, H. and Tai-Ping Liu1. Nonlinear stability of overcompressive shock waves in a rotationally invariant

system of viscous conservation laws. Comm. Math. Phys. 153 (1993), 147–158.Freistuhler, H. and R.G. Plaza1. Normal modes and nonlinear stability behaviour of dynamic phase boundaries in

elastic materials. Arch. Rational Mech. Anal. 186 (2007), 1–24.Freistuhler, H. and D. Serre1. L1 stability of shock waves in scalar viscous conservation laws. Comm. Pure

Appl. Math. 51 (1998), 291–301.2. The L1 stability of boundary layers in scalar viscous conservation laws. J. Dyn.

Diff. Eqs. 13 (2001), 745–755.Freistuhler, H. and P. Szmolyan1. Existence and bifurcation of viscous profiles for all intermediate magnetohydro-

dynamic shock waves. SIAM J. Math. Anal. 26 (1995), 112–128.2. Spectral stability of small shock waves. Arch. Rational Mech. Anal. 164 (2002),

287–309.Freistuhler, H. and G. Warnecke (eds.)1. Hyperbolic Problems, Vols. I-II. Basel: Birkhauser 2001.

Page 35: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 631

Frid, H.1. Uniqueness of solutions to hyperbolic balance laws in several space dimensions.

Comm. PDE 14 (1989), 959–979.2. Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996),

1–45.3. Measure-valued solutions to initial-boundary value problems for certain systems

of conservation laws: Existence and dynamics. Trans. AMS 348 (1996), 51–76.4. Periodic solutions of conservation laws constructed through Glimm scheme.

Trans. AMS 353 (2001), 4529–4544.5. Decay of almost periodic solutions of conservation laws. Arch. Rational Mech.

Anal. 161 (2002), 43–64.6. Asymptotic stability of Riemann solutions for a class of multi-dimensional sys-

tems of conservation laws with viscosity. Arch. Rational Mech. Anal. 181 (2006),177–199.

Frid, H. and P.G. LeFloch1. Uniqueness for multidimensional hyperbolic systems with commuting Jacobians.

Arch. Rational Mech. Anal. 182 (2006), 25–47.Frid, H. and I-Shih Liu1. Oscillation waves in Riemann problems for phase transitons. Quart. Appl. Math.

56 (1998), 115–135.Frid, H. and M. Perepelitsa1. Spatially periodic solutions in relativistic isentropic gas dynamics. Comm. Math.

Phys. 250 (2004), 335–370.Frid, H. and M.M. Santos1. Nonstrictly hyperbolic systems of conservation laws of the conjugate type. Comm.

PDE 19 (1994), 27–59.2. The Cauchy problem for the system ∂t z− ∂x(zγ ) = 0. J. Diff. Eqs. 111 (1994),

340–359.Friedlander, S. and D. Serre (eds.)1. Handbook of Mathematical Fluid Dynamics, Vols. 1,2. Amsterdam: North

Holland 2002.Friedrichs, K.O.1. Nonlinear hyperbolic differential equations for functions of two independent vari-

ables. Am. J. Math. 70 (1948), 555–589.2. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7

(1954), 345–392.3. On the laws of relativistic electro-magneto-fluid dynamics. Comm. Pure Appl.

Math. 27 (1974), 749–808.Friedrichs, K.O. and P.D. Lax1. Systems of conservation equations with a convex extension. Proc. Natl. Acad.

Sci. USA 68 (1971), 1686–1688.Fries, C.1. Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock

waves. J. Diff. Eqs. 146 (1998), 185–202.

Page 36: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

632 Bibliography

2. Stability of viscous shock waves associated with non-convex modes. Arch. Ratio-nal Mech. Anal. 152 (2000), 141–186.

Fusco, D.1. Reduction Methods for 2 × 2 Quasilinear Hyperbolic Systems of First Order

PDEs. Quaderni del Consiglio Nazionale delle Ricerche, Gruppo Nazionale diFisica Matematica. No. 48, 1995.

Gallavotti, G.1. Foundations of Fluid Dynamics. New York: Springer 2002.Gangbo, W. and M. Westdickenberg1. Optimal transport for the system of isentropic Euler equations. Comm. PDE 34

(2009), 419–452.Garavello, M. and B. Piccoli1. Traffic flow on a road network using the Aw-Rascle model. Comm. PDE 31

(2006), 243–275.2. Traffic Flow on Networks. Springfield, MO: AIMS, 2006.Garavello, M., Natalini, R., Piccoli, B. and A. Terracina1. Conservation laws with discontinuous flux. Netw. Heterog. Media 2 (2007), 159–

179.Garding, L.1. Probleme de Cauchy pour les systemes quasi-lineaires d’ordre un strictement hy-

perboliques. Les Equations aux Derivees Partielles. Paris: CNRS, 1963.Gardner, R.A. and K. Zumbrun1. The gap lemma and geometric criteria for instability of viscous shock profiles.

Comm. Pure Appl. Math. 51 (1998), 797–855.Gelfand, I.1. Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14 (1959),

87–158. English translation: AMS Translations, Ser. II, 29, 295–381.Gerbeau, J.-F. and B. Perthame1. Derivation of viscous Saint-Venant system for shallow water; numerical valida-

tion. Discrete Contin. Dynam. Systems B1 (2001), 89–102.Gibbs, J.W.1. A method of geometrical representation of the thermodynamic properties of sub-

stances by means of surfaces. Trans. Connecticut Acad. 2 (1873), 382–404.Giga Y. and T. Miyakawa1. A kinetic construction of global solutions of first order quasilinear equations.

Duke Math. J. 50 (1983), 505–515.Gilbarg, D.1. The existence and limit behavior of the one-dimensional shock layer. Am. J. Math.

73 (1951), 256–274.Gimse, T.1. Conservation laws with discontinuous flux functions. SIAM J. Math. Anal. 24

(1993), 279–289.

Page 37: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 633

Gimse, T. and N.H. Risebro1. Solution of the Cauchy problem for a conservation law with a discontinuous flux

function. SIAM J. Math. Anal. 23 (1992), 635–648.Gisclon, M.1. Etude des conditions aux limites pour un systeme strictement hyperbolique via l’

approximation parabolique. J. Math. Pures Appl. 75 (1996), 485–508.Gisclon, M. and D. Serre1. Etude des conditions aux limites pour un systeme strictement hyperbolique via l’

approximation parabolique. C. R. Acad. Sci. Paris, Serie I, 319 (1994), 377–382.Giusti, E.1. Minimal Surfaces and Functions of Bounded Variation. Boston: Birkhauser,

1984.Glass, O. and P.G. LeFloch1. Nonlinear hyperbolic systems: nondegenerate flux, inner speed variation, and

graph solutions. Arch. Rational Mech. Anal. 185 (2007), 409–480.Glimm, J.1. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure

Appl. Math. 18 (1965), 697–715.2. The interaction of nonlinear hyperbolic waves. Comm. Pure Appl. Math. 41

(1988), 569–590.Glimm, J., Grove, J.W., Graham, M.J. and P.J. Plohr (eds.)1. Hyperbolic Problems. Singapore: World Scientific, 1996.Glimm, J., Ji, Xiaomei, Li, Jiequan, Li, Xiaolin, Zhang, Peng, Zhang, Tong and YuxiZheng1. Transonic shock formation in a rarefaction Riemann problem for the 2D com-

pressible Euler equations. SIAM J. Appl. Math. 69 (2008), 720–742.Glimm, J. and P.D. Lax1. Decay of solutions of systems of nonlinear hyperbolic conservation laws. Mem-

oirs AMS, No. 101 (1970).Goatin, P.1. One-sided estimates and uniqueness for hyperbolic systems of balance laws.

Math. Models Methods Appl. Sci. 13 (2003), 527–543.Goatin, P. and L. Gosse1. Decay of positive waves for n×n hyperbolic systems of balance laws. Proc. AMS

132 (2004), 1627–1637.Goatin, P. and P.G. LeFloch1. Sharp L1 stability estimates for hyperbolic conservation laws. Port. Math. (N.S.)

58 (2001), 77–120.2. Sharp L1 continuous dependence of solutions of bounded variation for hyperbolic

systems of conservation laws. Arch. Rational Mech. Anal. 157 (2001), 35–73.3. L1 continuous dependence for the Euler equations of compressible fluid dynam-

ics. Commun. Pure Appl. Anal. 2 (2003), 107–137.4. The Riemann problem for a class of resonant nonlinear systems of balance laws.

Ann. Inst. H. Poincare, Analyse Non Lineaire 21 (2004), 881–902.

Page 38: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

634 Bibliography

Godin, P.1. Global shock waves in some domains for the isentropic irrotational potential flow

equations. Comm. PDE 22 (1997), 1929–1997.Godlewski, E. and P.-A. Raviart1. Hyperbolic Systems of Conservation Laws. Paris: Ellipses, 1991.2. Numerical Approximation of Hyperbolic Systems of Conservation Laws. New

York: Springer, 1996.Godlewski, E. and N. Seguin1. The Riemann problem for a simple model of phase transition. Commun. Math.

Sci. 4 (2006), 227–247.Godunov, S.K.1. An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139 (1961),

521–523. English translation: Soviet Math. 2 (1961), 947–949.2. Elements of Continuum Mechanics. Moscow: Nauka, 1978.3. Lois de conservation et integrales d’ energie des equations hyperboliques. Lecture

Notes in Math. No. 1270 (1987), 135–149. Berlin: Springer.Godvik, M. and H. Hanche-Olsen1. Existence of solutions for the Aw-Rascle traffic flow model with vacuum.

J. Hyperbolic Diff. Eqs. 5 (2008), 45–63.Goodman, J.1. Nonlinear asymptotic stability of viscous shock profiles for conservation laws.

Arch. Rational Mech. Anal. 95 (1986), 325–344.2. Stability of viscous scalar shock fronts in several dimensions. Trans. AMS 311

(1989), 683–695.Goodman, J., Szepessy A., and K. Zumbrun1. A remark on stability of viscous waves. SIAM J. Math. Anal. 25 (1994), 1463–

1467.Goodman J. and Zhou Ping Xin1. Viscous limits for piecewise smooth solutions to systems of conservation laws.

Arch. Rational Mech. Anal. 121 (1992), 235–265.Gosse, L.1. Localization effects and measure source terms in numerical schemes for balance

laws. Math. Comp. 71 (2002), 553–582.Gosse, L. and A.E. Tzavaras1. Convergence of relaxation schemes to the equations of elastodynamics. Math.

Comp. 70 (2001), 555–577.Grassin, M. and D. Serre1. Existence de solutions globales et regulieres aux equations d’ Euler pour un gaz

parfait isentropique. C. R. Acad. Sci. Paris, Serie I, 325 (1997), 721–726.Greenberg, J.M.1. On the elementary interactions for the quasilinear wave equation. Arch. Rational

Mech. Anal. 43 (1971), 325–349.2. On the interaction of shocks and simple waves of the same family, Parts I and II.

Arch. Rational Mech. Anal. 37 (1970), 136–160; 51 (1973), 209–217.

Page 39: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 635

3. Smooth and time periodic solutions to the quasilinear wave equation. Arch. Ra-tional Mech. Anal. 60 (1975), 29–50.

4. Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J. Appl.Math. 62 (2002), 729–745.

5. Congestion redux. SIAM J. Appl. Math. 64 (2004), 1175–1185.Greenberg, J.M., Klar, A. and M. Rascle1. Congestion on multilane highways. SIAM J. Appl. Math. 63 (2003), 818–833.Greenberg, J.M. and M. Rascle1. Time-periodic solutions to systems of conservation laws. Arch. Rational Mech.

Anal. 115 (1991), 395–407.Greenberg, J.M. and Donald D.M. Tong1. Decay of periodic solutions of ∂tu + ∂x f (u) = 0. J. Math. Anal. Appl. 43 (1973),

56–71.Grenier, E. and O. Gues1. Boundary layers for viscous perturbations of noncharacteristic quasilinear hyper-

bolic problems. J. Diff. Eqs. 143 (1998), 110–146.Greven, A., Keller, G. and G. Warnecke (eds.)1. Entropy. Princeton: Princeton University Press, 2003.Gripenberg, G.1. Compensated compactness and one-dimensional elastodynamics Ann. Scuola

Norm. Sup. Pisa, Cl. Sci 22 (1995), 227–240.Groah, Jeffrey, Smoller, J.A. and B. Temple1. Solving the Einstein equations by Lipschitz continuous metrics: shock waves in

general relativity. Handbook of Mathematical Fluid Dynamics, Vol. II, pp. 501–595, ed. S. Friedlander and D. Serre. Amsterdam: North Holland 2003.

2. Shock Wave Interactions in General Relativity. New York: Springer 2007.Grot, R.A.1. Relativistic continuum physics: electromagnetic interactions. Continuum Physics,

Vol. III, pp. 129–219, ed. A.C. Eringen. New York: Academic Press, 1976.Guckenheimer, J.1. Solving a single conservaton law. Lecture Notes in Math. No. 468 (1975), 108–

134. Berlin: Springer.2. Shocks and rarefactions in two space dimensions. Arch. Rational Mech. Anal. 59

(1975), 281–291.Gues, O., Metivier, G., Williams, M. and K. Zumbrun1. Multidimensional viscous shocks II. Comm. Pure Appl. Math. 57 (2004), 141–

218.2. Multidimensional viscous shocks I. J. AMS 18 (2005), 61–120.3. Existence and stability of multidimensional shock fronts in the vanishing viscos-

ity limit. Arch. Rational Mech. Anal. 175 (2005), 151–244.4. Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. Ecole

Normal Sup. 39 (2006), 75–175.5. Uniform stability estimates for constant-coefficient symmetric hyperbolic bound-

ary value problems. Comm. PDE 32 (2007), 579–590.

Page 40: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

636 Bibliography

6. Viscous boundary value problems for symmetric systems with variable multiplic-ities. J. Diff. Eqs. 244 (2008), 309–387.

7. Nonclassical multidimensional viscous and inviscid shocks. Duke Math. J. 142(2008), 1–110.

Gues, O. and M. Williams1. Curved shocks as viscous limits: a boundary problem approach. Indiana U. Math.

J. 51 (2002), 421–450.Guo, Yan1. Smooth irrotational flows in the large to the Euler-Poisson system in R

3+1.Comm. Math. Phys. 195 (1998), 249–265.

Guo, Yan and W. Strauss1. Stability of semiconductor states with insulating and contact boundary condi-

tions. Arch. Rational Mech. Anal. 179 (2005), 1–30.Gurtin, M.E.1. An Introduction to Continuum Mechanics. New York: Academic Press, 1981.Gurtin, M.E. and L.C. Martins1. Cauchy’s theorem in classical physics. Arch. Rational Mech. Anal. 60 (1976),

305–324.Ha, Seung-Yeal1. L1 stability for systems of conservation laws with a nonresonant moving source.

SIAM J. Math. Anal. 33 (2001), 411–439.Ha, Seung-Yeal and Tong Yang1. L1 stability for systems of conservation laws with a resonant moving source.

SIAM J. Math. Anal. 34 (2003), 1226–1251.Hadamard, J.1. Lecons sur la Propagation des Ondes et les Equations de l’ Hydrodynamique.

Paris: Hermann, 1903.Hagan, R. and M. Slemrod1. The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational

Mech. Anal. 83 (1983), 333–361.Hanche-Olsen, H., Holden, H. and N.H. Risebro1. The Riemann problem for an elastic string with a linear Hooke’s law. Quart. Appl.

Math. LX (2002), 695–705.Hanouzet, B. and R. Natalini1. Global existence of smooth solutions for partially dissipative hyperbolic systems

with a convex entropy. Arch. Rational Mech. Anal. 169 (2003), 89–117.Hanouzet, B., Natalini, R. and A. Tesei1. On the Chapman-Jouguet limit for a combustion model. SIAM J. Math. Anal. 29

(1998), 619–636.Hanyga, A.1. Mathematical Theory of Non-Linear Elasticity. Warszawa: PWN, 1985.Harten, A.1. On the symmetric form of systems of conservation laws with entropy. J. Comput.

Phys. 49 (1983), 151–164.

Page 41: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 637

Harten, A., Lax, P.D., Levermore, C.D. and W.J. Morokoff1. Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer.

Anal. 35 (1998), 2117–2127.Harterich, J.1. Heteroclinic orbits between rotating waves in hyperbolic balance laws. Proc.

Royal Soc. Edinburgh 129A (1999), 519–538.Hartman, P. and A. Winter1. On hyperbolic differential equations. American J. Math. 74 (1952), 834–864.Hattori, Harumi1. The Riemann problem for a van der Waals fluid with entropy rate admissibility

criterion. Isothermal case. Arch. Rational Mech. Anal. 92 (1986), 247–263.2. The Riemann problem for a van der Waals fluid with entropy rate admissibility

criterion. Nonisothermal case. J. Diff. Eqs. 65 (1986), 158–174.3. The entropy rate admissibility criterion and the double phase boundary problem.

Contemp. Math. 60 (1987), 51–65.4. The Riemann problem and the existence of weak solutions to a system of mixed-

type in dynamic phase transitions. J. Diff. Eqs. 146 (1998), 287–319.5. The entropy rate admissibility criterion and the entropy condition for a phase

transition problem: The isothermal case. SIAM J. Math. Anal. 31 (2000), 791–820.

6. The existence and large time behavior of solutions to a system related to a phasetransition problem. SIAM J. Math. Anal. 34 (2003), 774–804.

7. The Riemann problem for thermoelastic materials with phase change. J. Diff. Eqs.205 (2004), 229–252.

8. Existence of solutions with moving phase boundaries in thermoelasticity. J. Hy-perbolic Diff. Eqs. 5 (2008), 589–611.

Hattori, Harumi and K. Mischaikow1. A dynamical system approach to a phase transition problem. J. Diff. Eqs. 94

(1991), 340–378.Hayes, B.T. and P.G. LeFloch1. Measure solutions to a strictly hyperbolic system of conservation laws. Nonlin-

earity 9 (1996), 1547–1563.2. Nonclassical shocks and kinetic relations: Scalar conservaton laws. Arch. Ratio-

nal Mech. Anal. 139 (1997), 1–56.3. Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM

J. Math. Anal. 31 (2000), 941–991.Hayes, B.T. and M. Shearer1. Undercompressive shocks for scalar conservation laws with nonconvex fluxes.

Proc. Royal Soc. Edinburgh 129A (1999), 733–754.2. A nonconvex scalar conservation law with trilinear flux. Quart. Appl. Math. LIX

(2001), 615–635.Hayes, W.D. and R.F. Probstein1. Hypersonic Flow Theory, Vol. I, 2nd Edition. New York: Academic Press 1966.

Page 42: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

638 Bibliography

He, Cheng and Hailiang Li1. Asymptotic behavior toward the rarefaction wave for solutions of a rate-type vis-

coelastic system with boundary effect. Acta Math. Sci. 20B (2000), 245–255.Hedstrom, G.W.1. Some numerical experiments with Dafermos’s method for nonlinear hyperbolic

equations. Lecture Notes in Math. No. 267 (1972), 117–138. Berlin: Springer.Heibig, A.1. Error estimates for oscillatory solutions to hyperbolic systems of conservation

laws. Comm. PDE 18 (1993), 281–304.2. Existence and uniqueness of solutions for some hyperbolic systems of conserva-

tion laws. Arch. Rational Mech. Anal. 126 (1994), 79–101.3. Solutions regulieres du probleme de Riemann bidimensionnel. C.R. Acad. Sci.

Paris, Ser. I Math. 328 (1999), 999–1002.Heibig, A. and A. Sahel1. A method of characteristics for some systems of conservation laws. SIAM J. Math.

Anal. 29 (1998), 1467–1480.Heibig, A. and D. Serre1. Etude variationnelle du probleme de Riemann. J. Diff. Eqs. 96 (1992), 56–88.Heidrich, A.1. Global weak solutions to initial-boundary value problems for the one-dimensional

quasi-linear wave equation with large data. Arch. Rational Mech. Anal. 126(1994), 333–368.

Herty, M. and M. Rascle1. Coupling conditions for a class of second-order models for traffic flow. SIAM J.

Math. Anal. 38 (2006), 595–616.Higdon, R.L.1. Initial-boundary value problems for linear hyperbolic systems. SIAM

Review 28 (1986), 177–217.Hoff, D.1. The sharp form of Oleinik’s entropy condition in several space variables. Trans.

AMS 276 (1983), 707–714.2. Invariant regions for systems of conservation laws. Trans. AMS 289 (1985), 591–

610.Hoff, D. and M. Khodja1. Stability of coexisting phases for compressible van der Waals fluids. SIAM

J. Appl. Math. 53 (1993), 1–14.Hoff, D. and Tai-Ping Liu1. The inviscid limit for the Navier-Stokes equations of compressible, isentropic

flow with shock data. Indiana U. Math. J. 38 (1989), 861–915.Hoff, D. and J.A. Smoller1. Error bounds for Glimm difference approximations for scalar conservation laws.

Trans. AMS 289 (1985), 611–645.

Page 43: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 639

Hoff, D. and K. Zumbrun1. Asymptotic behavior of multidimensional scalar viscous shock fronts. Indiana U.

Math. J. 49 (2000), 427–474.2. Pointwise Green’s function bounds for multidimensional scalar viscous shock

fronts. J. Diff. Eqs. 183 (2002), 368–408.Holden, H.1. On the Riemann problem for a prototype of a mixed type conservation law.

Comm. Pure Appl. Math. 40 (1987), 229–264.Holden, H. and L. Holden1. First order nonlinear scalar hyperbolic conservation laws in one dimension. Ideas

and Methods in Mathematical Analysis, Stochastics and Applications, pp. 480–510, eds. S. Albeveiro, J.E. Fenstad, H. Holden and T. Lindstrøm. Cambridge:Cambridge U. Press, 1992.

Holden, H., Holden, L. and R. Høegh-Krohn1. A numerical method for first order nonlinear scalar hyperbolic conservation laws

in one dimension. Computers and Maths. with Appl. 15 (1988), 595–602.Holden, H. and N.H. Risebro1. Stochastic properties of the scalar Buckley-Leverett equation. SIAM J. Appl.

Math. 51 (1991), 1472–1488.2. A method of fractional steps for scalar conservation laws without the CFL condi-

tion. Math. in Comp. 60 (1993), 221–232.3. A mathematical model of traffic flow on a network of unidirectional roads. SIAM

J. Math. Anal. 26 (1995), 999–1017.4. Riemann problems with a kink. SIAM J. Math. Anal. 30 (1999), 497–515.5. Front Tracking for Hyperbolic Conservation Laws. New York: Springer, 2002.Holden, H., Risebro, N.H. and H. Sande1. The solution of the Cauchy problem with large data for a model of a mixture of

gases. J. Hyperbolic Diff. Eqs. 6 (2009), 25–106.2. Front tracking for a model of immiscible gas flow with large data. (To appear).Holden, H., Risebro, N.H. and A. Tveito1. Maximum principles for a class of conservation laws. SIAM J. Appl. Math. 55

(1995), 651–661.Holder, E.1. Historischer Uberblick zur mathematischen Theorie von Unstetigkeitswellen seit

Riemann und Christoffel. E.B. Christoffel, pp. 412–434, ed. P.L. Butzer and F.Feher. Basel: Birkhauser 1981.

Hong, John1. An extension to Glimm’s method to inhomogeneous strictly hyperbolic systems

of conservation laws by “weaker than weak” solutions of the Riemann problem.J. Diff. Eqs. 222 (2006), 515–549.

Hong, John and P.G. LeFloch1. A version of the Glimm method based on generalized Riemann problems. Port.

Math. (N.S.) 64 (2007), 199–236.

Page 44: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

640 Bibliography

Hong, John and B. Temple1. The generic solution of the Riemann problem in a neighborhood of a point of

resonance for systems of nonlinear balance laws. Methods Appl. Anal. 10 (2003),279–294.

2. A bound on the total variation of the conserved quantities for solutions of ageneral resonant nonlinear balance law. SIAM J. Appl. Math. 64 (2004),819–857.

Hopf, E.1. The partial differential equation ut + uux = μuxx. Comm. Pure Appl. Math. 3

(1950), 201–230.Hormander, L.1. The lifespan of classical solutions of non-linear hyperbolic equations. Lecture

Notes in Math. No. 1256 (1987), 214–280.2. Lectures on Nonlinear Hyperbolic Differential Equations. Paris: Springer, 1997.Hou, Thomas and E. Tadmor (eds.)1. Hyperbolic Problems. Berlin: Springer, 2003.Howard, P.1. Pointwise Green’s function approach to stability for scalar conservation laws.

Comm. Pure Appl. Math. 52 (1999), 1295–1313.Howard, P., Raoofi, M. and K. Zumbrun1. Sharp pointwise bounds for perturbed viscous shock waves. J. Hyperbolic Diff.

