30
Seismic Simulation and Design of Bridge Columns Under Combined Actions and Implication on System Response University of Nevada, Reno Dr. David H. Sanders Juan Arias-Acosta Feb. 22 - 2008

Bidirectional Mass Platform (Single Curvature)

Embed Size (px)

DESCRIPTION

Seismic Simulation and Design of Bridge Columns Under Combined Actions and Implication on System Response University of Nevada, Reno Dr. David H. Sanders Juan Arias-Acosta Feb. 22 - 2008. Bidirectional Mass Platform (Single Curvature). Bidirectional Mass Platform (Single Curvature). - PowerPoint PPT Presentation

Citation preview

Page 1: Bidirectional Mass Platform (Single Curvature)

Seismic Simulation and Design of Bridge Columns Under Combined Actions and Implication on

System Response

University of Nevada, Reno

Dr. David H. Sanders Juan Arias-Acosta

Feb. 22 - 2008

Page 2: Bidirectional Mass Platform (Single Curvature)

Bidirectional Mass Platform (Single Curvature)Bidirectional Mass Platform (Single Curvature)

Page 3: Bidirectional Mass Platform (Single Curvature)

Bidirectional Mass Platform (Single Curvature)Bidirectional Mass Platform (Single Curvature)

Universal jointsUniversal joints

Page 4: Bidirectional Mass Platform (Single Curvature)

Bidirectional Mass Platform (Safety system)Bidirectional Mass Platform (Safety system)

Page 5: Bidirectional Mass Platform (Single Curvature)

Bidirectional Mass Platform (Double Curvature)Bidirectional Mass Platform (Double Curvature)

Double Link

Page 6: Bidirectional Mass Platform (Single Curvature)

Bidirectional Mass Platform (Double Curvature)Bidirectional Mass Platform (Double Curvature)

Page 7: Bidirectional Mass Platform (Single Curvature)

Circular Columns (Specimens Selection)Circular Columns (Specimens Selection)

L= 72 in Note:f'c= 5.5 ksi Design according to Caltrans Seismic Design Criteria, June 2006Ec= 4227 ksi P=0.1 f'c Agfyl= 65 ksi Escale for circular 1:3 Vu SC: Shear capacity based in single curvature bending

fys= 60 ksi Escale for interlocking 1:4 Vu DC: Shear capacity based in double curvature bendingEs= 29000 ksi sh: spiral pitch Vn: Shear Capacity

Name dx (in) dy (in) P (k) cover (in) spiral sh (in) rl (%) rs (%) fy My (k-in) fu Mu (k-in) mD Vu SC Vu DC Vc (k) Vs (k) Vn (k)L72- 20#4 16 16 80 0.75 W5.0 1.5 1.99 0.92 0.000342 1927 0.00466 2211 6.84 30.71 61.42 7.31 45.55 52.86L72- 14#5 16 16 80 0.75 W5.0 1.5 2.16 0.92 0.00033 1955 0.00541 2271 8.14 31.54 63.08 4.29 45.55 49.84L72- 15#5 16 16 80 0.75 W5.0 1.5 2.31 0.92 0.00033 2048 0.00552 2406 8.26 33.42 66.83 4.29 45.55 49.84L72- 16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92 0.00034 2270 0.00423 2597 6.82 36.07 72.14 7.56 45.55 53.12L66-16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92 0.00034 2270 0.00423 2597 7.20 39.35 78.70 4.29 45.55 49.84L58-16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92 0.00034 2270 0.00423 2597 7.79 44.78 89.55 4.29 45.55 49.84

X- direction

W 2.0 @ 1.0 in

16.75 in

5.00 in 5.00 in6.75 in

38#3

0.50 in

10.00 in10.00 in

W 2.0 @ 1.0 in

15.62 in

5.00 in 5.00 in5.62 in

34#3

0.50 in

10.00 in

Cross section ISL1.0 Cross section ISL1.5

Cross section ISH1.0 Cross section ISH1.25 Cross section ISH1.5

6.00 in 6.00 in5.50 inW 2.9 @ 1.0 in

32#3

0.50 in12.00 in

20.25 in

6.00 in 6.00 in8.25 inW 2.9 @ 1.0 in

38#3

0.50 in12.00 in

W 2.0 @ 1.5 in

5.00 in 5.00 in4.50 in

32#3

0.50 in

14.50 in

17.50 in

Cross section L72 20#4 Cross section L72 14#5

Cross section L72 15#5 Cross section L72 16#5

16.00 in

W 5.0 @ 1.0 in

20#4

0.75 in

16.00 in

W 5.0 @ 1.0 in

14#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

16#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

15#5

0.75 in

Name dx (in) dy (in) P (k) cover (in) spiral sh (in) rl (%) rs (%)