Eqs. 3 (2006), 297–373.Howard, P. and K. Zumbrun1. Pointwise estimates and stability for dispersive-diffusive shock waves. Arch. Ra-

tional Mech. Anal. 155 (2000), 85–169.2. Stability of undercompressive shock profiles. J. Diff. Eqs. 225 (2006), 308–360.Hsiao, Ling (Ling Xiao)1. The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38 (1980),

226–238.2. Uniqueness of admissible solutions of the Riemann problem for a system of con-

servation laws of mixed type. J. Diff. Eqs. 86 (1990), 197–233.3. Quasilinear Hyperbolic Systems and Dissipative Mechanisms. Singapore: World

Scientific, 1997.Hsiao, Ling and Tong Chang1. Perturbations of the Riemann problem in gas dynamics. J. Math. Anal. Appl. 79

(1981), 436–460.Hsiao, Ling and P. DeMottoni1. Existence and uniqueness of the Riemann problem for a nonlinear system of con-

servation laws of mixed type. Trans. AMS 322 (1990), 121–158.Hsiao, Ling and Song Jiang1. Nonlinear hyperbolic-paraboliccoupled systems. Handbook of Differential Equa-

tions. Evolutionary Equations. Vol. I, pp. 287–384, ed. C.M. Dafermos andE. Feireisl. Amsterdam: Elsevier 2004.

Page 45: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 641

Hsiao, Ling and Hailiang Li1. Initial boundary value problems for nonconvex hyperbolic conservation laws with

relaxation. Meth. Appl. Anal. 7 (2000), 1–19.2. Shock reflection for the damped p-system. Quart. Appl. Math. 60 (2002), 437–

460.Hsiao, Ling, Li, Hailiang and Ronghua Pan1. The zero relaxation behavior of piecewise smooth solutions to the reacting flow

model in the presence of shocks. Nonlin. Anal. 42 (2000), 905–929.Hsiao, Ling and Tai-Ping Liu1. Convergence of nonlinear diffusion waves for solutions of a system of hyperbolic

conservation laws with damping. Comm. Math. Phys. 143 (1992), 599–605.Hsiao, Ling and Tao Luo1. Nonlinear diffusive phenomena of entropy weak solutions for a system of quasi-

linear hyperbolic conservation laws with damping. Quart. Appl. Math. LVI(1998), 173–189.

Hsiao, Ling, Luo, Tao and Tong Yang1. Global BV solutions of compressible Euler equations with spherical symmetry

and damping. J. Diff. Eqs. 146 (1998), 203–225.Hsiao, Ling and Ronghua Pan1. Zero relaxation limit to centered rarefaction waves for a rate-type viscoelastic

system. J. Diff. Eqs. 157 (1999), 20–40.2. Initial boundary value problem for the system of compressible adiabatic flow

through porous media. J. Diff. Eqs. 159 (1999), 280–305.3. The damped p-system with boundary effects. Contemp. Math. 255 (2000), 109–

123.Hsiao, Ling and Zhang Tung1. Riemann problem for 2× 2 quasilinear hyperbolic system without convexity. Ke

Xue Tong Bao 8 (1978), 465–469.Hu, Jiaxin and P.G. LeFloch1. L1 continuous dependence property for systems of conservation laws. Arch. Ra-

tional Mech. Anal. 151 (2000), 45–93.Hua, Jiale, Jiang, Zaihong and Tong Yang1. A new Glimm functional and convergence rate of Glimm scheme for gen-

eral systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. (Toappear).

Hua, Jiale and Tong Yang1. An improved convergence rate of Glimm scheme for general systems of hyper-

bolic conservation laws. J. Diff. Eqs. 231 (2006), 92–107.Huang, Feimin1. Existence and uniqueness of discontinuous solutions for a hyperbolic system.

Proc. Royal Soc. Edinburgh, 127A (1997), 1193–1205.2. Weak solution to pressureless type system. Comm. PDE 30 (2005), 283–304.

Page 46: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

642 Bibliography

Huang, Feimin, Marcati, P. and Ronghua Pan1. Convergence to the Barenblatt solution for the compressible Euler equations with

damping and vacuum. Arch. Rational Mech. Anal. 176 (2005), 1–24.Huang, Feimin, Matsumura, Akitaka and Zhouping Xin1. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equa-

tions. Arch. Rational Mech. Anal. 179 (2006), 55–77.Huang, Feimin and Ronghua Pan1. Convergence rate for compressible Euler equations with damping and vacuum.

Arch. Rat. Mech. Analysis 166 (2003), 359–376.2. Asymptotic behavior of the solutions to the damped compressible Euler equations

with vacuum. J. Diff. Eqs. 220 (2006), 207–233.Huang, Feimin, Pan, Ronghua and Yi Wang1. Stability of contact discontinuity for Jin-Xin relaxation system. J. Diff. Eqs. 244

(2008), 1114–1140.Huang, Feimin and Zhen Wang1. Well posedness for pressureless flow. Comm. Math. Phys. 222 (2001), 117–146.2. Convergence of viscosity solutions for isothermal gas dynamics. SIAM J. Math.

Anal. 34 (2002), 595–610.Hubert, F. and D. Serre1. Fast-slow dynamics for parabolic perturbations of conservation laws. Comm.

PDE 21 (1996), 1587–1608.Hughes, T.J.R., Kato, T. and J.E. Marsden1. Well-posed quasi-linear second-order hyperbolic systems with applications to

nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal. 63(1977), 273–294.

Hugoniot, H.1. Sur la propagation du mouvement dans un fluide indefini, I; II. C.R. Acad. Sci

Paris 101 (1885), 1118–1120; 1229–1232.2. Sur la propagation du mouvement dans les corps et specialement dans les gaz

parfaits, I;II. J. Ecole Polytechnique 57 (1887), 3–97; 58 (1889), 1–125.Hunter, J.K.1. Interaction of elastic waves. Stud. Appl. Math. 86 (1992), 281–314.Hunter, J.K., and J.B. Keller1. Weakly nonlinear high frequency waves. Comm. Pure Appl. Math. 36 (1983),

547–569.2. Nonlinear hyperbolic waves. Proc. Royal Soc. London 417A (1988), 299–308.Hwang, Seok1. Kinetic decomposition for kinetic models of BGK type. J. Diff. Eqs. 190 (2003),

353–363.2. Kinetic decomposition for singularly perturbed higher order partial differential

equations. J. Diff. Eqs. 200 (2004), 191–205.3. Nonlinear diffusive-dispersive limits for scalar multidimensional conservation

laws. J. Diff. Eqs. 225 (2006), 90–102.

Page 47: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 643

Hwang, Seok and A.E. Tzavaras1. Kinetic decomposition of approximate solutions to conservation laws: application

to relaxation and diffusion-dispersion approximations. Comm. PDE 27 (2002),1229–1254.

Iguchi, Tatsuo and P.G. LeFloch1. Existence theory for hyperbolic systems of conservation laws with general flux

functions. Arch. Rational Mech. Anal. 168 (2003), 165–244.Ilin, A.M. and O.A. Oleinik1. Behavior of the solutions of the Cauchy problem for certain quasilinear equations

for unbounded increase of the time. Dokl. Akad. Nauk SSSR 120 (1958), 25–28.English translation: AMS Translations, Ser. II, 42, 19–23.

Isaacson, E.L., Marchesin, D. and B. Plohr1. Transitional waves for conservation laws. SIAM J. Math. Anal. 21 (1990), 837–

866.Isaacson, E.L., Marchesin, D., Plohr, B. and J.B. Temple1. The Riemann problem near a hyperbolic singularity: The classification of quad-

ratic Riemann problems I. SIAM J. Appl. Math. 48 (1988), 1009–1032.2. Multiphase flow models with singular Riemann problems. Mat. Appl. Comput.

11 (1992), 147–166.Isaacson, E.L. and J.B. Temple1. Analysis of a singular hyperbolic system of conservation laws. J. Diff. Eqs. 65

(1986), 250–268.2. The Riemann problem near a hyperbolic singularity I;II. SIAM J. Appl. Math. 48

(1988), 1287–1301; 1302–1318.3. The structure of asymptotic states in a singular system of conservation laws. Adv.

in Appl. Math. 11 (1990), 205–219.4. Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52

(1992), 1260–1278.5. Convergence of the 2× 2 Godunov method for a general resonant nonlinear bal-

ance law. SIAM J. Appl. Math. 55 (1995), 625–640.Izumiya, Shyuichi and G.T. Kossioris1. Geometric singularities for solutions of single conservation laws. Arch. Rational

Mech. Anal. 139 (1997), 255–290.Jacobs, D., MacKinney, W. and M. Shearer1. Traveling wave solutions of the modified Korteweg-De-Vries Burgers equation.

J. Diff. Eqs. 116 (1995), 448–467.James, F., Peng, Yue-Jun and B. Perthame1. Kinetic formulation for chromatography and some other hyperbolic systems.

J. Math. Pures Appl. 74 (1995), 367–385.James, R.D.1. The propagation of phase boundaries in elastic bars. Arch. Rational Mech. Anal.

73 (1980), 125–158.

Page 48: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

644 Bibliography

Jang, Juhi1. Nonlinear instability in gravitational Euler-Poisson systems for γ = 6/5. Arch.

Rational Mech. Anal. 188 (2008), 265–307.Jang, Juhi and N. Masmoudi1. Well-posedness for compressible Euler equations with physical vacuum singular-

ity. Comm. Pure Appl. Math. 62 (2009), 1327–1385.Jeffrey, A.1. Magnetohydrodynamics. Edinburgh: Oliver and Boyd, 1966.2. Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976.Jegdic, K.1. Weak regular reflection for the nonlinear wave system. J. Hyperbolic Diff. Eqs. 5

(2008), 399–420.Jegdic, K., Keyfitz, B.L. and S. Canic1. Transonic regular reflection for the nonlinear wave system. J. Hyperbolic Diff.

Eqs. 3 (2006), 443–474.Jenssen, H.K.1. Blowup for systems of conservation laws. SIAM J. Math. Anal. 31 (2000), 894–

908.Jenssen, H.K. and I.A. Kogan1. Systems of hyperbolic conservation laws with prescribed eigencurves. (To ap-

pear).Jenssen, H.K., Lyng, G. and M. Williams1. Equivalence of low-frequency stability conditions for multidimensional detona-

tions in three models of combustion. Indiana U. Math. J. 54 (2005), 1–64.Jenssen, H.K. and C. Sinestrari1. On the spreading of characteristics for non-convex conservation laws. Proc. Roy.

Soc. Edinburgh A131 (2001), 909–925.Jenssen, H.K. and R. Young1. Gradient driven and singular flux blowup of smooth solutions to hyperbolic sys-

tems of conservation laws. J. Hyperbolic Diff. Eqs. 1 (2004), 627–641.Jiang, Guang-Shan and Shih-Hsien Yu1. Discrete shocks for finite difference approximations to scalar conservation laws.

SIAM J. Numer. Anal. 35 (1998), 749–772.Jiang, Song, Ni, Guoxi and Wenjun Sun1. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of

one-dimensional compressible heat-conducting fluids. SIAM J. Math. Anal. 38(2006), 368–384.

Jin, Shi, Katsoulakis, M. and Zhouping Xin1. Relaxation schemes for curvature-dependent front propagation. Comm. Pure

Appl. Math. 52 (1999), 1587–1615.Jin, Shi and Zhou Ping Xin1. The relaxation schemes for systems of conservation laws in arbitrary space di-

mensions. Comm. Pure Appl. Math. 48 (1995), 235–276.

Page 49: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 645

John, F.1. Formation of singularities in one-dimensional nonlinear wave propagation.Comm.

Pure Appl. Math. 27 (1974), 377–405.2. Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure

Appl. Math. 34 (1981), 29–53.Johnson, J.N. and R. Cheret1. Classic Papers in Shock Compression Science. New York: Springer, 1998.Joly, J.-L., Metivier, G. and J. Rauch1. Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal. 114 (1993),

106–231.2. A nonlinear instability for 3 × 3 systems of conservation laws. Comm. Math.

Phys. 162 (1994), 47–59.3. Coherent and focusing multi-dimensional nonlinear geometric optics. Ann. Sci.

ENS 28 (1995), 51–113.Joseph, K.T.1. A Riemann problem whose viscosity solutions contain delta measures.

Asymptotic Analysis 7 (1993), 105–120.Joseph, K.T. and P.G. LeFloch1. Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ratio-

nal Mech. Anal. 147 (1999), 47–88.2. Boundary layers in weak solutions of hyperbolic conservation laws II. Commun.

Pure Appl. Anal. 1 (2002), 51–76.3. Boundary layers in weak solutions of hyperbolic conservation laws III. Port.

Math. (N.S.) 59 (2002), 453–494.4. Singular limits for the Riemann problem: General diffusion, relaxation and

boundary conditions. New Analytical Approach to Multidimensional BalanceLaws, pp. 143–172, ed. O. Rozanova. Nova Press, 2006.

5. Singular limits in phase dynamics with physical viscosity and capillarity. Proc.Royal Soc. Edinnburgh 137A (2007), 1287–1312.

Jouguet, E.1. Sur la propagation des discontinuites dans les fluides. C. R. Acad. Sci. Paris 132

(1901), 673–676.2. Remarques sur la propagation des percussions dans les gaz. C.R. Acad. Sci. Paris

138 (1904), 1685–1688.3. Mecanique des explosifs. Paris: Octave Doin 1917.Junca, S. and M. Rascle1. Strong relaxation of the isothermal Euler system to the heat equation. ZAMP 53

(2002), 239–264.Kalasnikov, A.S.1. Construction of generalized solutions of quasi-linear equations of first order with-

out convexity conditions as limits of solutions of parabolic equations with a smallparameter. Dokl. Akad. Nauk SSSR 127 (1959), 27–30.

Page 50: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

646 Bibliography

Kan, Pui Tak1. Hyperbolic conservation laws: Global solutions to systems with umbilic degen-

eracy and initial boundary value problems in L∞. Analysis of Systems of Con-servation Laws, pp. 49–86, ed. H. Freistuhler. London: Chapman and Hall/CRC,1998.

Kan, Pui Tak, Santos, M.M. and Zhou Ping Xin1. Initial-boundary value problem for conservation laws. Comm. Math. Phys. 186

(1997), 701–730.Karlsen, K.H., Rascle, M. and E. Tadmor1. On the existence and compactness of a two-dimensional resonant system of con-

servation laws. Commun. Math. Sci. 5 (2007), 253–265.Karlsen, K.H. and N. H. Risebro

1. A note on front tracking and equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws. NonlinearAnal. 50 (2002), Ser. A, 455–469.

Karlsen, K.H., Risebro, N.H. and J.D. Towers1. Front tracking for scalar balance equations. J. Hyperbolic Diff. Eqs. 1 (2004),

115–148.Kato, T.1. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ra-

tional Mech. Anal. 58 (1975), 181–205.Katsoulakis, M.A. and A.E. Tzavaras1. Contractive relaxation systems and the scalar multidimensional conservation law.

Comm. PDE 22 (1997), 195–233.2. Multiscale analysis for interacting particles: relaxation systems and scalar con-

servation laws. J. Statist. Phys. 96 (1999), 715–763.Kawashima, Shuichi and Akitaka Matsumura1. Stability of shock profiles in viscoelasticity with non-convex constitutive rela-

tions. Comm. Pure Appl. Math. 47 (1994), 1547–1569.Kawashima, Shuichi and Shinya Nishibata1. Shock waves for a model system of the radiating gas. SIAM J. Math. Anal. 30

(1999), 95–117.Kawashima, Shuichi and Wen-An Yong1. Dissipative structure and entropy for hyperbolic systems of balance laws. Arch.

Rational Mech. Anal. 174 (2004), 345–364.Keyfitz, B.L.1. Change of type in three-phase flow: A simple analogue. J. Diff. Eqs. 80 (1989),

280–305.2. Admissibility conditions for shocks in systems that change type. SIAM J. Math.

Anal. 22 (1991), 1284–1292.3. Self-similar solutions of two-dimensional conservation laws. J. Hyperbolic Diff.

Eqs. 1 (2004), 445–492.

Page 51: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 647

Keyfitz, B.L. and H.C. Kranzer1. Existence and uniqueness of entropy solutions to the Riemann problem for hyper-

bolic systems of two nonlinear conservation laws. J. Diff. Eqs. 27 (1978), 444–476.

2. A system of nonstrictly hyperbolic conservation laws arising in elasticity theory.Arch. Rational Mech. Anal. 72 (1980), 219–241.

3. A viscosity approximation to a system of conservation laws with no classicalRiemann solution. Lecture Notes in Math. No. 1402 (1989), 185–197. Berlin:Springer.

4. Spaces of weighted measures for conservation laws with singular shock solutions.J. Diff. Eqs. 118 (1995), 420–451.

Keyfitz, B.L. and G.G. Warnecke1. The existence of viscous profiles and admissibility of transonic shocks. Comm.

PDE 16 (1991), 1197–1221.Kim, Eun Heui and Kyungwoo Song1. Classical solutions for the pressure-gradient equations in non-smooth and non-

convex domains. J. Math. Anal. Appl. 293 (2004), 541–550.Kim, Jong Uhn1. On a stochastic scalar conservation law. Indiana U. Math. J. 52 (2003),

227–256.Kim, Mijoung, and Yong-Jung Kim1. Invariance property of a conservation law without convexity. Indiana U. Math. J.

58 (2009), 733–750.Kim, Yong Jung1. A self-similar viscosity approach for the Riemann problem in isentropic gas dy-

namics and the structure of the solutions. Quart. Appl. Math. 59 (2001), 637–665.2. Asymptotic behavior of solutions to scalar conservation laws and optimal conver-

gence orders to N-waves. J. Diff. Eqs. 192 (2003), 202–224.3. An Oleinik-type estimate for a convection-diffusion equation and convergence to

N-waves. J. Diff. Eqs. 199 (2004), 269–289.4. Potential comparison and asymptotics in scalar conservation laws without con-

vexity. J. Diff. Eqs. 244 (2008), 40–51.Kim, Yong Jung and Youngsoo Ha1. Fundamental solutions of conservation laws. (To appear).Kim, Yong Jung and Young Ran Lee1. Structure of fundamental solutions of a conservation law without convexity. (To

appear).Kim, Yong Jung and A.E. Tzavaras1. Diffusive N-waves and metastability in the Burgers equation. SIAM J.

Math. Anal. 33 (2001), 607–633.Kirchhoff, G.1. Ueber den Einfluss der Warmeleitung in einem Gase auf die Schallbewegung.

Ann. Physik 134 (1868), 177–193.2. Vorlesungen uber die Theorie der Warme. Leipzig: Teubner 1894.

Page 52: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

648 Bibliography

Klainerman, S.1. The null condition and global existence to nonlinear wave equations. Lectures in

Appl. Math. 23 (1986), 293–326. Providence: AMS.Klainerman, S. and A. Majda1. Formation of singularities for wave equations including the nonlinear vibrating

string. Comm. Pure Appl. Math. 33 (1980), 241–263.Klainerman, S. and T. Sideris1. On almost global existence for nonrelativistic wave equations in 3D. Comm. Pure

Appl. Math. 49 (1996), 307–321.Klausen, R.A. and N.H. Risebro1. Stability of conservation laws with discontinuous coefficients. J. Diff. Eqs. 157

(1999), 41–60.Klingenberg, C. and Yun-guang Lu1. Cauchy problem for hyperbolic conservation laws with a relaxation term. Proc.

Royal Soc. Edinburgh, 126A (1996), 821–828.Klingenberg, C. and N.H. Risebro1. Convex conservation law with discontinuous coefficients. Comm. PDE 20 (1995),

1959–1990.2. Stability of a resonant system of conservation laws modeling polymer flow with

gravitation. J. Diff. Eqs. 170 (2001), 344–380.Kohler, M.1. Behandlung von Nichtgleichgewichtsvorgangen mit Hilfe eines Extremalprin-

zipes. Zeit. Physik 124 (1948), 772–789.Kondo, C.I. and P.G. LeFloch1. Measure-valued solutions and well-posedness of multi-dimensional conservation

laws in a bounded domain. Port. Math. (N.S.) 58 (2001), 171–193.2. Zero diffusion-dispersion limit for scalar conservation laws. SIAM J. Math. Anal.

33 (2002), 1320–1329.Kong, De-Xing and Tong Yang1. Asymptotic behavior of global classical solutions of quasilinear hyperbolic sys-

tems. Comm. PDE 28 (2003), 1203–2220.Krehl, P. and M. van der Geest1. The discovery of the Mach reflection effect and its demonstration in an audito-

rium. Shock Waves 1 (1991), 3–15.Kreiss, G. and H.-O. Kreiss1. Stability of systems of viscous conservation laws. Comm. Pure Appl. Math. 51

(1998), 1397–1424.Kreiss, G., Kreiss, H.-O. and J. Lorenz1. Stability of viscous shocks on finite intervals. Arch. Rational Mech. Anal. 187

(2008), 157–183.Kreiss, H.O.1. Initial-boundary value problems for hyperbolic systems. Comm. Pure Appl. Math.

23 (1970), 277–298.Krejcı, P. and I. Straskraba1. A uniqueness criterion for the Riemann problem. Hiroshima Math. J. 27 (1997),

307–346.

Page 53: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 649

Kroner, D.1. Numerical Schemes for Conservation Laws. Chichester: John Wiley, 1997.Kruzhkov, S.N. and E. Yu. Panov1. Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem

for quasilinear conservation laws of the first order. Ann. Univ. Ferrara Sez. VII(N.S.) 40 (1994), 31–54.

Kruzkov, S.1. First-order quasilinear equations with several space variables. Mat. Sbornik 123

(1970), 228–255. English translation: Math. USSR Sbornik 10 (1970), 217–273.Kulikovskiy, A.G. and G.A. Lyubimov1. Magnetohydrodynamics. Reading: Addison-Wesley, 1965.Kulikovskii, A.G., Pogorelov, N.V. and A. Yu. Semenov1. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Boca Raton:

Chapman & Hall/CRC, 2001.Kuznetsov, N.1. Weak solutions of the Cauchy problem for a multi-dimensional quasilinear equa-

tion. Mat. Zam. 2 (1967), 401–410. English translation: Math. Notes Acad. USSR2 (1967), 733–739.

Kwon, Young-Sam1. Well posedness for entropy solution of multidimensional scalar conservation laws

with strong boundary conditions. J. Math. Anal. Appl. 340 (2008), 543–549.Kwon, Young-Sam and A. Vasseur1. Strong traces for solutions to scalar conservation laws with general flux. Arch.

Rational Mech. Anal. 185 (2007), 495–513.Lagrange, J.L.1. Memoire sur la theorie des mouvements des fluides. Oeuvres IV (1781), 695–748.

Lan, Chiu-Ya and Huey-Er Lin1. Wave patterns for shallow water equations. Quart. Appl. Math. 63 (2005), 225–

250.Landau, L.D.1. On shock waves at large distances from their place of origin. J. Phys. USSR 9

(1945), 495–500.Landau, L.D. and E.M. Lifshitz1. Electrodynamics of Continuous Media. 2nd Ed. New York: Pergamon, 1984.Lattanzio, C. and P. Marcati1. The zero relaxation limit for the hydrodynamic Whitham traffic flow model.

J. Diff. Eqs. 141 (1997), 150–178.2. The zero relaxation limit for 2× 2 hyperbolic systems. Nonlin. Anal. 38 (1999),

375–389.3. Global well-posedness and relaxation limits of a model for radiating gas. J. Diff.

Eqs. 190 (2003), 439–465.

Page 54: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

650 Bibliography

Lattanzio, C., Mascia, C. and D. Serre1. Shock waves for radiative hyperbollic-elliptic systems. Indiana U. Math. J. 56

(2007), 2601–2640.Lattanzio, C. and B. Rubino1. Asymptotic behavior and strong convergence for hyperbolic systems of conser-

vation laws with damping. Quart. Appl. Math. LXII (2004), 529–540.Lattanzio, C. and D. Serre1. Shock layers interactions for a relaxation approximation to conservation laws.

NoDEA Nonlinear Differential Equations Appl. 6 (1999), 319–340.2. Convergence of a relaxation scheme for hyperbolic systems of conservation laws.

Numer. Math. 88 (2001), 121–134.Lattanzio C. and A.E. Tzavaras1. Structural properties of stress relaxation and convergence from viscoelasticity to

polyconvex elastodynamics. Arch. Rational Mech. Anal. 180 (2006), 449–492.Lax, P.D.1. Weak solutions of nonlinear hyperbolic equations and their numerical computa-

tion. Comm. Pure Appl. Math. 7 (1954), 159–193.2. Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957),

537–566.3. Development of singularities of solutions of nonlinear hyperbolic partial differ-

ential equations. J. Math. Phys. 5 (1964), 611–613.4. Shock waves and entropy. Contributions to Functional Analysis pp. 603–634, ed.

E.A. Zarantonello. New York: Academic Press, 1971.5. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves. CBMS Regional Conference Series in Mathematics No. 11. Philadelphia:SIAM, 1973.

6. The multiplicity of eigenvalues. Bull. AMS (New Series) 6 (1982), 213–214.7. Hyperbolic Partial Differential Equations. Providence: American Mathematical

Society 2006.Leblanc, V.1. Post-graduate Memoir, ENS Lyon (2005).LeFloch, P.G.1. Explicit formula for scalar non-linear conservation laws with boundary condi-

tions. Math. Meth. Appl. Sci. 10 (1988), 265–287.2. Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form.

Comm. PDE 13 (1988), 669–727.3. Propagating phase boundaries: formulation of the problem and existence via the

Glimm scheme. Arch. Rational Mech. Anal. 123 (1993), 153–197.4. An introduction to nonclassical shocks of systems of conservation laws. An Intro-

duction to Recent Developments in Theory and Numerics for Conservation Laws,pp. 28–72, eds. D. Kroner, N. Ohlberger and C. Rohde. Berlin: Springer, 1999.

5. Hyperbolic Systems of Conservation Laws. Basel: Birkhauser, 2002.6. Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Diff. Eqs. 1

(2004), 643–689.7. Haar method, averaged matrix, wave cancellation and L1 stability for hyperbolic

systems. J. Hyperbolic Diff. Eqs. 3 (2006), 701–739.

Page 55: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 651

LeFloch, P.G. and Tai-Ping Liu1. Existence theory for nonconservative hyperbolic systems. Forum Math. 5 (1993),

261–280.LeFloch, P.G. and R. Natalini1. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear

Anal. 36 (1999), 213–230.LeFloch, P.G. and J.-C. Nedelec1. Explicit formula for weighted scalar nonlinear hyperbolic conservation laws.

Trans. AMS 308 (1988), 667–683.LeFloch, P.G. and C. Rohde1. Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic

systems of conservation laws. Indiana U. Math. J. 50 (2001), 1707–1743.LeFloch, P.G. and M. Shearer1. Nonclassical Riemann solvers with nucleation. Proc. Royal Soc. Edinburgh 134A

(2004), 961–984.LeFloch, P.G. and V. Shelukhin1. Symmetries and local solvability of the isothermal gas dynamics equations. Arch.

Rational Mech. Anal. 175 (2005), 389–430.LeFloch, P.G. and Mai Duc Thanh1. Nonclassical Riemann solvers and kinetic relations I;II. ZAMP 52 (2001), 597–

619; Proc. Royal Soc. Edinburgh 132A (2002), 181–219.2. The Riemann problem for fluid flows in a nozzle with discontinuous cross-

section. Comm. Math. Sci. 1 (2003), 763–797.3. Properties of Rankine-Hugoniot curves for van der Waals fluids. Japan J. Indust.

Appl. Math. 20 (2003), 211–238.4. The Riemann problem for the shallow water equations with discontinuous topog-

raphy. Commun. Math. Sci. 5 (2007), 865–885.LeFloch, P.G. and K. Trivisa1. Continuous Glimm-type functionals and spreading of rarefaction waves. Comm.

Math. Sci. 2 (2004), 213–236.LeFloch, P.G. and A.E. Tzavaras1. Existence theory for the Riemann problem for nonconservative hyperbolic sys-

tems. C. R. Acad. Sci. Paris, Ser. I, 323 (1996), 347–352.2. Representation of weak limits and definition of nonconservative products. SIAM

J. Math. Anal. 30 (1999), 1309–1342.LeFloch, P.G. and M. Westdickenberg1. Finite energy solutions to the isentropic Euler equations with geometric effects.

J. Math. Pures Appl. 88 (2007), 389–429.LeFloch, P.G. and Zhou Ping Xin1. Uniqueness via the adjoint problems for systems of conservation laws. Comm.

Pure Appl. Math. 46 (1993), 1499–1533.LeFloch, P.G. and M. Yamazaki1. Entropy solutions of the Euler equations for isothermal relativistic fluids. Intern.

J. Dyn. Syst. Diff. Eqs. 1 (2007), 20–37.

Page 56: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

652 Bibliography

Lei, Zhen and Yuxi Zheng1. A complete global solution to the pressure-gradient equation. J. Diff. Eqs. 236

(2007), 280–292.Leibovich, L.1. Solutions of the Riemann problem for hyperbolic systems of quasilinear equa-

tions without convexity conditions. J. Math. Anal. Appl. 45 (1974), 81–90.LeVeque, R.J.1. Numerical Methods for Conservation Laws. (Second Edition). Basel: Birkhauser,

1992.2. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge U.

Press, 2002.LeVeque, R.J. and B. Temple1. Convergence of Godunov’s method for a class of 2× 2 systems of conservation

laws. Trans. AMS 288 (1985), 115–123.Lewicka, M.1. On the well posedness of a system of balance laws with L∞ data. Rend. Sem. Mat.

Univ. Padova 102 (1999), 319–340.2. L1 stability of patterns of non-interacting large shock waves. Indiana U. Math. J.

49 (2000), 1515–1537.3. Stability conditions for patterns of non-interacting large shock waves. SIAM

J. Math. Anal. 32 (2001), 1094–1116.4. Well-posedness for hyperbolic systems of conservation laws with large BV data.

Arch. Rational Mech. Anal. 173 (2004), 415–445.5. Stability conditions for strong rarefaction waves. SIAM J. Math. Anal. 36 (2005),

1346–1369.6. Lyapunov functional for solutions of systems of conservation laws containing a

strong rarefaction. SIAM J. Math. Anal. 36 (2005), 1371–1399.Lewicka, M. and K. Trivisa1. On the L1 well-posedness of systems of conservation laws near solutions contain-

ing two large shocks. J. Diff. Eqs. 179 (2002), 133–177.Lewicka, M. and K. Zumbrun1. Spectral stability conditions for shock wave patterns. J. Hyperbolic Eqs. 4 (2007),

181–196.Li, Cai Zhong1. Existence in the large for certain systems of quasilinear hyperbolic conservation

laws. J. Diff. Eqs. 45 (1982), 85–102.Li, Cai Zhong and Tai-Ping Liu1. Asymptotic states for hyperbolic conservation laws with a moving source. Adv.

in Appl. Math. 4 (1983), 353–379.Li, De Ning1. Rarefaction and shock waves for multidimensional hyperbolic conservation laws.

Comm. PDE 16 (1991), 425–450.

Page 57: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 653

Li, Hailiang, Markowich, P. and Ming Mei1. Asymptotic behavior of subsonic entropy solutions of the isentropic Euler-Poisson

equations. Quart. Appl. Math. LX (2002), 773–796.Li, Hailiang and Ronghua Pan1. Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic

system in the presence of shocks. J. Math. Anal. Appl. 252 (2000), 298–324.Li, Hailiang and K. Saxton1. Asymptotic behavior of solutions to quasilinear hyperbolic equations with non-

linear damping. Quart. Appl. Math. LXI (2003), 295–313.Li, Jiequan1. On the two-dimensional gas expansion for compressible Euler equations. SIAM

J. Appl. Math. 62 (2001), 831–852.2. Global solution of an initial-value problem for two-dimensional compressible Eu-

ler equations. J. Diff. Eqs. 179 (2002), 178–194.Li, Jiequan and G. Warnecke1. Generalized characteristics and the uniqueness of entropy solutions to zero-

pressure gas dynamics. Adv. Differential Equations 8 (2003), 961–1004.Li, Jiequan and Hanchun Yang1. Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure

gas dynamics. Quart. Appl. Math. LIX (2001), 315–342; LX (2002), 200.Li, Jiequan and Peng Zhang1. The transition from Zeldovich-von Neumann-Doring to Chapman-Jouguet theo-

ries for a nonconvex scalar combustion model. SIAM J. Math. Anal. 34 (2002),675–699.

Li, Jiequan, Zhang, Tong and Shuli Yang1. The Two-Dimensional Riemann Problem in Gas Dynamics. Harlow: Longman,

1998.Li, Jiequan, Zhang, Tong and Yuxi Zheng1. Simple waves and a characteristic decomposition of the two-dimensional com-

pressible Euler equations. Comm. Math. Phys. 267 (2006), 1–12.Li, Jiequan and Yuxi Zheng1. Interaction of rarefaction waves of two-dimensional self-similar Euler equations.

Arch Rational Mech. Anal. 193 (2009), 623–657.Li, Ta-tsien1. Global Classical Solutions for Quasilinear Hyperbolic Systems. New York:

Wiley, 1994.Li, Ta-tsien and De-xing Kong1. Explosion des solutions regulieres pour les systemes hyperbolique quasi-lineaires.

C.R. Acad. Sci. Paris, Ser. I, 329 (1999), 287–292.2. Global classical discontinuous solutions to a class of generalized Riemann prob-

lem for general quasilinear hyperbolic systems of conservation laws. Comm. PDE24 (1999), 801–820.

Page 58: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

654 Bibliography

Li, Ta-tsien and Yue-Jun Peng1. The mixed initial-boundary value problem for reducible quasilinear hyperbolic

systems with linearly degenerate characteristics. Nonlinear Anal. 52 (2003), 573–583.

Li, Ta-tsien and Libin Wang1. Global existence of classical solutions to the Cauchy problem on a semi-bounded

initial axis for quasilinear hyperbolic systems. Nonlinear Anal. 56 (2004), 961–974.

2. Global existence of piecewise C1 solutions to the generalized Riemann problem.J. Hyperbolic Diff. Eqs. 1 (2004), 329–350.

3. Global classical solutions to a kind of mixed initial-boundary value problem forquasilinear hyperbolic systems. Discrete Contin. Dyn. Syst. 12 (2005), 59–78.

4. The generalized nonlinear initial-boundary Riemann problem for quasilinear hy-perbolic systems of conservation laws. Nonlinear Anal. 62 (2005), 1091–1107.

5. Global exact shock reconstruction for quasilinear hyperbolic systems of conser-vation laws. Discrete Contin. Dyn. Syst. 15 (2006), 597–609.

6. Inverse piston problem for the system of one-dimensional isentropic flow. Chin.Ann. Math. Ser. B 28 (2007), 265–282.

7. Global Propagation of Regular Nonlinear Hyperbolic Waves. Boston: Birkhauser,2009.

Li, Ta-tsien and Wen-ci Yu1. Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke

University Math. Series V, 1985.Li, Ta-tsien, Zhou, Yi and De-xing Kong1. Weak linear degeneracy and global classical solutions for general quasilinear hy-

perbolic systems. Comm. PDE, 19 (1994), 1263–1317.Li, Tong1. Global solutions and zero relaxation limit for a traffic flow model. SIAM J. Appl.

Math. 61 (2000), 1042–1061.2. Well-posedness theory of an inhomogeneous traffic flow model. Discrete Cont.

Dynam. Systems B2 (2002), 401–414.3. Global solutions of nonconvex hyperbolic conservation laws with relaxation aris-

ing from traffic flow. J. Diff. Eqs. 190 (2003), 131–149.Li, Tong and Hailiang Liu1. Stability of a traffic flow model with nonconvex relaxation. Comm. Math. Sci. 3

(2005), 101–118.2. Critical thresholds in a relaxation model for traffic flows. Indianna U. Math. J. 57

(2008), 1409–1430.Lien, Wen-Ching1. Hyperbolic conservation laws with a moving source. Comm. Pure Appl. Math. 52

(1999), 1075–1098.Lien, Wen-Ching and Tai-Ping Liu1. Nonlinear stability of a self-similar 3-dimensional gas flow. Comm. Math. Phys.

204 (1999), 525–549.

Page 59: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 655

Lighthill, M.J.1. A method for rendering approximate solutions to physical problems uniformly

valid. Philos. Magazine 40 (1949), 1179–1201.Lighthill, M.J. and G.B. Whitham1. On kinematic waves. II. Theory of traffic flow on long crowded roads. Proc. Royal

Soc. London 229A (1955), 317–345.Lin, Long-Wei1. On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal.

Appl. 121 (1987), 406–425.2. Vacuum states and equidistribution of the random sequence for Glimm’s scheme.

J. Math. Anal. Appl. 124 (1987), 117–126.Lin, Longwei, Liu Hongxia and Tong Yang1. Existence of globally bounded continuous solutions for nonisentropic gas dynam-

ics equations. J. Math. Anal. Appl. 209 (1997), 492–506.Lin, Long-Wei and Tong Yang1. Convergence of the viscosity method for the system of isentropic gas dynamics

in Lagrangian coordinates. J. Diff. Eqs. 102 (1993), 330–341.Lin, Peixiong1. Young measures and an application of compensated compactness to one-dimens-

ional nonlinear elastodynamics. Trans. AMS 329 (1992), 377–413.Lin, Xiao-Biao1. Generalized Rankine-Hugoniot condition and shock solutions for quasilinear hy-

perbolic systems. J. Diff. Eqs. 168 (2000), 321–354.2. Analytic semigroup generated by the linearization of a Riemann-Dafermos solu-

tion. Dyn. PDE 1 (2004), 193–207.3. L2 semigroup and linear stability for Riemann solutions of conservation laws.

Dynamics of PDE 2 (2005) 301–333.4. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a sys-

tem of conservation laws: an analytic approach. J. Dynam. Diff. Eqs. 18 (2006),1–52.

5. Gearhart-Pruss theorem and linear stability for Riemann solutions of conservationlaws. J. Dynamics Diff. Eqs. 19 (2007), 1037–1074.

Lin, Xiao-Biao and S. Schecter1. Stability of self-similar solutions of the Dafermos regularization of a system of

conservation laws. SIAM J. Math. Anal. 35 (2003), 884–921.Lindquist, W.B.1. The scalar Riemann problem in two spatial dimensions: Piecewise smoothness of

solutions. SIAM J. Math. Anal. 17 (1986), 1178–1197.Lions, P.-L.1. Generalized Solutions of Hamilton-Jacobi Equations. London: Pitman, 1982.2. Mathematical Topics in Fluid Mechanics Vols. I-II. Oxford: Oxford University

Press, 1996–1998.

Page 60: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

656 Bibliography

Lions, P.-L., Perthame, B. and P.E. Souganidis1. Existence and stability of entropy solutions for the hyperbolic systems of isen-

tropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl.Math. 49 (1996), 599–638.

Lions, P.-L., Perthame, B. and E. Tadmor1. Kinetic formulation for the isentropic gas dynamics and p-systems. Comm. Math.

Phys. 163 (1994), 415–431.2. A kinetic formulation of multidimensional scalar conservation laws and related

equations. J. AMS 7 (1994), 169–191.Liu, Hailiang1. Asymptotic stability of relaxation shock profiles for hyperbolic conservation

laws. J. Diff. Eqs. 192 (2003), 285–307.Liu, Hailiang and R. Natalini1. Long-time diffusive behavior of solutions to a hyperbolic relaxation system.

Asymptot. Anal. 25 (2001), 21–38.Liu, Hailiang and E. Tadmor1. Rotation prevents finite-time breakdown. Physica D 188 (2004), 262–276.Liu, Hailiang, Wang, Jinghua and Tong Yang1. Stability of a relaxation model with nonconvex flux. SIAM J. Math. Anal. 29

(1998), 18–29.Liu, Hailiang and Wen-An Yong1. Time asymptotic stability of boundary-layers for a hyperbolic relaxation system.

Comm. PDE 26 (2001), 1323–1343.Liu, Hongxia and Tong Yang1. A nonlinear functional for general scalar hyperbolic conservation laws. J. Diff.

Eqs. 235 (2007), 658–667.Liu, Jian-Guo and Zhou Ping Xin1. L1-stability of stationary discrete shocks. Math. Comp. 60 (1993), 233–244.2. Nonlinear stability of discrete shocks for systems of conservation laws. Arch.

Rational Mech. Anal. 125 (1993), 217–256.Liu, Tai-Ping1. The Riemann problem for general system of conservation laws. J. Diff. Eqs. 18

(1975), 218–234.2. The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53

(1976), 78–88.3. Uniqueness of weak solutions of the Cauchy problem for general 2×2 conserva-

tion laws. J. Diff. Eqs. 20 (1976), 369–388.4. Shock waves in the nonisentropic gas flow. J. Diff. Eqs. 22 (1976), 442–452.5. Solutions in the large for the equations of nonisentropic gas dynamics. Indiana

U. Math. J. 26 (1977), 147–177.6. Large time behavior of solutions of initial and initial-boundary value problems

of a general system of hyperbolic conservation laws. Comm. Math. Phys. 55(1977), 163–177.

Page 61: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 657

7. The deterministic version of the Glimm scheme. Comm. Math. Phys. 57 (1977),135–148.

8. Decay to N-waves of solutions of general systems of nonlinear hyperbolic con-servation laws. Comm. Pure Appl. Math. 30 (1977), 585–610.

9. Linear and nonlinear large-time behavior of solutions of hyperbolic conserva-tion laws. Comm. Pure Appl. Math. 30 (1977), 767–796.

10. Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal.64 (1977), 137–168.

11. Asymptotic behavior of solutions of general systems of nonlinear hyperbolicconservation laws. Indiana U. Math. J. 27 (1978), 211–253.

12. The free piston problem for gas dynamics. J. Diff. Eqs. 30 (1978), 175–191.13. Development of singularities in the nonlinear waves for quasilinear hyperbolic

partial differential equations. J. Diff. Eqs. 33 (1979), 92–111.14. Quasilinear hyperbolic systems. Comm. Math. Phys. 68 (1979), 141–172.15. Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981),

No. 240.16. Nonlinear stability and instability of transonic flows through a nozzle. Comm.

Math. Phys. 83 (1982), 243–260.17. Transonic gas flow in a duct of varying area. Arch. Rational Mech. Anal. 80

(1982), 1–18.18. Resonance for quasilinear hyperbolic equation. Bull. AMS 6 (1982), 463–465.19. Nonlinear stability of shock waves for viscous conservation laws. Memoirs AMS

56 (1985), No. 328.20. Shock waves for compressible Navier-Stokes equations are stable. Comm. Pure

Appl. Math. 39 (1986), 565–594.21. Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987),

153–175.22. Pointwise convergence to N-waves for solutions of hyperbolic conservation

laws. Bull. Inst. Math. Acad. Sinica 15 (1987), 1–17.23. Nonlinear resonance for quasilinear hyperbolic equation. J. Math. Phys. 28

(1987), 2593–2602.24. On the viscosity criterion for hyperbolic conservation laws. Viscous Profiles and

Numerical Methods for Shock Waves, pp. 105–114, ed. M. Shearer. Philadel-phia: SIAM, 1991.

25. Compressible flow with damping and vacuum. Japan J. Indust. Appl. Math. 13(1996), 25–32.

26. Pointwise convergence to shock waves for viscous conservation laws. Comm.Pure Appl. Math. 50 (1997), 1113–1182.

27. Zero dissipation and stability of shocks. Methods Appl. Anal. 5 (1998), 81–94.28. Hyperbolic and Viscous Conservation Laws. CBMS-NSF Regional Conference

Series in Mathematics No. 72. Philadelphia: SIAM, 2000.Liu, Tai-Ping, Matsumura, Akitaka and Kenji Nishihara1. Behavior of solutions for the Burgers equation with boundary corresponding to

rarefaction waves. SIAM J. Math. Anal. 29 (1998), 293–308.

Page 62: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

658 Bibliography

Liu, Tai-Ping and Kenji Nishihara1. Asymptotic behavior of scalar viscous conservation laws with boundary effect.

J. Diff. Eqs. 133 (1997), 296–320.Liu, Tai-Ping and M. Pierre1. Source-solutions and asymptotic behavior in conservation laws. J. Diff. Eqs. 51

(1984), 419–441.Liu, Tai-Ping and T. Ruggeri1. Entropy production and admissibility of shocks. Acta Math. Appl. Sin. 19 (2003),

1–12.Liu, Tai-Ping and J.A. Smoller1. On the vacuum state for the isentropic gas dynamics equations. Adv. in Appl.

Math. 1 (1980), 345–359.Liu, Tai-Ping and Ching-Hua Wang1. On a nonstrictly hyperbolic system of conservation laws. J. Diff. Eqs. 57 (1985),

1–14.Liu, Tai-Ping and Zhou Ping Xin1. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equa-

tions. Comm. Math. Phys. 118 (1988), 451–465.2. Stability of viscous shock waves associated with a system of nonstrictly hyper-

bolic conservation laws. Comm. Pure Appl. Math. 45 (1992), 361–388.3. Pointwise decay to contact discontinuities for systems of viscous conservation

laws. Asian J. Math. 1 (1997), 34–84.Liu, Tai-Ping, Xin Zhou Ping and Tong Yang1. Vacuum states for compressible flow. Discrete Contin. Dynam. Systems 4 (1998),

1–32.Liu, Tai-Ping and Tong Yang1. Compressible Euler equations with vacuum. J. Diff. Eqs. 140 (1997), 223–237.2. L1 stability of conservation laws with coinciding Hugoniot and characteristic

curves. Indiana U. Math. J. 48 (1999), 237–247.3. L1 stability of weak solutions for 2×2 systems of hyperbolic conservation laws.

J. AMS 12 (1999), 729–774.4. A new entropy functional for a scalar conservation laws. Comm. Pure Appl. Math.

52 (1999), 1427–1442.5. Well-posedness theory for hyperbolic conservation laws. Comm. Pure Appl.

Math. 52 (1999), 1553–1586.6. Weak solutions of general systems of hyperbolic conservation laws. Comm. Math.

Phys. 230 (2002), 289–327.Liu, Tai-Ping and Shih-Hsien Yu1. Propagation of a stationary shock layer in the presence of a boundary. Arch. Ra-

tional Mech. Anal. 139 (1997), 57–82.2. Continuum shock profiles for discrete conservation laws. I;II. Comm. Pure Appl.

Math. 52 (1999), 85–127; 1047–1073.3. Nonlinear stability of weak detonation waves for a combustion model. Comm.

Math. Phys. 204 (1999), 551–586.

Page 63: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 659

4. Boltzmann equation: micro-macro decompositions and positivity of shock pro-files. Comm. Math. Phys. 246 (2004), 133–179.

Liu, Tai-Ping and Yanni Zeng1. Large time behavior of solutions for general quasilinear hyperbolic-parabolic sys-

tems of conservaton laws. Memoirs AMS 125 (1997), No. 549.2. Compressible Navier-Stokes equations with zero heat conductivity. J. Diff. Eqs.

153 (1999), 225–291.Liu, Tai-Ping and Tong Zhang1. A scalar combustion model. Arch. Rational Mech. Anal. 114 (1991), 297–312.Liu, Tai-Ping and K. Zumbrun1. On nonlinear stability of general undercompressive viscous shock waves. Comm.

Math. Phys. 174 (1995), 319–345.Liu, Weishi1. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems

of conservation laws. Discrete Contin. Dynam. Systems. 10 (2004), 871–884.Lu, Yun-guang1. Convergence of the viscosity method for some nonlinear hyperbolic systems.

Proc. Royal Soc. Edinburgh 124A (1994), 341–352.2. Hyperbolic Conservation Laws and the Compensated Compactness Method.

Boca Raton: Chapman & Hall/CRC, 2003.3. Existence of global entropy solutions of a nonstrictly hyperbolic system. Arch.

Rational Mech. Anal. 178 (2005), 287–299.4. Nonstrictly hyperbolic systems with stiff relaxation terms. J. Math. Anal. Appl.

324 (2006), 1407–1416.Lu, Yun-guang and C. Klingenberg1. The Cauchy problem for hyperbolic conservation laws with three equations.

J. Math. Anal. Appl. 202 (1996), 206–216.Lucier, B.J.1. A moving mesh numerical method for hyperbolic conservation laws. Math. Com-

put. 46 (1986), 59–69.2. Regularity through approximation for scalar conservation laws. SIAM J. Math.

Anal. 19 (1988), 763–773.Luo, Tao1. Asymptotic stability of planar rarefaction waves for the relaxation approximation

of conservation laws in several dimensions. J. Diff. Eqs. 133 (1997), 255–279.Luo, Tao and R. Natalini1. BV solutions and relaxation limit for a model in viscoelasticity. Proc. Royal Soc.

Edinburgh 128A (1998), 775–795.Luo, Tao, R. Natalini, and Tong Yang1. Global BV solutions to a p-system with relaxation. J. Diff. Eqs. 162 (2000), 174–

198.Luo, Tao and D. Serre1. Linear stability of shock profiles for a rate-type viscoelastic system with relax-

ation. Quart. Appl. Math. 56 (1998), 569–586.

Page 64: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

660 Bibliography

Luo, Tao and J. Smoller1. Rotating fluids with self-gravitation in bounded domains. Arch. Rational Mech.

Anal. 173 (2004), 345–377.2. Existence and nonlinear stability of rotating star solutions of the compressible

Euler-Poisson equations. Arch. Rational Mech. Anal. 191 (2009), 447–496.Luo, Tao and Zhou Ping Xin1. Nonlinear stability of strong shocks for a relaxation system in several space di-

mensions. J. Diff. Eqs. 139 (1997), 365–408.Luo, Tao and Tong Yang1. Global weak solutions for elastic equations with damping and different end states.

Proc. Royal Soc. Edinburgh 128A (1998), 797–807.2. Interaction of elementary waves for compressible Euler equations with frictional

damping. J. Diff. Eqs. 161 (2000), 42–86.3. Global structure and asymptotic behavior of weak solutions to flood wave equa-

tions. J. Diff. Eqs. 207 (2004), 117–160.Luskin, M. and B. Temple1. The existence of a global weak solution to the nonlinear waterhammer problem.

Comm. Pure Appl. Math. 35 (1982), 697–735.Lyapidevskii, V. Yu.1. The continuous dependence on the initial conditions of the generalized solutions

of the gas-dynamic system of equations. Zh. Vychisl. Mat. Mat. Fiz. 14 (1974),982–991.

Lyberopoulos, A.N.1. Large-time structure of solutions of scalar conservation laws without convexity

in the presence of a linear source field. J. Diff. Eqs. 99 (1992), 342–380.2. A Poincare-Bendixson theorem for scalar balance laws. Proc. Royal Soc. Edin-

burgh 124A (1994), 589–607.Lyng, G. and K. Zumbrun1. One-dimensional stability of viscous strong detonation waves. Arch. Rational

Mech. Anal. 173 (2004), 213–277.Lyons, W.K.1. Conservation laws with sharp inhomogeneities. Quart. Appl. Math. XL (1983),

385–393.MacCamy, R.C.

1. A model for one-dimensional nonlinear viscoelasticity. Quart. Appl. Math. XXXV(1977), 21–33.

Mailybaev, A.A. and D. Marchesin1. Dual-family viscous shock waves in systems of conservation laws: A surprising

example. (Preprint).2. Hyperbolicity singularities in rarefaction waves. J. Dynam. Diff. Eqs. 20 (2008),

1–29.3. Lax shocks in mixed-type systems of conservation laws. J. Hyperbolic Diff. Eqs.

5 (2008), 295–315.

Page 65: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 661

Majda, A.1. A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41 (1981),

70–93.2. The stability of multi-dimensional shock fronts. Memoirs AMS 41 (1983), No.

275.3. The existence of multi-dimensional shock fronts. Memoirs AMS 43 (1983), No.

281.4. Compressible Fluid Flow and Systems of Conservation Laws in Several Space

Variables. New York: Springer, 1984.5. Nonlinear geometric optics for hyperbolic systems of conservation laws. Oscilla-

tion Theory, Computation and Methods of Compensated Compactness, pp. 115–165, eds. C. Dafermos, J.L. Ericksen, D. Kinderlehrer and M. Slemrod. NewYork: Springer, 1986.

Majda, A. and R.L. Pego1. Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985),

229–262.Majda, A. and R.R. Rosales1. Resonantly interacting weakly nonlinear hyperbolic waves, I. A single space vari-

able. Studies Appl. Math. 71 (1984), 149–179.Majda, A., Rosales, R. and M. Schonbek1. A canonical system of integrodifferential equations arising in resonant nonlinear

acoustics. Studies Appl. Math. 79 (1988), 205–262.Makino, T., Ukai, S. and Shuichi Kawashima1. Sur la solution a support compact de l’ equations d’Euler compressible. Japan

J. Appl. Math. 3 (1986), 249–257.Malek, J., Necas, J., Rokyta, M. and M. Ruzicka1. Weak and Measure-Valued Solutions to Evolutionary PDEs. London: Chapman

& Hall, 1996.Marcati, P. and Ming Mei1. Convergence to nonlinear diffusion waves for solutions of the initial boundary

value problem to the hyperbolic conservation laws with damping. Quart. Appl.Math. LVIII (2000), 763–784.

Marcati, P. and R. Natalini1. Convergence of the pseudoviscosity approximation for conservation laws. Non-

linear Anal. 23 (1994), 621–628.2. Weak solutions to a hydrodynamic model for semiconductors and relaxation to

the drift-diffusion equation. Arch. Rational Mech. Anal. 129 (1995), 129–145.3. Weak solutions to a hydrodynamic model for semiconductors-the Cauchy prob-

lem. Proc. Royal Soc. Edinburgh 125A (1995), 115–131.Marcati, P. and Kenji Nishihara1. The Lp − Lq estimates of solutions to one-dimensional damped wave equations

and their application to the compressible flow through porous media. J. Diff. Eqs.191 (2003), 445–469.

Page 66: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

662 Bibliography

Marcati, P. and Ronghua Pan1. On the diffusive profiles for the system of compressible adiabatic flow through

porous media. SIAM J Math. Anal. 33 (2001), 790–826.Marcati, P. and B. Rubino1. History-dependent scalar conservation laws. Rend. Sem. Mat. Univ. Padova 96

(1996), 195–204.2. Entropy methods for nonstrictly hyperbolic systems. J. Partial Diff. Eqs. 10

(1997), 333–346.3. Hyperbolic to parabolic relaxation theory for quasilinear first order systems.

J. Diff. Eqs. 162 (2000), 359–399.Marchesin, D. and A.A. Mailybaev1. Dual-family viscous shock waves in n conservation laws with application to

multi-phase flow in porous media. Arch. Rational Mech. Anal. 182 (2006), 1–24.

Marigo, A. and B. Piccoli1. A fluid dynamic model for T -junctions. SIAM J. Math. Anal. 39 (2008), 2016–

2032.Markowich, P.A., Ringhofer, C.A. and C. Schmeiser1. Semiconductor Equations. Vienna: Springer, 1990.Marsden, J.E. and T.J.R. Hughes1. Mathematical Foundations of Elasticity. Englewood Cliffs: Prentice-Hall, 1983.Marson, A.1. Nonconvex conservation laws and ordinary differential equations. J. London

Math. Soc. Ser. II, 69 (2004), 428–440.Marzocchi, A. and A. Musesti1. Decomposition and integral representation of Cauchy interactions associated with

measures. Contin. Mech. Thermodyn. 13 (2001), 149–169.2. The Cauchy stress theorem for bodies with finite perimeter. Rend. Sem. Math.

Univ. Padova 109 (2003), 1–11.Mascia, C.1. Continuity in finite time of entropy solutions for nonconvex conservation laws

with reaction term. Comm. PDE 23 (1998), 913–931.2. Qualitative behavior of conservation laws with reaction term and nonconvex flux.

Quart. Appl. Math. LVIII (2000), 739–761.3. First order singular perturbations of quasilinear nonconvex type. J. Diff. Eqs. 181

(2002), 31–57.Mascia, C. and R. Natalini1. L1 nonlinear stability of traveling waves for a hyperbolic system with relaxation.

J. Diff. Eqs. 132 (1996), 275–292.Mascia, C. and C. Sinestrari1. The perturbed Riemann problem for a balance law. Adv. Diff. Eqs. 2 (1997), 779–

810.Mascia, C. and A. Terracina1. Large-time behavior for conservation laws with source in a bounded domain. J.

Diff. Eqs. 159 (1999), 485–514.

Page 67: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 663

Mascia, C. and K. Zumbrun1. Pointwise Green’s function bounds and stability of relaxation shocks. Indiana U.

Math. J. 51 (2002), 773–904.2. Pointwise Green function bounds for shock profiles of systems with real viscosity.

Arch. Rational Mech. Anal. 169 (2003), 177–263.3. Stability of small amplitude shock profiles of symmetric hyperbolic-parabolic

systems. Comm. Pure Appl. Math. 57 (2004), 841–876.4. Stability of large amplitude viscous shock profiles of hyperbolic-parabolic sys-

tems. Arch. Rational Mech. Anal. 172 (2004), 93–131.5. Stability of large-amplitude shock profiles of general relaxation systems. SIAM J.

Math. Anal. 37 (2005), 889–913.6. Spectral stability of weak relaxation shock profiles. Comm. PDE 34 (2009), 119–

136.Matano, Hiroshi1. Nonincrease of the lap-number of a solution for a one-dimensional semilinear

parabolic equation. J. Fac. Sci. Univ. Tokyo, Sect. 1A 29 (1982), 401–441.Matsumura, Akitaka, and Kenji Nishihara1. On the stability of traveling wave solutions to a one-dimensional model system

for compressible viscous gas. Japan J. Appl. Math. 2 (1985), 17–25.2. Asymptotic toward the rarefaction waves of a one-dimensional model system for

compressible viscous gas. Japan J. Appl. Math. 3 (1986), 1–13.3. Global stability of the rarefaction waves of a one-dimensional model system for

compressible viscous gas. Comm. Math. Phys. 144 (1992), 325–335.4. Asymptotic stabiility for traveling waves for scalar viscous conservation laws

with non-convex nonlinearity. Comm. Math. Phys. 165 (1994), 83–96.5. global asymptotics toward the rarefaction wave for solutions of viscous p-system

with boundary effect. Quart. Appl. Math. LVIII (2000), 69–83.Maxwell, J.C.1. On the dynamical theory of gases. Philos. Trans. Roy. Soc. London Ser. A 157

(1867), 49–88.Menon, Govind and R.L. Pego1. Universality classes in Burgers turbulence. Comm. Math. Phys. 273 (2007), 177–

202.Mercier, J.M. and B. Piccoli1. Global continuous Riemann solver for nonlinear elasticity. Arch. Rational Mech.

Anal. 156 (2000), 89–119.2. Admissible Riemann solvers for genuinely nonlinear p-systems of mixed type. J.

Diff. Eqs. 180 (2002), 395–426.Metivier, G.1. Problemes de Cauchy et ondes non lineaires. Journees Equations aux derivees

partielles (1986), 1–29.2. Stability of multidimensional weak shocks. Comm. PDE 15 (1990), 983–1028.3. Stability of multidimensional shocks. Advances in the Theory of Shock Waves,

pp. 25–103, ed. H. Freistuhler and A. Szepessy. Boston: Birkhauser, 2001.

Page 68: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

664 Bibliography

Metivier, G. and K. Zumbrun1. Hyperbolic boundary value problems for symmetric systems with variable multi-

plicities. J. Diff. Eqs. 211 (2005), 61–134.2. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic prob-

lems. Memoirs AMS 175 (2005), No. 826.von Mises, R.V.1. Mathematical Theory of Compressible Fluid Flow. New York: Academic Press,

1958.Mock, M.S. (M. Sever)1. A topological degree for orbits connecting critical points of autonomous systems.

J. Diff. Eqs. 38 (1980), 176–191.Morawetz, C.S.1. On the nonexistence of continuous transonic flows past profiles, I; II; III. Comm.

Pure Appl.Math. 9 (1956), 45–68; 10 (1957), 107–131; 11 (1958), 129–144.2. On a weak solution for a transonic flow problem. Comm. Pure Appl. Math. 38

(1985), 797–818.3. Potential theory for regular and Mach reflection of a shock at a wedge. Comm.

Pure Appl. Math. 47 (1994), 593–624.4. On steady transonic flow by compensated compactness. Methods Appl. Anal. 2

(1995), 257–268.Morrey, C.B.

1. Quasiconvexity and the lower semicontinuity of multiple integrals. Pacific J. Math.2 (1952), 25–53.

Muller, I.1. On the entropy inequality. Arch. Rational Mech. Anal. 26 (1967), 118–141.2. Thermodynamics. London: Pitman, 1985.Muller, I. and T. Ruggeri

1. Rational Extended Thermodynamics. (Second Edition). New York: Springer, 1998.

Muller, S. and I. Fonseca1. A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math.

Anal. 30 (1999), 1355–1390.Murat, F.1. Compacite par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 5

(1978), 489–507.2. L’ injection du cone positif de H−1 dans W−1,q est compacte pour tout q < 2.

J. Math. Pures Appl. 60 (1981), 309–322.Natalini, R.1. Convergence to equilibrium for the relaxation approximations of conservation

laws. Comm. Pure Appl. Math. 49 (1996), 795–823.2. A discrete kinetic approximation of entropy solutions to multidimensional scalar

conservation laws. J. Diff. Eqs. 148 (1998), 292–317.

Page 69: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 665

3. Recent mathematical results on hyperbolic relaxation problems. Analysis of Sys-tems of Conservation Laws, pp. 128–198, ed. H. Freistuhler. London: Chapmanand Hall/CRC, 1998.

Natalini, R., Sinestrari C. and A. Tesei1. Incomplete blowup of solutions of quasilinear hyperbolic balance laws. Arch.

Rational Mech. Anal. 135 (1996), 259–296.Natalini, R. and A. Terracina1. Convergence of a relaxation approximation to a boundary value problem for con-

servation laws. Comm. PDE 26 (2001), 1235–1252.Nessyahu, H. and E. Tadmor1. The convergence rate of approximate solutions for nonlinear scalar conservation

laws. SIAM J. Num. Anal. 29 (1992), 1505–1519.von Neumann, J.1. Theory of shock waves. Collected Works, Vol. VI, pp. 178–202. Oxford: Perga-

mon Press, 1963.2. Oblique reflection of shocks. Collected Works, Vol. VI, pp. 238–299. Oxford:

Pergamon Press, 1963.3. Refraction, intersection and reflection of shock waves. Collected Works, Vol. VI,

pp. 300–308. Oxford: Pergamon Press, 1963.4. Proposal and analysis of a new numerical method for the treatment of hydro-

dynamical shock problems. Collected Works, Vol. VI, pp. 361–379. Oxford:Pergamon Press, 1963.

5. Discussion of the existence and uniqueness or multiplicity of solutions of theaerodynamical equations. Collected Works, Vol. VI, pp. 348–356. Oxford:Pergamon Press 1963.

Neves, W. and D. Serre1. The incompleteness of the Born-Infeld model for nonlinear multi-d

Maxwell’s equations. Quart. Appl. Math. LXIII (2005), 343–368.2. Ill-posedness of the Cauchy problem for totally degenerate system of conserva-

tion laws. Electron. J. Diff. Eqs., No. 124 (2005).Nickel, K.1. Gestaltaussagen uber Losungen parabolischer Differentialgleichungen. J.

Reine Angew. Math. 211 (1962), 78–94.Nishibata, Shinya and Shih-Hsien Yu1. The asymptotic behavior of the hyperbolic conservation laws with relaxation on

the quarter-plane. SIAM J. Math. Anal. 28 (1997), 304–321.Nishida, T.1. Global solution for an initial boundary value problem of a quasilinear hyperbolic

system. Proc. Japan Acad. 44 (1968), 642–646.Nishida, T. and J.A. Smoller1. Solutions in the large for some nonlinear hyperbolic conservation laws. Comm.

Pure Appl. Math. 26 (1973), 183–200.2. Mixed problems for nonlinear conservation laws. J. Diff. Eqs. 23 (1977), 244–

269.

Page 70: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

666 Bibliography

Nishihara, Kenji, Wang, Weike and Tong Yang1. Lp-convergence rate to nonlinear diffusion waves for p-system with damping. J.

Diff. Eqs. 161 (2000), 191–218.Nishihara, Kenji and Tong Yang1. Boundary effect on asymptotic behaviour of solutions to the p-system with linear

damping. J. Diff. Eqs. 156 (1999), 439–458.Nishihara, Kenji, Yang Tong and Huijiang Zhao1. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes

equations. SIAM J. Math. Anal. 35 (2004), 1561–1597.Nishikawa, Masataka and Kenji Nishihara1. Asymptotics toward the planar rarefaction wave for viscous conservation laws in

two space dimensions. Trans. AMS 352 (2000), 1203–1215.Noelle, S.1. Development of singularities for the complex Burgers equation. Nonlinear Anal.

26 (1986), 1313–1321.2. Radially symmetric solutions for a class of hyperbolic systems of conservation

laws. ZAMP 48 (1997), 676–679.Noll, W.1. A mathematical theory of the mechanical behavior of continuous media. Arch.

Rational Mech. Anal. 2 (1958), 197–226.2. The foundations of classical mechanics in the light of recent advances in contin-

uum mechanics. The Axiomatic Method, pp. 266–281. Amsterdam: North Hol-land, 1959.

Nouri, A., Omrane, A. and J.P. Vila1. Boundary conditions for scalar conservation laws from a kinetic point of view.

J. Stat. Phys. 94 (1999), 779–804.Oh, Myunghyun and K. Zumbrun1. Stability of periodic solutions of conservation laws with viscosity. Arch. Rational

Mech. Anal. 166 (2003), 99–166; 167–196.2. Low-frequency stability analysis of periodic traveling-wave solutions of viscous

conservation laws in several dimensions. Z. Anal. Anwend. 25 (2006), 1–21.Oleinik, O.A.1. The Cauchy problem for nonlinear equations in a class of discontinuous func-

tions. Dokl. Akad. Nauk SSSR 95 (1954), 451–454. English translation: AMSTranslations, Ser. II, 42, 7–12.

2. Discontinuous solutions of non-linear differential equations. Usp. Mat. Nauk 12(1957), 3–73. English translation: AMS Translations, Ser. II, 26, 95–172.

3. On the uniqueness of the generalized solution of the Cauchy problem for a non-linear system of equations occurring in mechanics. Usp. Mat. Nauk 12 (1957),169–176.

4. Uniqueness and stability of the generalized solution of the Cauchy problem forquasilinear equation. Usp. Mat. Nauk 14 (1959), 165–170. English translation:AMS Translations, Ser. II, 33, 285–290.

Osher, S. and E. Tadmor1. On the convergence of difference approximations to scalar conservation laws.

Math. Comp. 50 (1988), 19–51.

Page 71: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 667

Ostrov, D.N.1. Asymptotic behavior of two interreacting chemicals in a chromatography reactor.

SIAM J. Math. Anal. 27 (1996), 1559–1596.2. Solutions of Hamilton-Jacobi equations and scalar conservation laws with dis-

continuous space-time dependence. J. Diff. Eqs. 182 (2002), 51–77.3. Nonuniqueness for the vanishing viscosity solution with fixed initial condition in

a nonstrictly hyperbolic system of conservation laws. J. Math. Anal. Appl. 335(2007), 996–1012.

Otto, F.1. Initial-boundary value problem for a scalar conservation law. C.R. Acad. Sci.

Paris, Serie I, 322 (1996), 729–734.2. A regularizing effect of nonlinear transport equations. Quart. Appl. Math. LVI

(1998), 355–375.Otto, F. and M. Westdickenberg1. Convergence of thin film approximation for a scalar conservation law. J. Hyper-

bolic Diff. Eqs. 2 (2005), 183–199.Pan, Ronghua1. Boundary effects and large time behavior for the system of compressible adiabatic

flow through porous media. Michigan Math. J. 49 (2001), 519–540.2. Darcy’s law as long-time limit of adiabatic porous media flow. J. Diff. Eqs. 220

(2006), 121–146.Pan, Tao and Longwei Lin1. The global solution of the scalar nonconvex conservation law with boundary con-

dition. J. PDE 8 (1995), 371–383; 11 (1998), 1–8.Panov, E. Yu.1. Uniqueness of the solution to the Cauchy problem for a first-order quasilinear

equation with an admissible strictly convex entropy. Mat. Zametki 55 (1994),116–129. English translation: Mathematical Notes 55 (1994), 517–525.

2. On measure-valued solutions of the Cauchy problem for a first-order quasilinearequation. Izv. Math. 60 (1996), 335–377.

3. On the Cauchy problem for a first-order quasilinear equation on a manifold. Dif-ferential Equations 33 (1997), 257–266.

4. On the theory of entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sb. Math. 191 (2000), 121–150.

5. Existence of strong traces for generalized solutions of multidimensional scalarconservation laws. J. Hyperbolic Diff. Eqs. 2 (2005), 885–908.

6. Existence of strong traces for quasi-solutions of multidimensional conservationlaws. J. Hyperbolic Diff. Eqs. 4 (2007), 629–647.

7. Existence and strong precompactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. (To appear).

8. On weak completeness of the set of entropy solutions to a scalar conservationlaw. SIAM J. Math. Anal. 41 (2009), 26–36.

9. On existence and uniqueness of entropy solutions to the Cauchy problem fora conservation law with discontinuous flux. J. Hyperbolic Diff. Eqs. 6 (2009),525–548.

Page 72: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

668 Bibliography

Panov, E. Yu. and V.M. Shelkovich1. δ ′-shock waves as a new type of solutions to systems of conservation laws. J.

Diff. Eqs. 228 (2006), 49–86.Pant, V.1. Global entropy solutions for isentropic relativistic fluid dynamics. Comm. PDE

21 (1996), 1609–1641.Pego, R.L.1. Stable viscosities and shock profiles for systems of conservation laws. Trans.

AMS 282 (1984), 749–763.2. Nonexistence of a shock layer in gas dynamics with a nonconvex equation of

state. Arch. Rational Mech. Anal. 94 (1986), 165–178.3. Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and

Stability. Arch. Rational Mech. Anal. 97 (1987), 353–394.4. Some explicit resonating waves in weakly nonlinear gas dynamics. Studies Appl.

Math. 79 (1988), 263–270.Pego, R.L. and D. Serre1. Instabilities in Glimm’s scheme for two systems of mixed type. SIAM J. Num.

Anal. 25 (1988), 965–988.Pence, T.J.1. On the emergence and propagation of a phase boundary in an elastic bar with a

suddenly applied end load. J. Elasticity 16 (1986), 3–42.2. On the mechanical dissipation of solutions to the Riemann problem for impact

involving a two-phase elastic material. Arch. Rational Mech. Anal. 117 (1992),1–52.

Peng, Yue-Jun1. Entropy solutions of Born-Infeld systems in one space dimension. Rend. Circ.

Mat. Palermo, Ser. II, Suppl. 78 (2006), 259–271.2. Euler-Lagrange change of variable in conservation laws. Nonlinearity 20 (2007),

1927–1953.Pericak-Spector, K.A. and S.J. Spector1. Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics.

Arch. Rational Mech. Anal. 101 (1988), 293–317.2. On dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Ed-

inburgh 127A (1997), 837–857.Perthame, B.1. Uniqueness and error estimates in first order quasilinear conservation laws via

the kinetic entropy defect measure. J. Math. Pures Appl. 77 (1998), 1055–1064.2. Kinetic Formulations of Conservation Laws. Oxford: Oxford University Press,

2002.3. Kinetic formulations in parabolic and hyperbolic PDE: From theory to numerics.

Handbook of Differential Equations. Evolutionary Equations. Vol. I, pp. 437–471, ed. C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier, 2004.

Page 73: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 669

Perthame, B. and M. Pulvirenti1. On some large systems of random particles which approximate scalar conserva-

tion laws. Asympt. Anal. 10 (1995), 263–278.Perthame, B. and L. Ryzhik1. Moderate dispersion in conservation laws with convex fluxes. Commun. Math.

Sci. 5 (2007), 473–484.Perthame, B. and E. Tadmor1. A kinetic equation with kinetic entropy functions for scalar conservation laws.

Comm. Math. Phys. 136 (1991), 501–517.Perthame, B. and A.E. Tzavaras1. Kinetic formulation for systems of two conservation laws and elastodynamics.

Arch. Rational Mech. Anal. 155 (2000), 1–48.Perthame, B. and M. Westdickenberg1. Total oscillation diminishing property for scalar conservation laws. Numerische

Mathematik 100 (2005), 331–349.Peters, G.R. and S. Canic1. On the oscillatory solutions in hyperbolic conservation laws. Nonlinear Anal.

Real World Appl. 1 (2000), 287–314.Plaza, R. and K. Zumbrun1. An Evans function approach to spectral stability of small-amplitude shock pro-

files. Discrete Contin. Dyn. Syst. 10 (2004), 885–924.Poisson, S.D.1. Memoire sur la theorie du son. J. Ecole Polytechnique, 7 (1808), 319–392.2. Memoire sur les equations generales de l’ equilibre et du mouvement des corps

elastiques et des fluides. J. Ecole Polytechnique, 13 (1831), 1–174.Portilheiro, M.1. Weak solutions for equations defined by accretive operators. I. Proc. Royal Soc.

Edinburgh 133A (2003), 1193–1207. II. J. Diff. Eqs. 195 (2003), 66–81.Portilheiro, M. and A. Tzavaras1. Hydrodynamic limits for kinetic equations and the diffusive approximation of

radiative transport for acoustic waves. Trans. AMS 359 (2007), 529–565.Poupaud, F. and M. Rascle1. Measure solutions to the linear multi-dimensional transport equation with non-

smooth coefficients. Comm. PDE 22 (1997), 337–358.Poupaud, F., Rascle, M. and J.P. Vila1. Global solutions to the isothermal Euler-Poisson system with arbitrarily large

data. J. Diff. Eqs. 123 (1995), 93–121.Qin, Tiehu1. Symmetrizing the nonlinear elastodynamic system. J. Elasticity. 50 (1998), 245–

252.Quinn, B. (B.L. Keyfitz)1. Solutions with shocks: an example of an L1-contraction semi-group. Comm. Pure

Appl. Math. 24 (1971), 125–132.

Page 74: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

670 Bibliography

Racke, R.1. Thermoelasticity. Handbook of Differential Equations: Evolutionary Equations,

Vol. V, pp. 315–420, ed. C.M. Dafermos and M. Pokorny. Amsterdam: Elsevier,2009.

Rankine, W.J.M.1. On the thermodynamic theory of waves of finite longitudinal disturbance. Phil.

Trans. Royal Soc. London 160 (1870), 277–288.Rascle, M.1. On the static and dynamic study of oscillations for some nonlinear hyperbolic

systems of conservation laws. Ann. Inst. Henri Poincare 8 (1991), 333–350.Rauch, J.1. BV estimates fail for most quasilinear hyperbolic systems in dimension greater

than one. Comm. Math. Phys. 106 (1986), 481–484.Rayleigh, Lord (J.W. Strutt)1. Letter to Stokes, dated June 2, 1877. Mathematical and Physical Papers by

G.G. Stokes, reprinted with a new preface by C.A. Truesdell, Vol. I, pp. ivG–ivH. New York: Johnson Reprint Co., 1966.

2. The Theory of Sound, Vol. II. London: MacMillan 1878.3. Note on tidal bores. Proc. Royal Soc. London 81A (1908), 448–449.4. Aerial plane waves of finite amplitude. Proc. Royal Soc. London 84A (1910),

247–284.Renardy, M., Hrusa, W.J. and J.A. Nohel1. Mathematical Problems in Viscoelasticity. New York: Wiley, 1987.Rezakhanlou, F.1. Microscopic structure of shocks in one-conservation laws. Ann. Inst. Henri

Poincare 12 (1995), 119–153.Rhee, Hyun-Ku, Aris, R. and N.R. Amundson1. First-Order Partial Differential Equations, Vols. I-II. Englewood Cliffs: Prentice-

Hall, 1986–1989.Riemann, B.1. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite.

Gott. Abh. Math. Cl. 8 (1860), 43–65.Risebro, N.H.1. A front-tracking alternative to the random choice method. Proc. AMS 117 (1993),

1125–1139.Risebro, N.H. and A. Tveito1. Front tracking applied to a non-strictly hyperbolic system of conservation laws.

SIAM J. Sci. Statist. Comput. 12 (1991), 1401–1419.2. A front tracking method for conservation laws in one dimension. J. Comput. Phys.

101 (1992), 130–139.Rivlin, R.S. and J.L. Ericksen1. Stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4

(1955), 323–425.

Page 75: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 671

Robyr, R.1. SBV regularity of entropy solutions for a class of genuinely nonlinear scalar bal-

ance laws with non-convex flux function. J. Hyperbolic Diff. Eqs. 5 (2008), 449–475.

Rohde, C. and Wen-An Yong1. The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solution for

a model problem. J. Diff. Eqs. 234 (2007), 91–109.2. Dissipative entropy and global smooth solutions for radiation hydrodynamics and

magnetohydrodynamics. Math. Models Meth. Appl. Sci. 18 (2008), 2151–2174.Rosakis, P.1. An equal area rule for dissipative kinetics of propagating strain discontinuities.

SIAM J. Appl. Math. 55 (1995), 100–123.Rousset, F.1. Inviscid boundary conditions and stability of viscous boundary layers. Asymptot.

Anal. 26 (2001), 285–306.2. The residual boundary conditions coming from the real vanishing viscosity

method. Discrete Contin. Dyn. Syst. 8 (2002), 605–625.3. Stability of small amplitude bondary layers for mixed hyperbolic-parabolic sys-

tems. Trans. AMS 355 (2003), 2991–3008.4. Viscous approximation of strong shocks of systems of conservation laws. SIAM

J. Math. Anal. 35 (2003), 492–519.Roytburd V. and M. Slemrod1. Positively invariant regions for a problem in phase transitions. Arch. Rational

Mech. Anal. 93 (1986), 61–79.Rozdestvenskii, B.L.1. A new method of solving the Cauchy problem in the large for quasilinear equa-

tions. Dokl. Akad. Nauk SSSR 138 (1961), 309–312.Rozdestvenskii, B.L. and N.N. Janenko1. Systems of Quasilinear Equations and Their Applications to Gas Dynamics.

Moscow: Nauka, 1978. English translation: Providence: American Mathemati-cal Society, 1983.

Rubino, B.1. On the vanishing viscosity approximation to the Cauchy problem for a 2× 2

system of conservation laws. Ann. Inst. Henri Poincare 10 (1993), 627–656.2. Compactness framework and convergence of Lax-Friedrichs and Godunov

schemes for a 2× 2 nonstrictly hyperbolic system of conservation laws. Quart.Appl. Math. LIII (1995), 401–421.

3. Porous media flow as the limit of a nonstrictly hyperbolic system of conservationlaws. Comm. PDE 21 (1996), 1–21.

Ruggeri, T.1. Galilean invariance and entropy principle for systems of balance laws. Cont.

Mech. Therm. 1 (1989), 3–20.2. Convexity and symmetrization in relativistic theories. Cont. Mech. Therm. 2

(1990), 163–177.

Page 76: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

672 Bibliography

Ruggeri, T. and D. Serre1. Stability of constant equilibrium state for dissipative balance laws systems with

a convex entropy. Quart. Appl. Math. 62 (2004), 163–179.Ruggeri, T. and S. Simic1. Nonlinear wave propagation in binary mixtures of Euler fluids. Cont. Mech.

Therm. 16 (2004), 125–148.Ruggeri, T. and A. Strumia1. Main field and convex covariant density for quasilinear hyperbolic systems. Ann.

Inst. Henri Poincare, Section A, 34 (1981), 65–84.Sable-Tougeron, M.1. Methode de Glimm et probleme mixte. Ann. Inst. Henri Poincare 10 (1993), 423–

443.2. Stabilite de la structure d’une solution de Riemann a deux grand chocs. Ann.

Univ. Ferrara 44 (1998), 129–172.Saint-Venant, A.J.C.1. Theorie du mouvement non-permanent des eaux, avee application aux crues des

rivieres et a l’ introduction des marees dans leur lit. C.R. Acad. Sci. Paris 73(1871), 147–154.

Schaeffer, D.G.1. A regularity theorem for conservation laws. Adv. in Math. 11 (1973), 368–386.2. Supersonic flow past a nearly straight wedge. Duke Math. J. 43 (1976), 637–670.

Schaeffer, D.G., Schecter, S. and M. Shearer1. Non-strictly hyperbolic conservation laws with a parabolic line. J. Diff. Eqs. 103

(1993), 94–126.Schaeffer D. and M. Shearer1. The classification of 2× 2 nonstrictly hyperbolic conservation laws, with appli-

cation to oil recovery. Comm. Pure Appl. Math. 40 (1987), 141–178.2. Riemann problem for nonstrictly hyperbolic 2×2 systems of conservation laws.

Trans. AMS 304 (1987), 267–306.Schatzman, M.1. Continuous Glimm functionals and uniqueness of solutions of the Riemann prob-

lem. Indiana U. Math. J. 34 (1985), 533–589.Schauder, J.1. Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialglei-

chung zweiter Ordnung in beliebiger Anzahl von unabhangigen Veranderlichen.Fundamenta Mathematicae XXIV (1935), 213–246.

Schecter, S.1. Codimension-one Riemann solutions: classical missing rarefaction cases. J. Diff.

Eqs. 157 (1999), 247–318.2. Codimension-one Riemann solutions: missing rarefactions in transitional wave

groups. Adv. Diff. Eqs. 5 (2000), 929–975.3. Codimension-one Riemann solutions: missing rarefactions adjacent to doubly

sonic transitional waves. J. Dynam. Diff. Eqs. 14 (2002), 295–348.

Page 77: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 673

4. Undercompressive shock waves and the Dafermos regularization. Nonlinearity15 (2002), 1361–1377.

5. Existence of Dafermos profiles for singular shocks. J. Diff. Eqs. 205 (2004), 185–210.

6. Eigenvalues of self-similar solutions of the Dafermos regularization of a systemof conservation laws via geometric singular perturbation theory. J. Dynam. Diff.Eqs. 18 (2006), 53–101.

Schecter, S., Marchesin, D. and B.J. Plohr1. Structurally stable Riemann solutions. J. Diff. Eqs. 126 (1996), 303–354.2. Classification of codimension-one Riemann solutions. J. Dynam. Differential

Equations 13 (2001), 523–588.3. Computation of Riemann solutions using the Dafermos regularization and con-

tinuation. Discrete Contin. Dynam. Systems 10 (2004), 965–986.Schecter, S. and M. Shearer1. Undercompressive shocks for non-strictly hyperbolic conservation laws. J. Dy-

namics Diff. Eqs. 3 (1991), 199–271.Schecter, S. and P. Szmolyan1. Composite waves in the Dafermos regularization. J. Dynam. Diff. Eqs. 16 (2004),

847–867.Schochet, S.1. The compressible Euler equations in a bounded domain. Comm. Math. Phys. 104

(1986), 49–75.2. Examples of measure-valued solutions. Comm. PDE 14 (1989), 545–575.3. Glimm scheme for systems with almost planar interactions. Comm. PDE 16

(1991), 1423–1440.4. Sufficient conditions for local existence via Glimm’s scheme for large BV data.

J. Diff. Eqs. 89 (1991), 317–354.5. Resonant nonlinear geometric optics for weak solutions of conservation laws.

J. Diff. Eqs. 113 (1994), 473–504.6. The essence of Glimm’s scheme. Nonlinear Evolutionary Partial Differential

Equations, pp. 355–362, ed. X. Ding and T.P. Liu. Providence: American Mathe-matical Society, 1997.

Schochet, S. and E. Tadmor1. The regularized Chapman-Enskog expansion for scalar conservation laws. Arch.

Rational Mech. Anal. 119 (1992), 95–107.Schonbek, M.E.1. Convengence of solutions to nonlinear dispersive equations. Comm. PDE 7

(1982), 959–1000.2. Existence of solutions to singular conservation laws. SIAM J. Math. Anal. 15

(1984), 1125–1139.Schulz-Rinne, C.W.1. Classification of the Riemann problem for two-dimensional gas dynamics. SIAM

J. Math. Anal. 24 (1993), 76–88.

Page 78: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

674 Bibliography

Schulze S. and M. Shearer1. Undercompressive shocks for a system of hyperbolic conservation laws with cu-

bic nonlinearity. J. Math. Anal. Appl. 229 (1999), 344–362.Serre, D.1. Solutions a variation bornee pour certains systemes hyperboliques de lois de

conservation. J. Diff. Eqs. 67 (1987), 137–168.2. La compacite par compensation pour les systemes non lineaires de deux equa-

tions a une dimension d’ espace. J. Math. Pures Appl. 65 (1987), 423–468.3. Domaines invariants pour les systemes hyperboliques de lois de conservation.

J. Diff. Eqs. 69 (1987), 46–62.4. Les ondes planes en electromagnetisme non lineaire. Physica D 31 (1988), 227–

251.5. Oscillations non lineaires des systemes hyperboliques: methodes et resultats

qualitatif. Ann. Inst. Henri Poincare 8 (1991), 351–417.6. Systemes hyperboliques riches de lois de conservation. Nonlinear PDE’s and

their Applications, ed. H. Brezis and J.-L. Lions, Harlow: Longman, 1992.7. Integrability of a class of systems of conservation laws. Forum Math. 4 (1992),

607–623.8. Oscillations non-lineaires de haute frequence. Dim ≥ 2. Nonlinear Variational

Problems and Partial Differential Equations, ed. A. Marino and M.K.V. Murthy,Harlow: Longman, 1995.

9. Ecoulements de fluides parfaits en deux variables independantes de type espace.Reflexion d’un choc plan par un diedre compressif. Arch. Rational Mech. Anal.132 (1995), 15–36.

10. Ondes spirales pour le probleme de Riemann 2-D d’un fluide compressible. Ann.Fac. Sci. Toulouse Math. 5 (1996), 125–135.

11. Systemes de Lois de Conservation, Vols. I-II. Paris: Diderot, 1996. English trans-lation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge Uni-versity Press, 1999.

12. Stabilite L1 pour les lois de conservation scalaires visqueses. C. R. Acad. Sci.Paris, Serie I, 323 (1996), 359–363.

13. Solutions classiques globales des equations d’ Euler pour un fluide parfait com-pressible. Ann. Inst. Fourier, Grenoble 47 (1997), 139–153.

14. Solutions globales des systemes paraboliques de lois de conservations. Ann. Inst.Fourier, Grenoble 48 (1998), 1069–1091.

15. Relaxation semi-lineaire et cinetique des lois de conservation. Ann. Inst. HenriPoincare. 17 (2000), 169–192.

16. Systems of conservation laws: A challenge for the XXIst century. MathematicsUnlimited - 2001 and Beyond, pp. 1061–1080, eds. B. Engquist and W. Schmid.Berlin: Springer, 2001.

17. Sur la stabilte des couches limites de viscosite. Ann. Inst. Fourier 51 (2001),109–130.

18. La transition vers l’instabilite pour les ondes de choc multi-dimensionnelles.Trans. AMS 353 (2001), 5071–5093.

Page 79: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 675

19. The stability of constant equilibrium states in relaxation models. Ann. Univ. Fer-rara, Sez. VII (N.S.) 48 (2002), 253–274.

20. L1-stability of constants in a model for radiating gases. Commun. Math. Sci. 1(2003), 197–205.

21. L1-stability of nonlinear waves in scalar conservation laws. Handbook ofDifferential Equations. Evolutionary Equations, Vol. I, pp. 473–553, ed.C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2004.

22. Hyperbolicity of the non-linear models of Maxwell’s equations. Arch. RationalMech. Anal. 172 (2004), 309–331.

23. Spectral stability of periodic solutions of viscous conservation laws: large wave-length analysis. Comm. PDE 30 (2005), 259–282.

24. Couches limites non characteristiques pour les systemes de lois de conservation;un guide pour utilisateurs. (Preprint).

25. Non-linear electromagnetism and special relativity. Discrete and ContinuousDyn. Systems 23 (2009), 435–453.

26. Multi-dimensional shock interaction for a Chaplygin gas. Arch. Rational Mech.Anal. 191 (2009), 539–577.

27. The structure of dissipative vicous system of conservation laws. Physica D. (Toappear).

28. Local existence of viscous system of conservation laws. (To appear).Serre, D. and J. Shearer1. Convergence with physical viscosity for nonlinear elasticity. (Preprint).Serre, D. and Ling Xiao1. Asymptotic behavior of large weak entropy solutions of the damped p-system.

J. PDE 10 (1997), 355–368.Serre D. and K. Zumbrun1. Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 221

(2001), 267–292.Sevennec, B.1. Geometry of hyperbolic systems of conservation laws. Bull. Soc. Math. France

122 (1994), Suppl. 56.Sever, M.1. Existence in the large for Riemann problems for systems of conservation laws.

Trans. AMS 292 (1985), 375–381.2. A class of hyperbolic systems of conservation laws satisfying weaker conditions

than genuine nonlinearity. J. Diff. Eqs. 73 (1988), 1–29.3. Uniqueness failure for entropy solutions of hyperbolic systems of conservation

laws. Comm. Pure Appl. Math. 42 (1989), 173–183; 43 (1990), 295–297.4. The rate of total entropy generation for Riemann problems. J. Diff. Eqs. 87

(1990), 115–143.5. Hyperbolic systems of conservation laws with some special invariance proper-

ties. Israel J. Math. 75 (1991), 81–104.6. Hyperbolic systems of conservation laws with a strict Riemann invariant. J. Diff.

Eqs. 122 (1995), 239–266.

Page 80: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

676 Bibliography

7. Estimate of the time rate of entropy dissipation for systems of conservation laws.J. Diff. Eqs. 130 (1996), 127–141.

8. A variational formulation of symmetric systems of conservation laws. HoustonJ. Math. 26 (2000), 561–573.

9. An existence theorem in the large for zero-pressure gas dynamics. Diff. IntegralEqs. 14 (2001), 1077–1092.

10. Viscous structure of singular shocks. Nonlinearity 15 (2002), 705–725.11. A class of nonlinear, nonhyperbolic systems of conservation laws with well-

posed initial value problem. J. Diff. Eqs. 180 (2002), 238–271.12. Distribution solutions of nonlinear systems of conservation laws. Memoirs AMS

190 (2007), no. 884.Shandarin, S.F. and Ya. B. Zeldovich1. The large scale structures of the universe. Rev. Mod. Phys. 61 (1989), 185–220.Shao, Zhi-Qiang1. Asymptotic behavior of global classical solutions to the mixed initial-boundary

value problem for quasilinear hyperbolic systems with small BV data. (To ap-pear).

Shearer, J.W.1. Global existence and compactness in Lp for the quasi-linear wave equation.

Comm. PDE 19 (1994), 1829–1877.Shearer, M.1. The Riemann problem for a class of conservation laws of mixed type. J. Diff. Eqs.

46 (1982), 426–443.2. Admissibility criteria for shock waves solutions of a system of conservation laws

of mixed type. Proc. Royal Soc. Edinburgh 93A (1983), 233–244.3. Nonuniqueness of admissible solutions of Riemann initial value problems for a

system of conservation laws of mixed type. Arch. Rational Mech. Anal. 93 (1986),45–59.

4. The Riemann problem for the planar motion of an elastic string. J. Diff. Eqs. 61(1986), 149–163.

5. Dynamic phase transitions in a van der Waals gas. Quart. Appl. Math. XLVI(1988), 631–636.

6. The Riemann problem for 2× 2 systems of hyperbolic conservation laws withcase I quadratic nonlinearities. J. Diff. Eqs. 80 (1989), 343–363.

Shearer M. and C. Dafermos1. Finite time emergence of a shock wave for scalar conservation laws. (To appear).Shearer, M., Gray, J-M.N.T. and A.R. Thornton1. Stable solutions of a scalar conservation law for particle-size segregation in dense

granular avalanches. European J. Appl. Math. 19 (2008), 61–86.Shearer, M., Schaeffer, D., Marchesin, D. and P. Paes-Leme1. Solution of the Riemann problem for a prototype 2× 2 system of non-strictly

hyperbolic conservation laws. Arch. Rational Mech. Anal. 97 (1987), 299–329.

Page 81: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 677

Shearer, M. and Yadong Yang1. The Riemann problem for the p-system of conservation laws of mixed type with

a cubic nonlinearity. Proc. Royal Soc. Edinburgh 125A (1995), 675–690.Shelkovich, V.M.1. The Riemann problem admitting δ -, δ ′-shocks, and vacuum states (the vanishing

viscosity approach). J. Diff. Eqs. 231 (2006), 459–500.2. Multidimensional delta-shocks and the transportation and concentration pro-

cesses. (To appear).3. Singular solutions to systems of conservation laws: shocks, δ - and δ ′-shocks. (To

appear).Shen, Wen1. On the shape of avalanches. J. Math. Anal. Appl. 339 (2008), 828–838.Shen, Wen and Rea Park1. Optimal tracing of viscous shocks in solutions of viscous conservation laws.

SIAM J. Math. Anal. 38 (2007), 1474–1488.Shen, Wen, Tveito, A. and R. Winther1. On the zero relaxation limit for a system modeling the motions of a viscoelastic

solid. SIAM J. Math. Anal. 30 (1999), 1115–1135.Shen, Wen and Zhengfu Xu1. Vanishing viscosity approximation to hyperbolic conservation laws. J. Diff. Eqs.

244 (2008), 1692–1711.Sheng, Wancheng and Tong Zhang1. The Riemann problem for the transportation equations in gas dynamics. Memoirs

AMS 137 (1999), No. 654.Shiffman, M.1. On the existence of subsonic flows of a compressible fluid. J. Rational Mech.

Anal. 1 (1952), 605–652.Shizuta, Y. and Shuichi Kawashima1. Systems of equations of hyperbolic-parabolic type with applications to the dis-

crete Boltzmann equation. Hokkaido Math. J. 14 (1985), 249–275.Sideris, T. C.1. Formation of singularities in three-dimensional compressible fluids. Comm. Math.

Phys. 101 (1985), 475–485.2. The null condition and global existence of nonlinear elastic waves. Invent. Math.

123 (1996), 323–342.3. Delayed singularity formation in 2D compressive flow. Amer. J. Math. 119

(1997), 371–422.4. Nonresonance and global existence of prestressed nonlinear elastic waves. Ann.

of Math. 151 (2000), 849–874.Sideris, T. C., Thomases, B. and Dehua Wang1. Long time behavior of solutions to the 3D compressible Euler equations with

damping. Comm. PDE 28 (2003), 795–816.

Page 82: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

678 Bibliography

Silhavy, M.1. The Mechanics and Thermodynamics of Continuous Media. Berlin: Springer,

1997.2. Divergence measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Univ.

Padova 113 (2005), 15–45.3. Fluxes across parts of fractal boundaries. Milan J. Math. 74 (2006), 1–45.4. Cauchy’s stress theorem for stresses represented by measures. Contin. Mech.

Thermodyn. 20 (2008), 75–96.Sinestrari, C.1. Instability of discontinuous traveling waves for hyperbolic balance laws. J. Diff.

Eqs. 134 (1997), 269–285.2. The Riemann problem for an inhomogeneous conservation law without convex-

ity. SIAM J. Math. Anal. 28 (1997), 109–135.Slemrod, M.1. Global existence, uniqueness, and asymptotic stability of classical smooth solu-

tions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal.76 (1981), 97–133.

2. Admissibility criteria for propagating phase boundaries in a van der Waals fluid.Arch. Rational Mech. Anal. 81 (1983), 301–315.

3. The viscosity-capillarity criterion for shocks and phase transitions. Arch. RationalMech. Anal. 83 (1983), 333–361.

4. Dynamic phase transitions in a van der Waals fluid. J. Diff. Eqs. 52 (1984), 1–23.5. A limiting “viscosity” approach to the Riemann problem for materials exhibiting

change of phase. Arch. Rational Mech. Anal. 105 (1989), 327–365.6. A comparison of two viscous regularizations of the Riemann problem for Burg-

ers’ equation. SIAM J. Math. Anal. 26 (1995), 1415–1424.7. Resolution of the spherical piston problem for compressible isotropic gas dy-

namics via a self-similar viscous limit. Proc. Royal Soc. Edinburgh 126A (1996),1309–1340.

Slemrod, M. and A.E. Tzavaras1. A limiting viscosity approach for the Riemann problem in isentropic gas dynam-

ics. Indiana U. Math. J. 38 (1989), 1047–1074.2. Self-similar fluid-dynamic limits for the Broadwell system. Arch. Rational Mech.

Anal. 122 (1993), 353–392.3. Shock profiles and self-similar fluid dynamics limits. J. Transport Th. Stat. Phys.

25 (1996), 531–542.Smith, R.G.1. The Riemann problem in gas dynamics. Trans. AMS 249 (1979), 1–50.Smoller, J.A.1. A uniqueness theorem for Riemann problems. Arch. Rational Mech. Anal. 33

(1969), 110–115.2. Contact discontinuities in quasi-linear hyperbolic systems. Comm. Pure Appl.

Math. 23 (1970), 791–801.3. Shock Waves and Reaction-Diffusion Equations. (Second Edition). New York:

Springer, 1994.

Page 83: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 679

Smoller, J.A. and J.B. Temple1. Shock wave solutions of the Einstein equations. The Oppenheimer-Snyder model

of gravitational collapse extended to the case of nonzero pressure. Arch. RationalMech. Anal. 128 (1994), 249–297.

2. General relativistic shock waves that extend the Oppenheimer-Snyder model.Arch. Rational Mech. Anal. 138 (1997), 239–277.

3. Shock wave solutions of the Einstein equations: A general theory with examples.Advances in the Theory of Shock Waves, pp. 105–258, ed. H. Freistuhler andA. Szepessy. Boston: Birkhauser, 2001.

Smoller, J.A., Temple, J.B. and Zhou Ping Xin1. Instability of rarefaction shocks in systems of conservation laws. Arch. Rational

Mech. Anal. 112 (1990), 63–81.Sod, G.A.1. Numerical Methods in Fluid Dynamics. Cambridge: Cambridge U. Press, 1985.Song, Kyungwoo1. The pressure-gradient system on non-smooth domains. Comm. PDE 28 (2003),

199–221.Spinolo, L.V.1. Vanishing viscosity solutions of a 2×2 triangular hyperbolic system with Dirich-

let conditions on two boundaries. Indiana U. Math. J. 56 (2007), 279–364.Stoker, J.J.1. The formation of breakers and bores. Comm. Pure Appl. Math. 1 (1948), 1–87.Stokes, G.G.1. On a difficulty in the theory of sound. Philos. Magazine, Ser. 3, 33 (1848), 349–

356.2. Mathematical and Physical Papers, reprinted with a new preface by C.A. Trues-

dell, Vol. I, pp. ivH-ivI. New York: Johnson Reprint Co., 1966.3. On a difficulty in the theory of sound. Mathematical and Physical Papers, Vol II,

pp. 51–55. Cambridge: Cambridge U. Press, 1883.Sverak, V.1. Rank-one convexity does not imply quasiconvexity. Proc. Royal Soc. Edinburgh

120A (1992), 185–189.Szepessy, A.1. Measure-valued solutions of scalar conservation laws with boundary conditions.

Arch. Rational Mech. Anal. 107 (1989), 181–193.2. An existence result for scalar conservation laws using measure valued solutions.

Comm. PDE 14 (1989), 1329–1350.3. Dynamics and stability of a weak detonation wave. Comm. Math. Phys. 202

(1999), 547–569.Szepessy, A. and Zhou Ping Xin1. Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal. 122

(1993), 53–103.

Page 84: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

680 Bibliography

Szepessy A. and K. Zumbrun1. Stability of rarefaction waves in viscous media. Arch. Rational Mech. Anal. 133

(1996), 249–298.Tadmor, E.1. A minimum entropy principle in the gas dynamics equations. Appl. Num. Math.

2 (1986), 211–219.2. Approximate Solutions of Nonlinear Conservation Laws. Lecture Notes in Math.

No. 1697 (1998), 1–149. Berlin: Springer.3. Burgers’ equation with vanishing hyperviscosity. Commun. Math. Sci. 2 (2004),

317–324.Tadmor, E., Liu, Jian-Guo and A. E. Tzavaras (eds.)1. Hyperbolic Problems. Providence: AMS 2009.Tadmor, E., Rascle, M. and P. Bagnerini1. Compensated compactness for 2D conservation laws. J. Hyperbolic Diff. Eqs. 2

(2005), 697–712.Tadmor, E. and Tao Tang1. Pointwise error estimates for scalar conservation laws with piecewise smooth

solutions. SIAM J. Numer. Anal. 36 (1999), 1739–1758.2. Pointwise error estimates for relaxation approximations to conservation laws.

SIAM J. Math. Anal. 32 (2000), 870–886.Tadmor, E. and Terence Tao1. Velocity averaging, kinetic formulations and regularizing effects in quasilinear

PDE’s. Comm. Pure Appl. Math. 60 (2007), 1488–1521.Tadmor, E. and T. Tassa1. On the piecewise smoothness of entropy solutions to scalar conservation laws.

Comm. PDE 18 (1993), 1631–1652.Tadmor, E. and Dongming Wei1. On the global regularity of sub-critical Euler-Poisson equations with pressure. J.

Eur. Math. Soc. 10 (2008), 757–769.Tan, De Chun1. Riemann problems for hyperbolic systems of conservation laws with no classical

wave solutions. Quart. Appl. Math. 51 (1993), 765–776.Tan, De Chun and Tong Zhang1. Two-dimensional Riemann problems for a hyperbolic system of nonlinear con-

servation laws. I; II. J. Diff. Eqs. 111 (1994), 203–254; 255–282.Tan, De Chun, Zhang, Tong and Yu Xi Zheng1. Delta shock waves as limits of vanishing viscosity for hyperbolic systems of con-

servation laws. J. Diff. Eqs. 112 (1994), 1–32.Tang, Tao, Wang, Jinghua and Yinchuan Zhao1. On the piecewise smoothness of entropy solutions to scalar conservation laws for

a large class of initial data. J. Hyperbolic Diff. Eqs. 4 (2007), 369–389.Tang, Tao, Teng, Zhen-Huan and Zhouping Xin1. Fractional rate of convergence for viscous approximation to nonconvex conser-

vation laws. SIAM J. Math. Anal. 35 (2003), 98–122.

Page 85: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 681

Tang, Zhi Jing and T.C.T. Ting1. Wave curves for the Riemann problem of plane waves in isotropic elastic solids.

Int. J. Eng. Sci. 25 (1987), 1343–1381.Tartar, L.C.1. Cours Peccot, College de France 1977.2. Compensated compactness and applications to partial differential equations. Non-

linear Analysis and Mechanics: Heriot-Watt Symposium, Vol IV, pp. 136–212, ed.R.J. Knops. London: Pitman, 1979.

3. The compensated compactness method applied to systems of conservation laws.Systems of Nonlinear Partial Differential Equations, pp. 263–285, ed. J.M. Ball.Dordrecht: D. Reidel, 1983.

4. From Hyperbolic Systems to Kinetic Theory. Heidelberg: Springer 2008.Taub, A.H.1. Relativistic Rankine-Hugoniot equations. Phys. Rev. 74 (1948), 328–334.Taylor, G.I.1. The conditions necessary for discontinuous motions in gases. Proc. Royal Soc.

London A84 (1910), 371–377.Taylor, M.E.1. Pseudodifferential Operators and Nonlinear PDE. Boston: Birkhauser, 1991.2. Partial Differential Equations III. New York: Springer, 1996.Temple, B.1. Solutions in the large for the nonlinear hyperbolic conservation laws of gas dy-

namics. J. Diff. Eqs. 41 (1981), 96–161.2. Global solution of the Cauchy problem for a class of 2×2 non-strictly hyperbolic

conservation laws. Adv. in Appl. Math. 3 (1982), 335–375.3. Systems of conservation laws with invariant submanifolds. Trans. AMS 280

(1983), 781–795.4. No L1-contractive metric for systems of conservation laws. Trans. AMS 288

(1985), 471–480.5. Decay with a rate for noncompactly supported solutions of conservation laws.

Trans. AMS 298 (1986), 43–82.6. Weak stability in the global Lp norm for hyperbolic systems of conservation laws.

Trans. AMS 317 (1990), 96–161.7. Sup-norm estimates in Glimm’s method. J. Diff. Eqs. 83 (1990), 79–84.8. Weak stability in the global L′-norm for systems of hyperbolic conservation laws.

Trans. AMS 317 (1990), 673–685.Temple, B. and R. Young1. The large time existence of periodic solutions for the compressible Euler equa-

tions. Mat. Contemp. 11 (1996), 171–190.2. The large time stability of sound waves. Comm. Math. Phys. 179 (1996), 417–

465.3. A paradigm for time-periodic sound wave propagation in the compressible Euler

equations. (To appear).4. Time-periodic linearized solutions of the compressible Euler equations and a

problem of small divisors. (To appear).

Page 86: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

682 Bibliography

Tesdall, A.M., Sanders, R. and B.L. Keyfitz1. The triple point paradox for the nonlinear wave system. SIAM J. Appl. Math. 67

(2007), 321–336.2. Self-similar solutions for the triple point paradox in gas dynamics. SIAM J. Appl.

Math. 68 (2008), 1360–1377.Texier, B. and K. Zumbrun1. Hopf bifurcation of viscous shock waves in compressible gas dynamics and

MHD. Arch. Rational Mech. Anal. 190 (2008), 107–140.Tidriri, M.1. Hydrodynamic limit of a BGK like model on domains with boundaries and analy-

sis of kinetic boundary conditions for scalar multidimensional conservation laws.(Preprint).

Toro, E.1. Riemann Solvers and Numerical Methods for Fluid Mechanics. Berlin: Springer

1997.Trivisa, K.1. A priori estimates in hyperbolic systems of conservation laws via generalized

characteristics. Comm. PDE 22 (1997), 235–267.2. BV estimates for n×n systems of conservation laws. Contemp. Math. 327 (2003),

341–358.Truesdell, C.A.1. The Tragicomical History of Thermodynamics 1822–1854. New York: Springer

1980.Truesdell, C.A. and W. Noll1. The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3.

Berlin: Springer, 1965.Truesdell, C.A. and R.A. Toupin1. The Classical Field Theories. Handbuch der Physik, Vol. III/1. Berlin: Springer,

1960.Truskinovsky, L.1. Structure of an isothermal phase discontinuity. Soviet Physics Doklady 30 (1985),

945–948.2. Transition to detonation in dynamic phase changes. Arch. Rational Mech. Anal.

125 (1994), 375–397.Tsarev, S.P.1. On Poisson brackets and one-dimensional systems of hydrodynamic type. Dokl.

Akad. Nauk SSSR 282 (1985), 534–537.Tsikkou, C.1. Hyperbolic conservation laws with large initial data. Is the Cauchy problem well-

posed? Quart. Appl. Math. (To appear).2. BV estimates for the p-system. (To appear).Tsuge, Naoki1. Spherically symmetric flow of the compressible Euler equations. J. Math. Kyoto

Univ. 44 (2004), 129–171.

Page 87: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 683

2. Global L∞ solutions of the compressible Euler equations with damping and spher-ical symmetry. J. Math. Kyoto Univ. 44 (2004), 193–201.

3. Global L∞ solutions of the compressible Euler equations with spherical symme-try. J. Math. Kyoto Univ. 46 (2006), 457–524.

4. Large time decay of solutions to isentropic gas dynamics. Quart. Appl. Math.LXV (2007), 135–143.

5. Global solutions to the compressible Euler equations with gravitational source. J.Hyperbolic Diff. Eqs. 5 (2008), 317–346.

6. Large time decay of solutions to isentropic gas dynamics with spherical symme-try. J. Hyperbolic Diff. Eqs. 6 (2009), 371–387.

Tupciev, V.A.1. The problem of decomposition of an arbitrary discontinuity for a system of quasi-

linear equations without the convexity condition. Z. Vycisl Mat. i Mat. Fiz. 6(1966), 527–547. English translation: USSR Comp. Math. Math. Phys. 6 (1966),161–190.

2. On the method for introducing viscosity in the study of problems involving thedecay of a discontinuity. Dokl. Akad. Nauk SSSR 211 (1973), 55–58. Englishtranslation: Soviet Math. 14 (1973), 978–982.

Tveito A. and R. Winther1. Existence, uniqueness, and continuous dependence for a system of hyperbolic

conservation laws modeling polymer flooding. SIAM J. Math. Anal. 22 (1991),905–933.

2. On the rate of convergence to equilibrium for a system of conservation laws witha relaxation term. SIAM J. Math. Anal. 28 (1997), 136–161.

Tzavaras, A.E.1. Wave structure induced by fluid-dynamic limits in the Broadwell model. Arch.

Rational Mech. Anal. 127 (1994), 361–387.2. Elastic as limit of viscoelastic response in a context of self-similar viscous limits.

J. Diff. Eqs. 123 (1995), 305–341.3. Wave interactions and variation estimates for self-similar zero-viscosity limits in

systems of conservation laws. Arch. Rational Mech. Anal. 135 (1996), 1–60.4. Materials with internal variables and relaxation to conservation laws. Arch. Ra-

tional Mech. Anal. 146 (1999), 129–155.5. Viscosity and relaxation approximation for systems of conservation laws. Lect.

Notes Comput. Sci. Eng. 5 (1999), 73–122.6. The Riemann function, singular entropies, and the structure of oscillations in sys-

tems of two conservation laws. Arch. Rational Mech. Anal. 169 (2003), 119–145.7. Relative entropy in hyperbolic relaxation. Commun. Math. Sci. 3 (2005),

119–132.Ueda, Yoshihiro and Shuichi Kawashima1. Large time behavior of solutions to a semilinear hyperbolic system. J. Hyperbolic

Diff. Eqs. 4 (2007), 147–179.Vasseur, A.1. Time regularity for the system of isentropic gas dynamics with γ = 3. Comm.

PDE 24 (1999), 1987–1997.

Page 88: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

684 Bibliography

2. Strong traces for solutions to multidimensional scalar conservation laws. Arch.Rational Mech. Anal. 160 (2001), 181–193.

3. Well-posedness of scalar conservation laws with singular sources. Methods Appl.Anal. 9 (2002), 291–312.

4. Recent results in hydrodynamic limit. Handbook of Differential Equations: Evo-lutionary Equations, Vol. IV, pp. 323–376, ed. C.M. Dafermos and M. Pokorny.Amsterdam: Elsevier 2008.

Vecchi, I.1. A note on entropy compactification for scalar conservation laws. Nonlinear Anal.

15 (1990), 693–695.Venttsel’, T.D.1. Estimates of solutions of the one-dimensional system of equations of gas dy-

namics with “viscosity” nondepending on “viscosity”. Soviet Math. J. 31 (1985),3148–3153.

Villani, C.1. A review of mathematical topics in collisional kinetic theory. Handbook of Math-

ematical Fluid Dynamics, Vol. I, pp. 71–305, ed. S. Friedlander and D. Serre.Amsterdam: North Holland 2002.

2. Paradoxe de Scheffer-Shnirelman revu sous l’ angle de l’ integration convexe.Seminaire Bourbaki, 1001 (2008–2009).

Vincenti, W.G. and L.H. Kruger1. Introduction to Physical Gas Dynamics. New York: Wiley, 1965.Volpert, A.I.1. The spaces BV and quasilinear equations. Mat. Sbornik 73 (1967), 255–302. En-

glish translation: Math. USSR Sbornik 2 (1967), 225–267.Wagner, D.H.1. The Riemann problem in two space dimensions for a single conservation law.

SIAM J. Math. Anal. 14 (1983), 534–559.2. Equivalence of the Euler and Lagrangian equations of gas dynamics for weak

solutions. J. Diff. Eqs. 68 (1987), 118–136.3. Conservation laws, coordinate transformations, and differential forms. Hyper-

bolic Problems: Theory, Numerics, Applications, pp. 471–477, eds. J. Glimm,M.J. Graham, J.W. Grove and B.J. Plohr. Singapore: World Scientific, 1996.

4. Symmetric hyperbolic equations of motion for a hyperelastic material. J. Hyper-bolic Diff. Eqs. 6 (2009), 615–630.

Wang, Chao Chen and C. Truesdell1. Introduction to Rational Elasticity. Leyden: Noordhoff, 1973.Wang, Dehua1. Global solutions to the Euler-Poisson equations of two-carrier types in one di-

mension. ZAMP 48 (1997), 680–693.2. Global solutions and stability for self-gravitating isentropic gases. J. Math. Anal.

Appl. 229 (1999), 530–542.3. Global solutions and relaxation limits of Euler-Poisson equations. ZAMP 52

(2001), 620–630.

Page 89: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 685

4. Large solutions to the initial-boundary value problem for planar magnetohydro-dynamics. SIAM J. Appl. Math. 63 (2003), 1424–1441.

Wang, Dehua and Gui-Qiang Chen1. Formation of singularities in compressible Euler-Poisson fluids with heat diffu-

sion and damping relaxation. J. Diff. Eqs. 144 (1998), 44–65.Wang, Dehua and Tianhong Li1. Blowup phenomena of solutions to the Euler equations for compressible fluid

flow. J. Diff. Eqs. 221 (2006), 91–101.Wang, Dehua and Zejun Wang1. Large BV solutions to the compressible isothermal Euler-Poisson equations with

spherical symmetry. Nonlinearity 19 (2006), 1985–2004.2. Global entropy solution for the system of isothermal self-gravitating isentropic

gases. Proc. Royal Soc. Edinburgh 138A (2008), 407–426.Wang, Jinghua1. Regularity of entropy solutions to nonconvex scalar conservation laws with

monotone initial data. Acta Math. Scientia 29 (2009), 613–628.Wang, Wei-Cheng and Zhouping Xin1. Asymptotic limit of initial-boundary value problems for conservation laws with

relaxational extensions. Comm. Pure Appl. Math. 51 (1998), 505–535.Wang, Weike and Tong Yang1. The pointwise estimates of solutions for Euler equations with damping in multi-

dimensions. J. Diff. Eqs. 173 (2001), 410–450.2. Pointwise estimates and Lp convergence rates to diffusion waves for p-system

with damping. J. Diff. Eqs. 187 (2003), 310–336.3. Existence and stability of planar diffusion waves for 2-D Euler equations with

damping. J. Diff. Eqs. 242 (2007), 40–71.Wang, Zhen and Xiaqi Ding1. Uniqueness of generalized solution for the Cauchy problem of transportation

equations. Acta Math. Scientia 17 (1997), 341–352.Wang, Zhen, Huang, Feimin and Xiaqi Ding1. On the Cauchy problem of transportation equations. Acta Math. Appl. Sinica 13

(1997), 113–122.Weber, H.1. Die Partiellen Differential-Gleichungen der Mathematischen Physik, Zweiter

Band, Vierte Auflage. Braunschweig: Friedrich Vieweg und Sohn, 1901.Weinberger, H.1. Long-time behavior for a regularized scalar conservation law in the absence of

genuine nonlinearity. Ann. Inst. Henri Poincare 7 (1990), 407–425.Wendroff, B.1. The Riemann problem for materials with nonconvex equation of state I;II. J. Math.

Anal. Appl. 38 (1972), 454–466; 640–658.2. An analysis of front tracking for chromatography. Acta Appl. Math. 30 (1993),

265–285.Westdickenberg, M. and S. Noelle1. A new convergence proof of finite volume schemes using the kinetic formulation

of conservation laws. SIAM J. Numer. Anal. 37 (2000), 742–757.

Page 90: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

686 Bibliography

Weyl, H.1. Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2 (1949), 103–122.Whitham, G.B.1. The flow pattern of a supersonic projectile. Comm. Pure Appl. Math. 5 (1952),

301–348.2. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1974.Williams, F.A.1. Combustion Theory. Reading, MA: Addison-Wesley, 1965.Wu, Zhuo-Qun1. The ordinary differential equation with discontinuous right-hand members and

the discontinuous solutions of the quasilinear partial differential equations. ActaMath. Sinica 13 (1963), 515–530. English translation: Scientia Sinica 13 (1964),1901–1907.

Xie, Chunjing and Zhouping Xin1. Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indi-

ana U. Math. J. 56 (2007), 2991–3023.Xin, Zhou Ping1. Asymptotic stability of rarefaction waves for 2×2 viscous hyperbolic conserva-

tion laws. J. Diff. Eqs. 73 (1988), 45–77; 78 (1989), 191–219.2. Asymptotic stability of planar rarefaction waves for viscous conservation laws in

several dimensions. Trans. AMS 319 (1990), 805–820.3. On the linearized stability of viscous shock profiles for systems of conservation

laws. J. Diff. Eqs. 100 (1992), 119–136.4. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes

equations of compressible isentropic gases. Comm. Pure Appl. Math. 46 (1993),621–665.

5. On nonlinear stability of contact discontinuities. Hyperbolic Problems: Theory,Numerics, Applications, pp. 249–257, eds. J. Glimm, M.J. Graham, J.W. Groveand B.J. Plohr. Singapore: World Scientific, 1996.

6. Viscous boundary layers and their stability. J. PDE 11 (1998), 97–124.Xin, Zhouping and Wen-Qing Xu1. Initial-boundary value problem to systems of conservation laws with relaxation.

Quart. Appl. Math. LX (2002), 251–281.Xin, Zhouping and Huicheng Yin1. Transonic shock in a nozzle. I. Two-dimensional case. Comm. Pure Appl. Math.

58 (2005), 999–1050.2. Global multidimensional shock wave for the steady supersonic flow past a three-

dimensional curved cone. Anal. Appl. 4 (2006), 101–132.3. Three-dimensional transonic shocks in a nozzle. Pacific J. Math. 236 (2008),

139–193.4. The transonic shock in a nozzle, 2-D and 3-D complete Euler systems. J. Diff.

Eqs. 245 (2008), 1014–1085.

Page 91: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 687

Xu, Xiangsheng1. Asymptotic behavior of solutions of hyperbolic conservation laws ut +(um)x =

0 as m → ∞ with inconsistent initial values. Proc. Royal Soc. Edinburgh 113A(1989), 61–71.

Yan, Baisheng1. Cavitation solutions to homogeneous van der Waals type fluids involving phase

transitons. Quart. Appl. Math. LIII (1995), 721–730.Yang, Hanchun1. Riemann problems for a class of coupled hyperbolic systems of conservation

laws. J. Diff. Eqs. 159 (1999), 447–484.Yang, Tong1. A functional integral approach to shock wave solutions of the Euler equations

with spherical symmetry, I. Comm. Math. Phys. 171 (1995), 607–638. II. J. Diff.Eqs. 130 (1996), 162–178.

2. Euler equations with spherical symmetry and an outgoing absorbing boundary.Comm. PDE 24 (1999), 1–23.

3. Convergence rate for Glimm scheme for general systems of hyperbolic conserva-tion laws. Taiwanese J. Math. 7 (2003), 195–205.

4. Singular behavior of vacuum states for compressible fluids. J. Comput. Appl.Math. 190 (2006), 211–231.

Yang, Tong, Zhang, Mei and Changjiang Zhu1. Existence of strong travelling wave profiles to 2×2 systems of viscous conserva-

tion laws. Proc. AMS 135 (2007), 1843–1849.Yang, Tong and Huijiang Zhao1. Asymptotics toward strong rarefaction waves for 2× 2 systems of viscous con-

servation laws. Discrete Contin. Dyn. Syst. 12 (2005), 251–282.Yang, Tong and Changjiang Zhu1. Existence and nonexistence of global smooth solutions for p-system with relax-

ation. J. Diff. Eqs. 161 (2000), 321–336.2. Nonexistence of global smooth solutions to symmetrizable nonlinear hyperbolic

systems. Proc. Royal Soc. Edinburgh 133A (2003), 719–728.Yang, Tong, Zhu, Changjiang and Huijiang Zhao1. Global smooth solutions for a class of quasilinear hyperbolic systems with dissi-

pative terms. Proc. Royal Soc. Edinburgh 127A (1997), 1311–1324.2. Compactness framework of Lp approximate solutions for scalar conservation

laws. J. Math. Anal. Appl. 220 (1998), 164–186.3. Asymptotic behavior of solutions to a hyperbolic system with relaxation and

boundary effect. J. Diff. Eqs. 163 (2000), 348–380.4. BV estimates for Lax-Friedrichs scheme for a class of nonlinear hyperbolic con-

servation laws. Proc. AMS 131 (2003), 1257–1266.Yang, Xiaozhou1. Multi-dimensional Riemann problem of scalar conservation law. Acta Math. Sci-

entia 19 (1999), 190–200.Yang, Xiaozhou and Feimin Huang1. Two-dimensional Riemann problems of simplified Euler equation. Chinese Sci.

Bull. 43 (1998), 441–444.

Page 92: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

688 Bibliography

Ye, Xiao Ping and Long Wei Lin1. Error bounds for Glimm difference approximations for scalar conservation laws

without convexity. Acta Math. Sin. (Engl. Ser.) 22 (2006), 1271–1282.Ying, Lung An, Yang, Tong and Changjiang Zhu1. Existence of global smooth solutions for Euler equations with symmetry. Comm.

PDE 22 (1997), 1361–1387.Ying, Lung An and Ching Hua Wang1. Global solutions of the Cauchy problem for a nonhomogeneous quasilinear hy-

perbolic system. Comm. Pure Appl. Math. 33 (1980), 579–597.Yong, Wen-An1. A simple approach to Glimm’s interaction estimates. Appl. Math. Letters 12

(1999), 29–34.2. Boundary conditions for hyperbolic systems with stiff source terms. Indiana

U. Math. J. 48 (1999), 115–137.3. Singular perturbations of first-order hyperbolic systems with stiff source terms.

J. Diff. Eqs. 155 (1999), 89–132.4. Basic aspects of hyperbolic relaxation systems. Advances in the Theory of Shock

Waves, pp. 259–305, ed. H. Freistuhler and A. Szepessy. Boston: Birkhauser,2001.

5. Basic structures of hyperbolic relaxation systems. Proc. Royal Soc. Edinburgh132A (2002), 1259–1274.

6. Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech.Anal. 172 (2004), 247–266.

Yong, Wen-An and K. Zumbrun1. Existence of relaxation shock profilies for hyperbolic conservation laws. SIAM J.

Appl. Math. 60 (2000), 1565–1575.Young, L.C.1. Generalized curves and the existence of an attained absolute minimum in the

calculus of variations. Comptes Rendus de la Societe des Sciences et des Lettresde Varsovie, Classe III, 30 (1937), 212–234.

Young, R.1. Sup-norm stability for Glimm’s scheme. Comm. Pure Appl. Math. 46 (1993),

903–948.2. Exact solutions to degenerate conservation laws. SIAM J. Math. Anal. 30 (1999),

537–558.3. Periodic solutions to conservation laws. Contemp. Math. 255 (2000), 239–256.4. Sustained solutions for conservation laws. Comm. PDE. 26 (2001), 1–32.5. Wave interactions in nonlinear elastic strings. Arch. Rational Mech. Anal. 161

(2002), 65–92.6. Nonstrictly hyperbolic waves in elasticity. J. Diff. Eqs. 188 (2003), 80–109.7. Blowup in hyperbolic conservation laws. Contemp. Math. 327 (2003), 379–387.8. Blowup of solutions and boundary instabilities in nonlinear hyperbolic equations.

Comm. Math. Sci. 1 (2003), 269–292.9. Global wave interactions in isentropic gas dynamics. (To appear).

Page 93: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 689

Young, R. and W. Szeliga1. Blowup with small BV data in hyperbolic conservation laws. Arch. Rational

Mech. Anal. 179 (2006), 31–54.Yu, Shih-Hsien1. Zero dissipation limit to solutions with shocks for systems of hyperbolic conser-

vation laws. Arch. Rational Mech. Anal. 146 (1999), 275–370.2. Hydrodynamic limits with shock waves of the Boltzmann equation. Comm. Pure

Appl. Math. 58 (2005), 409–443.Zeldovich, Ya. and Yu. Raizer1. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols.

I-II. New York: Academic Press, 1966–1967.2. Elements of Gas Dynamics and the Classical Theory of Shock Waves. New York:

Academic Press, 1968.Zemplen, G.1. Sur l’ impossibilite des ondes de choc negatives dans les gaz. C.R. Acad. Sci.

Paris 141 (1905), 710–712.Zeng, Yanni1. Convergence to diffusion waves of solutions to nonlinear viscoelastic model with

fading memory. Comm. Math. Phys. 146 (1992), 585–609.2. L1 asymptotic behavior of compressible isentropic viscous 1−D flow. Comm.

Pure Appl. Math. 47 (1994), 1053–1082.3. Lp asymptotic behavior of solutions to hyperbolic-parabolic systems of conser-

vation laws. Arch. Math. 66 (1996), 310–319.Zhang, Peng, Li, Jiequan and Tong Zhang1. On two-dimensional Riemann problems for pressure-gradient equations of the

Euler system. Discrete Contin. Dynam. Systems 4 (1998), 609–634.Zhang, Peng and Tong Zhang1. Generalized characteristic analysis and Guckenheimer structure. J. Diff. Eqs. 152

(1999), 409–430.Zhang, Tong and Yu Xi Zheng1. Two-dimensional Riemann problem for a single conservation law. Trans. AMS

312 (1989), 589–619.2. Riemann problem for gasdynamic combustion. J. Diff. Eqs. 77 (1989), 203–230.3. Conjecture on the structure of solutions of the Riemann problem for two-

dimensional gas dynamics systems. SIAM J. Math. Anal. 21 (1990), 593–630.4. Exact spiral solutions of the two-dimensional Euler equations. Discrete Contin.

Dynam. Systems 3 (1997), 117–133.5. Axisymmetric solutions of the Euler equations for polytropic gases. Arch. Ratio-

nal Mech. Anal. 142 (1998), 253–279.Zhang, Yongqian1. Global existence of steady supersonic potential flow past a curved wedge with a

piecewise smooth boundary. SIAM J. Math. Anal. 31 (1999), 166–183.

Page 94: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

690 Bibliography

2. Steady supersonic flow past an almost straight wedge with large vertex angle.J. Diff. Eqs. 192 (2003), 1–46.

Zhao, Huijiang1. Global existence in L4 for a nonstrictly hyperbolic conservation law. Quart. Appl.

Math. 58 (2000), 627–660.2. Nonlinear stability of strong planar rarefaction waves for the relaxation approxi-

mation of conservation laws in several space dimensions. J. Diff. Eqs. 163 (2000),198–220.

Zheng, Songmu1. Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems. Har-

low: Longman, 1995.Zheng, Yuxi1. Existence of solutions to the transonic pressure-gradient equations of the com-

pressible Euler equations in elliptic regions. Comm. PDE 22 (1997), 1849–1868.2. Systems of Conservation Laws: Two-Dimensional Riemann Problems.

Boston: Birkhauser, 2001.3. A global solution to a two-dimensional Riemann problem involving shocks as

free boundaries. Acta Math. Appl. Sin. Engl. Ser. 19 (2003), 559–572.4. Two-dimensional regular shock reflection for the pressure gradient system of con-

servation laws. Acta Math. Appl. Sin. Engl. Ser. 22 (2006), 177–210.5. Absorption of characteristics by sonic curve of the two-dimensional Euler equa-

tions. Discrete Contin. Dyn. Syst. 23 (2009), 605–616.Zhu, Guangshan and T.C.T. Ting1. Classification of 2×2 non-strictly hyperbolic systems for plane waves in isotropic

elastic solids. Int. J. Eng. Sci. 27 (1989), 1621–1638.Ziemer, W.P.1. Cauchy flux and sets of finite perimenter. Arch. Rational Mech. Anal. 84 (1983),

189–201.2. Weakly Differentiable Functions. New York: Springer, 1989.Zumbrun, K.1. N-waves in elasticity. Comm. Pure Appl. Math. 46 (1993), 75–95.2. Decay rates for nonconvex systems of conservation laws. Comm. Pure Appl.

Math. 46 (1993), 353–386.3. Dynamical stability of phase transitions in the p-system with viscosity-capillarity.

SIAM J. Appl. Math. 60 (2000), 1913–1924.4. Refined wave-tracking and nonlinear stability of viscous Lax shocks. Methods

Appl. Anal. 7 (2000), 747–768.5. Multidimensional stability of planar viscous shock waves. Advances in the The-

ory of Shock Waves, pp. 307–516, ed. H. Freistuhler and A. Szepessy. Boston:Birkhauser, 2001.

6. Stability of large-amplitude shock waves of compressible Navier-Stokes equa-tions. Handbook of Mathematical Fluid Dynamics, Vol. III, pp. 311–533, ed. S.Friedlander and D. Serre. Amsterdam: North Holland 2004.

Page 95: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Bibliography 691

Zumbrun, K. and P. Howard1. Pointwise semigroup methods and stability of viscous shock waves. Indiana

U. Math. J. 47 (1998), 63–85.Zumbrun, K. and D. Serre1. Viscous and inviscid stability of multidimensional planar shock fronts.

Indiana U. Math. J. 48 (1999), 932–937.

Page 96: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Author Index

Aavatsmark, I., 322Abeyaratne, R., 267Agemi, R., 143Airy, G.B., XIX, 227, 228Alber, H.D., 474, 513Albeverio, S., 321Alekseyevskaya, T.V., 227Alinhac, S., 95, 228Amadori, D., 227, 269, 372, 474, 475, 515,

569Ambrosio, L., 24, 194, 370Amorim, P., 192Amundson, N.R., 226, 227Ancona, F., 321, 372, 474, 513–515, 542Andreianov, B.P., 192Andrianov, N., 324Antman, S.S., 50, 73, 227, 266Anzellotti, G., 23Aris, R., 226, 227Arun, K.R., 74Asakura, F., 267, 475Audusse, E., 192Avelaneda, M., 372Aw, A., 226Ayad, S., 432Azevedo, A.V., 323

Backer, M., 193Bae, M.-j., 595Bagnerini, 226, 568Baiti, P., 269, 324, 372, 513–515, 542Bakhvarov, N., 474Ball, J.M., 50, 144, 568

Ballmann, J., 73Ballou, D., 372Bang, Seunghoon, 595Bardos, C., 96, 193Barker, B., 269Barker, L.M., 512Barnes, A.P., 475Bascar, S., 323Bateman, H., XXIX, 95Baudin, M., 142Bauman, P., 194Beale, T., 95Becker, R., XXVII, 266Bedjaoui, N., 142, 267Ben Moussa, Bachir, 568Ben-Artzi, M., 192, 324Ben-Dor, G., 595Benabdallah, A., 144Benilan, Ph., 192, 372Benzoni-Gavage, S., 72, 73, 141, 142, 144,

226, 267–269, 371, 570Bereux, F., 570Bernoulli, D., XVIBers, L., 594Berthelin, F., 73, 142, 226, 570Bertoin, J., 372Bertozzi, A.L., 266Bethe, H.A., XXVII, 265, 266Bethuel, F., 321Bianchini, S., 142, 321, 323, 513, 514, 542Blaser, M., 322Bloom, F., 73Boillat, G., 24, 73, 143, 228

Page 97: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

694 Author Index

Bolley, F., 193Bonnefille, M., 571Bonnetier, E., 570Born, M., 73Botchorishvilli, R., 193Bouchut, F., 142, 193, 194, 371, 570Bourdarias, C., 226Boyle, R., XVBrenier, Y., 144, 193, 321, 371Brenner, P., 194Bressan, A., 72, 194, 229, 323, 474,

512–515, 542Brio, M., 267Burger, R., 194, 227, 228Burgers, J., XXVIII, XXIXBurton, C.V., XXVI

Cabannes, H., 73Caflisch, R.E., 266Caginalp, G., 192Canic, S., 267, 323, 595, 596Carasso, C., 73Caravenna, L., 475Carrillo, J.A., 194, 370Cauchy, A.-L., XVI, 23, 50Cercignani, C., 73, 142Chae, Dongho, 143Challis, J., XVII, 95Chalons, C., 323Chang, Tung, 72, 265, 266, 320, 321, 594,

596Chaplygin, S.A., 51Chasseigne, E., 372Chemin, J.-Y., 141, 142, 228Chen, Gui-Qiang, 23, 72, 74, 96, 142, 143,

193, 194, 321, 372, 475, 514, 542,568–571, 594–596

Chen, Jing, 73Chen, Jun, 143, 595Chen, Peter J., 228Chen, Shuxin, 324, 594, 596Cheng, Kuo-Shung, 372Cheret, R., XVChern, I-Liang., 268Cheverry, C., 372, 474, 571Choksi, R., 227, 371Choquet-Bruhat, V., 571Chorin, A.J., 73Christodoulou, D., 73, 95, 143

Christoffel, E.B., XXII, 24Christoforou, C.C., 514, 542Chueh, K.N., 569Ciarlet, P.G., 49, 50Clausius, R., XXIII, 50Cockburn, B., 193Coclite, G.M., 194, 226, 372, 514, 515, 568Cole, J.D., XXIXColeman, B.D., 50, 51, 73Collet, J.F., 569Colombo, R.M., 226, 372, 513–515Conley, C.C., 266, 569Conlon, J.G., 227, 228, 266, 372Conway, E.D., 192, 194Coquel, F., 142, 193, 194, 323, 568, 569Corli, A., 228, 268, 298, 323, 475, 512, 513,

515Correia, J., 321Corrias, L., 371Cosserat, E., 51Cosserat, F., 51Costanzino, N., 269Coulombel, J.-F., 268Courant, R., XXVIII, 72, 192, 265, 320, 324,

432, 594Crandall, M.G., 192, 193, 372Crasta, G., 513, 515Crippa, G., 193Currie, J.C., 50

D’Apice, C., 226Dacorogna, B., 144Dafermos, C.M., 50, 72, 143, 144, 194, 227,

266, 321, 322, 330, 370–372, 432,433, 475, 512, 514, 569, 570

Dalibard, A.-L., 193DalMaso, G., 269Danilov, V.G., 228, 321De Lellis, C., 96, 193, 194, 370, 371De Morgan, A., XXDegiovanni, M., 23Degond, P., 226Delitala, P., 226Demengel, F., 568DeMottoni, P., 323Demoulini, S., 50, 95, 144, 569Despres, B., 322DeVore, R.A., 193Dias, J.P., 371

Page 98: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Author Index 695

Diehl, S., 372DiFrancesco, M., 142, 370Dill, E.H., 73Ding, Xia Xi, 371, 372, 569Ding, Yi, 372DiPerna, R.J., 24, 143, 193, 322, 432, 474,

513, 514, 567–569, 571Donadello, C., 515, 542Donatelli, D., 142Donato, A., 73Douglis, A., 192, 228Dressel, A., 266Dressler, K., 193Du, Qiang, 193DuBois, F., 96Dubroca, B., 475Duhem, P., XXIV–XXVI, 50

E, Weinan, 194, 372Earnshaw, S., XX, 51, 227, 228Ehrt, J., 371Elling, V., 595Engelberg, S., 143Engquist, B., 72, 73, 194Ercole, G., 321–323Ericksen, J.L., 50Erpenbeck, J., 268Euler, L., XI, XVI, 24, 50Evans, L.C., 24, 72, 567Even, N., 372

Falcovitz, J., 192Fan, Haitao, 142, 267, 322, 323, 371Fang, Beixiang, 595Federer, H., 24Feireisl, E., 143, 194Feldman, M., 143, 595, 596Ferrari, C., 594Ferziger, J.H., 321Fey, M., 73Fife, P.C., 227Filippov, A.F., 330Fonseca, I., 144Foy, R.L., 266Francheteau, J., 268Freistuhler, H., 73, 194, 227, 267, 268, 323Frid, H., 23, 143, 194, 323, 475, 514, 568,

570

Friedrichs, K.O., XXVIII, 24, 72, 73, 142,228, 320, 324, 432, 594

Fries, C., 268Fusco, D., 432Fusco, N., 24

Garding, L., 142Gallavotti, G., 50Gallice, G., 475Gangbo, W., 96Garavello, M., 226, 372Gardner, R.A., 269Gariepy, R.F., 24Gay-Lussac, J.L., XVGelfand, I., 266, 321, 575Geng, Xiao, 227, 432, 433, 514Geng, Zhenwen, 595Gerbeau, J.-F., 227Gibbs, J.W., XXIIIGiga, Y., 193Gilbarg, D., XXVIII, 266Gimse, T., 512Gisclon, M., 144, 226Giusti, E., 24Glass, O., 513, 543Glimm, J., 73, 323, 324, 330, 432, 433, 474,

514, 570, 595Goatin, P., 226, 321, 371, 372, 513–515, 575Godin, P., 268Godlewski, E., 72, 193, 320Godunov, S.K., 24, 142, 228Godvik, M., 226Golse, F., 193Goodman, J., 267, 268, 542Gosse, L., 372, 475, 514, 515, 569Graham, M.J., 73Grassin, M., 95Greenberg, J.M., 226, 324, 372, 569Grenier, E., 144, 371, 372Greven, A., 73Gripenberg, G., 569Groah, J., 73, 324Grot, R.A., 73Grove, J.W., 73Guckenheimer, J., 372, 594Guerra, G., 372, 474, 475, 514, 515, 569Gues, O., 144, 228, 269Guo, Yan, 143Gurtin, M.E., 23, 49–51

Page 99: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

696 Author Index

Gustafsson, B., 73Gwiazda, P., 226

Ha, Seung-Yeal, 143, 475Ha, Youngsoo, 372Hadamard, J., XXIVHagan, R., 267Hale, J.K., 371Hamel, G., 23Hanche-Olsen, 226, 323Hanouzet, B., 142, 569Hanyga, A., 49Harten, A., 73Harterich, J., 142, 371Hartman, P., 228Hattori, H., 322, 323Hayes, B.T., 267, 269, 321, 372Hayes, W.D., 594He, Cheng, 143Hedstrom, G.W., 512Heibig, A., 228, 322, 432, 433, 514, 570,

571, 595Heidrich, A., 569Herty, M., 226Higdon, R.L., 144Hilbert, D., 192Høegh-Krohn, R., 512Hoff, D., 269, 371, 474, 542, 569Holden, H., 72, 226, 227, 321, 323, 372,

474, 512, 515Holden, L., 512Holder, E., XIIHong, John, 321, 475Hopf, E., XXVIII, 192, 370Hormander, L., 72, 228, 330, 567Hou, Thomas, 73Howard, P., 269Hrusa, W.J., 143, 144Hsiao, Ling, 72, 96, 142, 265, 266, 268, 320,

323, 475, 594Hu, Jiaxin, 513Hua, Jiale, 474Huang, Feimin, 143, 268, 321, 371, 372,

570, 596Hughes, T.J.R., 50, 144Hugoniot, H., XXIII, XXIV, XXVI, 265Huh, Hyungjin, 143Humpherys, J., 269Hunter, J.K., 267, 571

Hwang, Seok, 193, 568

Igutsi, Tatsuo, 321, 324, 474Ilin, A.M., 267Infeld, L., 73Isaacson, E.L., 194, 323, 372, 475Izumiya, S., 192

Jacobs, D., 267James, F., 193, 371James, R.D., 267Janenko, N.N., 72Jang, Juhi, 95, 143Jeffrey, A., 72, 73, 324Jegdic, K., 595Jeltsch, R., 73Jenssen, H.K., 227, 269, 324, 372, 513, 542Ji, Xiaomei, 595Jiang, Guang-Shan, 269Jiang, Song., 96, 542Jiang, Zaihong, 474Jin, Shi, 142, 193, 371, 569John, F., 95, 228Johnson, J.N., XVJoly, J.-L., 324, 571Joseph, K.T., 144, 321, 322Jouguet, XXIV, XXV, 95Junca, S., 142, 226, 571

Kalasnikov, A.S., 322Kan, Pui-Tak, 570Kaper, H.G., 321Karlsen, 194, 512, 515, 568Kato, T., 95, 141, 142, 144Katsoulakis, M.A., 193Kawashima, S., 96, 142, 268Keller, G., 73Keller, J.B., 571Kelvin, Lord, XVIII, XXIIKeyfitz, B.L., 227, 267, 321–323, 595, 596Khanin, K., 372Kim, Eun Heui, 595Kim, Jong Uhn, 372Kim, Yong Jung, 321, 370, 371Kirchhoff, G., XXIII, 50Klainerman, S., 143, 228Klar, A., 226Klausen, R.A., 372Klingenberg, C., 142, 372, 475, 569

Page 100: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Author Index 697

Knowles, J.K., 267Kogan, I.A., 227Kohler, M., 321Kondo, C.I., 194, 568Kong, De-Xing, 324Kossioris, G.T., 192Kranzer, H.C., 227, 321–323Krehl, P., XXIIKreiss, G., 144, 269Kreiss, H.O., 144, 269Krejci, P., 322Kroner, D., 72, 193Kruger, L.H., 51, 72Kruzkov, S., 95, 149, 192Kulikovski, A.G., 72, 73Kuznetsov, N., 192Kwon, Young-Sam., 193, 194

Lagrange, J.L., 227Lan, Chiu-Ya, 475Landau, L.D., 73, 571Laplace, P.S., XVI, XVIILattanzio, C., 142–144, 268, 370, 371, 542,

569, 570Lax, P.D., XXX, 23, 24, 72, 73, 95, 142,

226–228, 265, 266, 320, 330, 370,432, 433, 474, 514, 575

Lee, Young Ran, 372LeFloch, P.G., 72, 96, 142, 144, 192–194,

267, 269, 321–324, 371, 474, 475,513–515, 542, 543, 568, 570

Legendre, A.M., XVIILei, Zhen, 595Leibovich, L., 321Leroux, A.-Y., 96, 193LeVeque, R.J., 72, 193, 433Levermore, C.D., 73, 142, 569Lewicka, M., 229, 268, 514, 515Li, Bang-He, 569, 570Li, Cai Zhong, 474, 475, 514Li, Dening, 594, 595Li, Hailiang, 143, 542Li, Jiequan, 72, 321–324, 372, 594–596Li, Ta-Tsien, 143, 228, 265, 324Li, Tian-Hong, 324, 569, 570, 595Li, Tong, 226Li, Xiaolin, 595Li, Yachun, 143, 514Lieberman, G.M., 595

Lien, Wen-Ching, 475, 595Lifshitz, E.M., 73Liggett, T.M., 192Lighthill, M.J., 226, 571Lin, Huey-Er, 475Lin, Long-Wei, 323, 474, 475, 512, 513, 542Lin, Peixiong, 569Lin, Xiao-Biao, 269, 322Lindquist, W.B., 594Lions, P.-L., 143, 193, 370, 569–571Liu, Hailiang, 143, 226, 268, 321, 322Liu, Hongxia, 371Liu, I-Shih, 323Liu, Jian Guo, 73, 227, 269Liu, Tai-Ping, 72, 95, 142–144, 194, 227,

228, 266–269, 321, 324, 371, 372,432, 433, 474, 475, 513, 514, 542,568, 569, 595

Liu, Weishi, 323Loeper, G., 193Lorenz, J., 269Lu, Yun-Guang, 72, 568–570Lucier, B.J., 193, 371, 515Luo, Pei Zhu, 569Luo, Tao, 142, 143, 324, 475, 569, 570Luskin, M., 474, 475Lyberopoulos, A.N., 371Lyng, G., 269Lyons, W.K., 372Lyubimov, A., 73

MacCamy, R.C., 143Mach, E., XXII, 595MacKinney, W., 267Mailybaev, A.A., 266, 267Majda, A., 72, 95, 142, 192, 193, 227, 228,

266, 268, 571Makino, T., 142Malek, J., 194, 567, 568Malek-Madani, R., 266Mallet-Paret, J., 323Manzo, R., 226Marcati, P., 142, 371, 569, 570Marchesin, D., 266, 267, 322, 323Marigo, A., 226Mariotte, E, XVMarkowich, P., 143Marsden, J.E., 50, 73, 144Marson, A., 321, 372, 474, 513–515

Page 101: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

698 Author Index

Martins, C., 23Marzocchi, A., 23Mascia, C., 268, 269, 371, 372Masmoudi, N., 95Matano, H., 371Matsumura, A., 268Mauri, C., 226Maxwell, J.C., 51Mazel, A., 372Mei, Ming, 143Menon, G., 372Mercier, J.M., 323Metivier, G., 142, 144, 268, 269, 324, 571Min, Jianzhong, 595Mitrovic, H.D., 228Miyakawa, T., 193Mizel, V.J., 50Mock, 266Morawetz, 570, 594Morokoff, W.J., 73Morrey, C.B., 144Muller, I., 49, 50, 73, 227Muller, S., 144Murat, F., 143, 269, 567, 568Musesti, A., 23

Natalini, R., 142–144, 192, 193, 268, 372,568–570

Necas, J., 193, 567Nedelec, J.-C., 96, 194, 371Nessyahu, H., 371Neves, W., 144, 229Ni, Guoxi, 542Nickel, K., 370Nicolaenko, B., 266Nishibata, 142, 268Nishida, T., 474, 475Nishihara, K., 143, 268Noelle, S., 193, 324Nohel, 143Noll, W., 23, 49, 50, 73Nouri, A., 194

Oh, Myunghyun, 269Oleinik, O.A., 266, 267, 370, 514Oliveri, F., 73Olver, P.J., 50Omrane, A., 194Osher, S., 371

Ostrov, D.N., 323, 372, 433Otto, F., 192, 193, 371, 568

Paes-Leme, P., 323Pallara, D., 24Pan, R., 142, 268, 512, 542, 570Panov, E. Yu., 192–194, 321, 371, 568Pant, V., 73Park, Rea, 542Pego, R.L., 266, 267, 372, 475, 571Pence, T.J., 267, 322, 323Peng, Yue-Jun, 50, 193Perepelitsa, M., 475Pericak-Spector, K.A., 324Perthame, B., 72, 192, 193, 227, 268,

569–571Peters, G.R., 323Petzeltova, H., 194Philips, D., 193, 194Piccoli, B., 226, 269, 323, 372, 513, 515Pierre, M., 372Plaza, R., 268, 269Plohr, B.J., 73, 267, 322, 323Pogorelov, N.V., 72Poisson, S.D., XVI, 50, 228Portilheiro, M., 192, 193Poupaud, F., 143, 330, 568Prasad, P., 74, 323Priuli, F.S., 226Probstein, R.F., 594Pulvirenti, M., 193

Qin, Tiehu, 50, 144Quinn, B., 371

Racke, R., 143Raizer, Yu., 72Rankine, W.J.M., XVI, XXII, XXIIIRaoofi, M., 269Rascle, M., 142, 143, 193, 226, 330, 568,

569, 571Rauch, J., 194, 324, 571Raviart, P.-A., 72, 73, 193, 194, 320Rayleigh, Lord, XVIII, XXIII, XXVI,

XXVII, 96, 266Renardy, M., 143Rezakhanlou, F., 371Rhee, Hyun-Ku, 226, 227

Page 102: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Author Index 699

Riemann, B., XX, 95, 227, 265, 320, 432,575

Ringhofer, C.A., 143Risebro, N.H., 226, 321, 323, 372, 474, 475,

513, 515Riviere, T., 193, 322Rivlin, R.S., 50Robyr, R., 372Rohde, C., 142, 143, 322Rokyta, M., 194, 567Rosakis, P., 267Rosales, R.R., 571Rousset, F., 144, 542Roytburd, V., 568Rozdestvenskii, B.L., 72, 192Rubino, B., 143, 569, 570Rudd, K., 269Ruggeri, T., 24, 73, 142, 227, 266Ruzicka, M., 194, 567Rykov, Yu., 371Ryzhik, L., 268

Sable-Tougeron, M., 268, 475Sahel, A., 433Saint-Venant, A.J.C., 227Sande, H., 474, 515Sanders, R., 595Santos, M.M., 570Saxton, K., 143Schaeffer, D., 267, 323, 370, 595Schatzman, M., 514Schauder, J., XXVIII, 142Schecter, S., 267, 322, 323Schmeiser, C., 143Schmidt, B.G., 475Schochet, S., 371, 474, 475, 513, 514, 568,

571Schonbek, M.E., 568, 571Schulz-Rinne, C.W., 596Schulze, S., 267, 323Semenov, Yu., 72Serre, D., 72, 73, 95, 96, 141–144, 226–229,

265–269, 320–322, 324, 371, 372,433, 474, 475, 542, 568–571, 595

Sevennec, B., 227Sever, M., 228, 321, 322, 372Shandarin, S.F., 227Shearer, J.W., 569Shearer, M., 266, 267, 323, 324, 371, 372

Shelkovich, V.M., 321Shelukhin, V., 570Shen, Wen, 142, 227–229, 542Sheng, Wancheng, 321, 322Shiffman, M., 594Shizuta, Y., 96Sideris, T., 95, 143Silhavy, M., 23, 49, 50Simic, S., 227Sinai, Ya. G., 371, 372Sinestrari, C., 192, 371, 372Slemrod, M., 74, 96, 143, 267, 322, 323,

568, 570Smets, D., 322Smith, R.G., 321Smoller, J.A., 72, 73, 143, 192, 226, 265,

266, 320, 321, 324, 370, 474, 475, 569Sod, G.A., 72Song, Kyungwoo, 595Souganidis, P.E., 570Spector, S.J., 324Spinolo, L.V., 323, 542Stewart, J.M., 475Stoker, J.J., 227Stokes, G.G., XVII, XIX, XXVI, 24, 95, 228Straskraba, I., 322Strauss, W., 143Strumia, A., 24Stuart, D.M.A., 50, 96, 144, 569Sun, Wenjun, 542Sverak, V., 144Szekelyhidi, 96Szeliga, W., 324Szepessy, A., 193, 194, 268, 568Szmolyan, P., 267, 322

Tadmor, E., 72, 73, 142, 143, 193, 322, 371,372, 568, 569

Tan, De Chun., 321–323, 594, 596Tang, Tao, 142, 372, 542Tang, Zhi Jing, 323Tao, Terence, 193Tartar, L.C., 72, 143, 567, 568Taub, A.H., 73Taylor, G.I., XXVII, 96, 266Taylor, M.E., 72, 142, 567Temple, B., 73, 194, 265, 321, 323, 324,

372, 432, 433, 474, 475, 513Teng, Zhen-Huan, 371, 542

Page 103: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

700 Author Index

Terracina, A., 142, 372Tesdall, A.M., 595Tesei, A., 192, 569Texier, B., 269Thanh, M.D., 267, 321, 323, 324Tidriri, M., 194Ting, T.C.T., 323Tong, Donald D.M., 372Toro, E., 72Torres, M., 23Toupin, R.A., 49, 50Towers, J.D., 515Tran, H., 142Tricomi, F., 594Trivisa, K., 432, 514, 515Truesdell, C.A., XV, XVI, 49, 50, 73Truskinovsky, L., 267Tsarev, S.P., 228Tsikkou, C., 324, 432Tsuge, N., 570Tupciev, V.A., 322Tveito, A., 142, 194, 228, 512, 513, 569Tzavaras, A.E., 50, 73, 96, 142–144, 193,

269, 322, 323, 370, 568–571

Ueda, Y., 268Ukai, S., 142

van der Geest, M., XXIIvan der Waals, J.D., 50Vasseur, A., 73, 193, 570Vecchi, I., 568Venttsel’, T.D., 569Vila, J.P., 143, 194Villani, 73, 96Vincenti, W.G., 51, 72Volpert, A.I., 24, 192von Karman, T., XXVIIIvon Mises, R.V., XXIV, 51, 432, 594von Neumann, J., XXVIII, 595

Wagner, D.H., 50, 475, 594Wang, Chao Chen, 50Wang, Ching-Hua, 194, 372, 474Wang, Dehua, 72, 74, 143, 324, 475, 570,

595Wang, Kenji, 143Wang, Libin, 228, 324Wang, Wei-Cheng, 142

Wang, Ya-Guang, 596Wang, Yi, 268Wang, Zejun, 475, 570Wang, Zhen, 371, 372, 570Warnecke, G., 73, 267, 324, 372Weber, H., XXIV, XXVI, 95Wei, Dongming, 143Weinberger, H., 372Wendland, W.L., 227Wendroff, B., 266, 321, 513Westdickenberg, M., 96, 193, 371, 568, 570Weyl, H., XXVIII, 265, 266Whitham, G.B., 72, 226, 227, 568, 571Williams, M., 144, 227, 269Winter, A., 228Winther, R., 142, 194, 569Wu, Zhuo-Qun, 330

Xiao, Ling, 143, 570Xie, Chungjing, 595Xin, Zhou Ping, 142, 144, 193, 228, 265,

268, 269, 514, 542, 569, 570, 595Xu, Xiangsheng, 142, 372Xu, Zhengfu, 542

Yan, Baisheng., 324Yang, Hanchun, 321, 322Yang, Shuli., 72, 321, 594, 596Yang, Tong, 95, 142, 143, 228, 266, 268,

321, 323, 324, 371, 474, 475, 513,514, 542, 568–570, 594

Yang, Xiaozhou, 595, 596Yang, Yadong, 323Ye, Xiao Ping, 474Yi, Zhou, 228Yin, Huicheng., 595Ying, Lung An, 474Yong, Wen-An, 142–144, 266, 324Yongqian Zhang, 595Young, L.C., 568Young, R., 324, 433, 474Yu, Shih-Hsien, 142, 266, 268, 269, 542Yu, Wen-Ci, 228, 265Yuan, Hairong, 595

Zeldovich, Ya. B., 72, 227Zemplen, G., XXVZeng, Wang, 268Zhang, Mei, 266

Page 104: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Author Index 701

Zhang, Peng, 322, 324, 594–596Zhang, Tong, 72, 266, 267, 321–324,

594–596Zhang, Yonqian, 514, 595, 596Zhao, Huijiang, 142, 268, 568, 570Zhao, Yinchuan, 372Zheng, Songmu, 96

Zheng, Yuxi, 72, 321–324, 594–596

Zhu, Changjiang, 95, 142, 266, 268, 568

Zhu, Dianwen, 595, 596

Zhu, Guangshan, 323

Ziemer, W.P., 23

Zumbrun, K., 144, 266, 268, 269, 323, 433

Page 105: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Subject Index

acoustic tensor, 57, 199adiabatic exponent, XVI, 40adiabatic flow, XVIadiabatic process, 42admissibility criteria for weak solutions

entropy, ff .83entropy rate, ff .290entropy shock, ff .248entropy, for measure-valued solutions,

549Lax shock, ff .240Liu shock, ff .246vanishing viscosity, ff .87viscosity-capillarity, 91viscous shock, ff .252

admissibleshocks, ff .231wave fans, ff .274

approximatecharacteristic, 446conservation law, 446Riemann solver, ff .482solution, ff .486

balance laws, ff .1angular momentum, 32companion, ff .13, ff .22energy, 33entropy, 33homogeneous, 12in Continuum Physics, ff .28inhomogeneous system of, ff .463linear momentum, 32

mass, 31, 32of continuum thermomechanics, ff .31scalar, 12, 56symmetric, 14symmetrizable, 14system of, ff .12

barotropic flow, XVI, 65Bernoulli equation, XVI, 65binary mixture, 202body, 25body force, 32Boltzmann equation, 65Born-Infeld constitutive relations, 69Boyle’s law, 40breakdown

in scalar conservation law, ff .146of classical solutions, ff .78, 221of weak solutions, ff .317

Buckley-Leverett equation, 196Burgers equation, XXIX, 78, 88, 218BV functions, ff .17

bounded variation, 17irregular point of, 18locally bounded variation, 17normalized composition of, 18point of approximate continuity of, 18point of approximate jump discontinuity

of, 18special, 20, 273, 338total variation of, 17trace, inward or outward, of, 19

BV solutions, ff .21, ff .325

Page 106: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

704 Subject Index

caloric equations, XXIII, 42Cauchy problem, ff .75Cauchy stress, 32Cauchy tetrahedron argument, 5Chaplygin gas, XX, 41, 595Chapman-Enskog expansion, 142characteristic

approximate, ff .444classical, 146, 204generalized, ff .325in front tracking scheme, 486

characteristic speed, 54, 204characteristic tree, ff .400chromatography, 227Clausius-Duhem inequality, 32, 33combustion, ff .202compactness and consistency

of front tracking algorithm, ff .494of random choice algorithm, ff .438

companion balance law, ff .13, ff .22compensated compactness, ff .545conservation law

approximate, 446canonical form of, 54system of, 12

constant state, 217constitutive equations, 12

of thermoelasticity, ff .36of thermoviscoelasticity, ff .44

contact discontinuity, 242continuity equation, 32, 69continuum physics, ff .25continuum thermomechanics, ff .31contraction semigroup, ff .158Crandall-Liggett theory, 163

damping, ff .108deformation gradient, 27density, 32density flux function, 2diffusion wave, 261, 262dissipation inequality, 34div-curl lemma, ff .547divide, 329, ff .340, 348, 430duct of varying cross section, 201, 466

E-conditionLax, ff .240, 242, 247, 250, 251, 259, 276,

283, 325, 332

Liu, ff .246, 247, 249, 251, 257, 274, 283,287

Oleinik, 247, 249, 257, 283, 292Wendroff, 248, 250, 257, 260, 283, 292

elastic string, 199, 200electrodynamics, ff .68electromagnetic field energy, 69, 71electromagnetic waves, 201, 210electrophoresis, 209, 215entropy, XXIII, 33, ff .54, ff .211

admissibility criterion, ff .83, 550contingent, ff .129flux, 33, 55Kruzkov, 149Lax, 376physical, 33production across shock, 248production measure, 84rate admissibility criterion, 87, ff .290relative, 119shock admissibility criterion, ff .248weak, 565

entropy-entropy flux pairs, 211equidistributed sequence, 440, 462Euler’s equations, XVI, 73, 86Euler-Poisson system, 113Eulerian formulation (coordinates), 26explosion of weak fronts, ff .220extended thermodynamics, ff .65, 67extensive quantity, 2

fading memory, 117field equation, ff .3fine structure, ff .180finite perimenter, set of, 19

measure theoretic boundary of, 19reduced boundary of, 19

flow past a ramp of gentle slope, ff .583Fourier law, 40front

rarefaction, 481shock, 15weak, 15

front tracking method, ff .477for scalar conservation laws, ff .478for systems of conservation laws, ff .480

generalized characteristics, ff .325extremal backward, ff .327

Page 107: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Subject Index 705

for scalar balance laws, 359for scalar conservation laws, ff .332for systems of two conservation laws, ff

.378left contact, 328maximal, 327minimal, 327right contact, 328shock free, 328, 359

generation order of wave, 485genuine nonlinearity, 214, 219, 221, 224,

236, 239, 243, 247, 251, ff .278, 310,329, ff .331, ff .373, ff .444, ff .448, ff.453, ff .455, ff .481, ff .556

geometric optics, 571Gibbs relation, XIII, 39Glimm functional, ff .448

continuous, ff .507Godunov’s scheme, 542, 559, 564gravity waves, 200

Hamilton-Jacobi equation, 344heat flux, 33heat supply, 33Helly’s theorem, 20Helmholtz free energy, 41hodograph transformation, XXI, 377Hopf-Cole transformation, XXIXHugoniot equation, XXIV, 233Hugoniot locus, XXII, ff .234hydrodynamic model of semiconductors,

114hydrostatic pressure, 40, 47hyperbolic systems, ff .53hyperelasticity, 42

ideal polytropic gas, XXIII, 40incompressibility, ff .47inhomogeneous systems of balance laws, ff

.463initial-boundary value problem, ff .91, ff

.138, ff .184interaction of wave fans, ff .309internal energy, XXIII, 33internal state variable, 48invariants for scalar conservation laws, ff

.340involution, ff .119involution cone, 120

irreversibility, 83irrotational flow, 65, 129, 579, ff .580, 585,

ff .588, ff .591isentropic

flow, XVIgas dynamics, 198, ff .564process, 42steady gas flow, ff .576(thermo) elasticity, 43, ff .59, 198, 233,

243, 247, 249, 257, 279, 283, 374, ff.559

isochoric, 29isothermal flow, XVIisothermal process, 42isotropic thermoelastic solid, 41

jump condition; see also “Rankine-Hugoniotjump condition”, 16

Kawashima condition, 89, 96, 110Kawashima-Shizuta condition, 96kinematic conservation laws, 58kinetic formulation, ff .174kinetic relation, 242, 264Kreiss-Lopatinski condition, 139

Lagrangian formulation (coordinates), 26lap number, 351, 479Lax

entropies, 376, 557formula, 340shock admissibility criterion, ff .240

Lax E-condition, XXII, 242Lax-Friedrichs scheme, 192, 438, 542, 559,

564layering method, ff .164Legendre-Hadamard condition, 57linear degeneracy, 214, 238, 250, 278, 279,

481, 570linearly nondegenerate, 181Liu

shock admissibility criterion, ff .246

Mach reflection, XXII, 591Mach stem, 591magnetohydrodynamics, ff .71mass explosion, 79material frame indifference, ff .35, 38, 45, 59material symmetry, 39, 46Maxwell stress tensor, 71

Page 108: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

706 Subject Index

Maxwell’s equations, ff .68measure-valued solutions, ff .548mesh curve, 448mesh-point, 436mixtures, 202motion, 26Murat’s lemma, 548, 568

N-waves, ff .346, ff .421Newtonian fluid, 47nonconductor of heat, 42nonconservative shocks, ff .264nonresonant curve, 486normal reflection, 589null condition, 115, 143null Lagrangian, 30

oblique reflection, 590

particle, 26periodic solutions, 349, ff .427phase transition, 267, 323piecewise genuinely nonlinear, 284Piola-Kirchhoff stress, 32placement, 26planar elastic oscillations, 198, 214polyconvexity, ff .129porous medium, 142, 143, 190potential flow, 65, 129, 579, ff .580, 585, ff

.588, ff .591potential for wave interaction, 450, 490Poynting vector, 69pressure, XVpressure gradient system, 595pressureless Euler equations, 595pressureless gas, 198production density function, 2propagation of oscillations, 571proper domain, 2pseudopotential, 581pseudoshock, 482pseudovelocity, 581, 582p-system, 198

quasiconvex entropy, 127

radial isentropic gas flow, 203, ff .566, 567,570

random choice method, ff .435

rank-one convex energy, 57Rankine-Hugoniot jump condition, 54, 82rapid oscillations, ff .22rarefaction

front, 481wave, XX, 218, 273, 276, 287wave curve, 218, 239wave spreading, 335, 410, ff .507

reference configuation, 26reference density, 32referential (Lagrangian) formulation, 26referential field equation, 28regular shock reflection, ff .588regularity of solutions

scalar conservation law, ff .188, ff .336systems of n conservation laws, ff .507systems of two conservation laws, ff .415

relaxation, ff .48, ff .108, ff .167motion with, ff .60parameter, 111time, 49via compensated compactness, ff .553

relaxation scheme for scalar conservationlaws, ff .167, ff .553

relaxed system, 111rich systems, 213Riemann invariants, XVII, XIX, XXI, ff

.206, 236coordinate system of, 207, 212, 281, 311

Riemann problem, ff .271multidimensional, ff .573

Riemann solverapproximate, 482simplified, 483

right stretch tensor, 27rotation tensor, 27

sampling point, 439scalar balance law, 12scalar balance law in one space dimension,

ff .358scalar conservation law in multi-space

dimensions, ff .145admissible solutions, ff .148breakdown of classical solutions, ff .146contraction in L1, 149fine structure, ff .180initial-boundary value problem, ff .183via contraction semigroup, ff .158

Page 109: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Subject Index 707

via kinetic formulation, ff .174via layering method, ff .164via relaxation, ff .167via vanishing viscosity, ff .153

scalar conservation law in one spacedimension

admissibility of solutions, 242, 243, 247,249, 257, 292

comparison theorems, ff .350inhomogeneous, ff .365initial data in Lp, 345initial data of compact support, ff .346invariants, 342Lax function, 342, 343N-wave, 347one-sided Lipschitz condition, 336periodic initial data, 349regularity of solutions, ff .336sawtoothed profile, ff .348spreading of rarefaction waves, ff .335via compensated compactness, ff .551via front tracking, ff .478via generalized characteristics, ff .331via relaxation, ff .553

Second Law of thermodynamics, 33self-similar planar irrotational isentropic gas

flow, ff .580self-similar solutions for multidimensional

scalar conservation laws, ff .573separatrix, 329shallow-water equations, XIX, 200shearing, 197shock

admissible, ff .231amplitude of, 232compressive, 241curve, 234delta, 289, 308front, 15, 21generation point of, 335nonconservative, 264of moderate strength, 232overcompressive, 242strength of, 232strong, 232structure of, 254subsonic, 578, 582supersonic, 578, 582transonic, 578, 582

undercompressive, 242weak, 232

shock collision with a steep ramp, 591shock curves coinciding with rarefaction

wave curves, 239, 265, 301, 570shock polar, 578, 582simple waves, XVII, ff .216small disturbance equations, 595solution

admissible, 15, ff .83, ff .87classical, 12, 76measure-valued, ff .549mild, 132nonuniqueness of, ff .82self-similar, ff .271, ff .573, ff .580stability of, ff .116structure for systems, ff .507weak, 12, 21, ff 81

sonic circle, 582sonic speed, 62, 63space-like curve, 378spatial (Eulerian) formulation, 26spatial field equation, 28specific heat, XV, 40specific volume, XV, 197spin tensor, 27standard Riemann semigroup, 477, ff .500state vector, 12strain, 197stress tensor, 32

Cauchy, 32Maxwell, 71Piola-Kirchhoff, 32

stretch tensor, 27stretching tensor, 27strictly hyperbolic, 205subcharacteristic condition, 112, 174, 553symmetrizer, 107symmetry group, 39, 46system

canonical form, 54genuinely nonlinear, ff .214hyperbolic, ff .53of balance laws, ff .12of conservation laws, ff .12rich, 213strictly hyperbolic, ff .203symmetric, 14, 55, 211, 309symmetrizable, 14, 188

Page 110: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

708 Subject Index

systems of two conservation lawsinitial data in L1, ff .417initial data with compact support, ff .421local structure of solutions, ff .378N-wave, 422periodic solutions, ff .427regularity of solutions, ff .415sawtoothed profile, 428spreading of rarefaction waves, ff .410via compensated compactness, ff .556via generalized characteristics, ff .373

tame oscillation condition, 502tame variation condition, 514temperature, 33temperature gradient, 34thermal conductivity, 40, 47thermal equations, XXIII, 42thermodynamic admissibility, 34, 43thermodynamic process, 33thermoelastic

fluid, 39, ff .61medium, 36nonconductor of heat, 42, ff .56

thermoelasticity, ff .36thermomechanics, ff .31thermoviscoelastic fluid, 46thermoviscoelasticity, ff .44trace theorem, ff .7traffic theory, ff .195traveling wave, 253, 519, ff .524

umbilic point, 205uniqueness of solutions, ff .501universal gas constant, XV, 40

vacuum state, 289van der Waals gas, 40velocity, 26velocity potential, 65

viscosityartificial, 88bulk, 47–capillarity admissibility criterion, 91of the rate type, 44shear, 47solution, 344vanishing, ff .XXVI, ff .87, ff .153, ff .517,

552viscous

shock admissibility criterion, 254shock profiles, ff .252traveling wave, ff .524wave fan, ff .299

vortex sheets, 63, 64, 577vorticity, 27, 65

waveamplitude, 278approaching, 311, 449, 489breaking, XVII, 78cancellation, amount of, 446centered compression, 335, 415composite, 276compression, 218diffusion, 261elementary, 276interaction, amount of, 311, 445, 451partitioning, 461strength, 278tracing, ff .460transitional, 290virtual, 456, 461viscous, 524

wave fanadmissibility criteria, ff .274interactions, ff .309

Young measure, ff .546, 549, 551, 557, 560,565

Page 111: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

Grundlehren dermathematischen Wissenschaften Vol. 325ISBN 978-3-642-04047-4

Constantine M. Dafermos

Hyperbolic Conservation Lawsin Continuum Physics

Publisher’s Erratum

The original eBook version contained a mistake that occurred duringthe production process. This is the corrected eBook.

Page 112: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

A Series of Comprehensive Studies in Mathematics

A Selection

247. Suzuki: Group Theory I248. Suzuki: Group Theory II249. Chung: Lectures from Markov Processes to Brownian Motion250. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations251. Chow/Hale: Methods of Bifurcation Theory252. Aubin: Nonlinear Analysis on Manifolds. Monge-Ampère Equations253. Dwork: Lectures on ρ-adic Differential Equations254. Freitag: Siegelsche Modulfunktionen255. Lang: Complex Multiplication256. Hörmander: The Analysis of Linear Partial Differential Operators I257. Hörmander: The Analysis of Linear Partial Differential Operators II258. Smoller: Shock Waves and Reaction-Diffusion Equations259. Duren: Univalent Functions260. Freidlin/Wentzell: Random Perturbations of Dynamical Systems261. Bosch/Güntzer/Remmert: Non Archimedian Analysis – A System Approach to Rigid

Analytic Geometry262. Doob: Classical Potential Theory and Its Probabilistic Counterpart263. Krasnosel’skiı/Zabreıko: Geometrical Methods of Nonlinear Analysis264. Aubin/Cellina: Differential Inclusions265. Grauert/Remmert: Coherent Analytic Sheaves266. de Rham: Differentiable Manifolds267. Arbarello/Cornalba/Griffiths/Harris: Geometry of Algebraic Curves, Vol. I268. Arbarello/Cornalba/Griffiths/Harris: Geometry of Algebraic Curves, Vol. II269. Schapira: Microdifferential Systems in the Complex Domain270. Scharlau: Quadratic and Hermitian Forms271. Ellis: Entropy, Large Deviations, and Statistical Mechanics272. Elliott: Arithmetic Functions and Integer Products273. Nikol’skiı: Treatise on the shift Operator274. Hörmander: The Analysis of Linear Partial Differential Operators III275. Hörmander: The Analysis of Linear Partial Differential Operators IV276. Liggett: Interacting Particle Systems277. Fulton/Lang: Riemann-Roch Algebra278. Barr/Wells: Toposes, Triples and Theories279. Bishop/Bridges: Constructive Analysis280. Neukirch: Class Field Theory281. Chandrasekharan: Elliptic Functions282. Lelong/Gruman: Entire Functions of Several Complex Variables283. Kodaira: Complex Manifolds and Deformation of Complex Structures284. Finn: Equilibrium Capillary Surfaces285. Burago/Zalgaller: Geometric Inequalities286. Andrianaov: Quadratic Forms and Hecke Operators287. Maskit: Kleinian Groups288. Jacod/Shiryaev: Limit Theorems for Stochastic Processes

Grundlehren der mathematischen Wissenschaften

289. Manin: Gauge Field Theory and Complex Geometry

Page 113: Bibliography - Springer978-3-642-04048... · 2017-08-27 · Bibliography Aavatsmark, I. 1. Kapillarenergie als Entropiefunction. ZAMM 69 (1989), 319–327. Abeyaratne, R. and J.K

290. Conway/Sloane: Sphere Packings, Lattices and Groups291. Hahn/O’Meara: The Classical Groups and K-Theory292. Kashiwara/Schapira: Sheaves on Manifolds293. Revuz/Yor: Continuous Martingales and Brownian Motion294. Knus: Quadratic and Hermitian Forms over Rings295. Dierkes/Hildebrandt/Küster/Wohlrab: Minimal Surfaces I296. Dierkes/Hildebrandt/Küster/Wohlrab: Minimal Surfaces II297. Pastur/Figotin: Spectra of Random and Almost-Periodic Operators298. Berline/Getzler/Vergne: Heat Kernels and Dirac Operators299. Pommerenke: Boundary Behaviour of Conformal Maps300. Orlik/Terao: Arrangements of Hyperplanes301. Loday: Cyclic Homology302. Lange/Birkenhake: Complex Abelian Varieties303. DeVore/Lorentz: Constructive Approximation304. Lorentz/v. Golitschek/Makovoz: Construcitve Approximation. Advanced Problems305. Hiriart-Urruty/Lemaréchal: Convex Analysis and Minimization Algorithms I.

Fundamentals306. Hiriart-Urruty/Lemaréchal: Convex Analysis and Minimization Algorithms II.

Advanced Theory and Bundle Methods307. Schwarz: Quantum Field Theory and Topology308. Schwarz: Topology for Physicists309. Adem/Milgram: Cohomology of Finite Groups310. Giaquinta/Hildebrandt: Calculus of Variations I: The Lagrangian Formalism311. Giaquinta/Hildebrandt: Calculus of Variations II: The Hamiltonian Formalism312. Chung/Zhao: From Brownian Motion to Schrödinger’s Equation313. Malliavin: Stochastic Analysis314. Adams/Hedberg: Function spaces and Potential Theory315. Bürgisser/Clausen/Shokrollahi: Algebraic Complexity Theory316. Saff/Totik: Logarithmic Potentials with External Fields317. Rockafellar/Wets: Variational Analysis318. Kobayashi: Hyperbolic Complex Spaces319. Bridson/Haefliger: Metric Spaces of Non-Positive Curvature320. Kipnis/Landim: Scaling Limits of Interacting Particle Systems321. Grimmett: Percolation322. Neukirch: Algebraic Number Theory323. Neukirch/Schmidt/Wingberg: Cohomology of Number Fields

325. Dafermos: Hyperbolic Conservation Laws in Continuum Physics326. Waldschmidt: Diophantine Approximation on Linear Algebraic Groups327. Martinet: Perfect Lattices in Euclidean Spaces328. Van der Put/Singer: Galois Theory of Linear Differential Equations329. Korevaar: Tauberian Theory. A Century of Developments330. Mordukhovich: Variational Analysis and Generalized Differentiation I: Basic Theory331. Mordukhovich: Variational Analysis and Generalized Differentiation II: Applications

324. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes

Derived Categories332. Kashiwara/Schapira: Categories and Sheaves. An Introduction to Ind-Objects and

334. Sernesi: Deformations of Algebraic Schemes335. Bushnell/Henniart: The Local Langlands Conjecture for GL(2)

333. Grimmett: The Random-Cluster Model

336. Gruber: Convex and Discrete Geometry337.

338. Villani: Optimal Transport: Old and New

Maz'ya/Shaposhnikova: Theory of Sobolev Multipliers. With Applications to Differentialand Integral Operators