L72- 20#4 16 16 80 0.75 W5.0 1.5 1.99 0.92L72- 14#5 16 16 80 0.75 W5.0 1.5 2.16 0.92L72- 15#5 16 16 80 0.75 W5.0 1.5 2.31 0.92L72- 16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92L66-16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92L58-16#5 16 16 80 0.75 W5.0 1.5 2.47 0.92

W 2.0 @ 1.0 in

16.75 in

5.00 in 5.00 in6.75 in

38#3

0.50 in

10.00 in10.00 in

W 2.0 @ 1.0 in

15.62 in

5.00 in 5.00 in5.62 in

34#3

0.50 in

10.00 in

Cross section ISL1.0 Cross section ISL1.5

Cross section ISH1.0 Cross section ISH1.25 Cross section ISH1.5

6.00 in 6.00 in5.50 inW 2.9 @ 1.0 in

32#3

0.50 in12.00 in

20.25 in

6.00 in 6.00 in8.25 inW 2.9 @ 1.0 in

38#3

0.50 in12.00 in

W 2.0 @ 1.5 in

5.00 in 5.00 in4.50 in

32#3

0.50 in

14.50 in

17.50 in

Cross section L72 20#4 Cross section L72 14#5

Cross section L72 15#5 Cross section L72 16#5

16.00 in

W 5.0 @ 1.0 in

20#4

0.75 in

16.00 in

W 5.0 @ 1.0 in

14#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

16#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

15#5

0.75 in

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

fy My (k-in) fu X Mu (k-in) mD Vu SC Vu DC Vc (k) Vs (k) Vn (k)0.00034 1927 0.00466 2211 6.84 30.71 61.42 7.31 45.55 52.860.00033 1955 0.00541 2271 8.14 31.54 63.08 4.29 45.55 49.840.00033 2048 0.00552 2406 8.26 33.42 66.83 4.29 45.55 49.840.00034 2270 0.00423 2597 6.819 36.07 72.14 7.56 45.55 53.120.00034 2270 0.00423 2597 7.200 39.35 78.70 4.29 45.55 49.840.00034 2270 0.00423 2597 7.788 44.78 89.55 4.29 45.55 49.84

Y- direction

8072

88

Shake Table

Test in Single Curvature

8058

72

Shake Table

Test in Double Curvature

L72 16#5 Hysteretic Behavior (El centro x 4.0), EQ uniaxial

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Page 8: Bidirectional Mass Platform (Single Curvature)

Circular Columns Details (Single Curvature)Circular Columns Details (Single Curvature)

Page 9: Bidirectional Mass Platform (Single Curvature)

Circular Columns Details (Double Curvature)Circular Columns Details (Double Curvature)

Page 10: Bidirectional Mass Platform (Single Curvature)

Interlocking Spiral Columns (Specimen Selection)Interlocking Spiral Columns (Specimen Selection)

L= 72 in Note:f'c= 5.5 ksi Design according to Caltrans Seismic Design Criteria, June 2006Ec= 4227 ksi P=0.1 f'c Agfyl= 65 ksi Escale for circular 1:3 Vu SC: Shear capacity based in single curvature bending

fys= 60 ksi Escale for interlocking 1:4 Vu DC: Shear capacity based in double curvature bendingEs= 29000 ksi sh: spiral pitch Vn: Shear Capacity

Name dx (in) dy (in) P (k) cover (in) spiral sh (in) rl (%) rs (%) fy My (k-in) fu Mu (k-in) mD Vu SC Vu DC Vc (k) Vs (k) Vn (k) ISL1.0 12 17.5 98.5 0.5 W2.9 1.0 1.97 1.05 0.0004 1402 0.00742 1564 7.36 21.72 43.44 5.13 60.13 65.26 ISL1.5 12 20.25 106 0.5 W2.9 1.0 1.97 1.05 0.00039 1670 0.00754 1885 7.64 26.18 52.36 2.96 60.13 63.09 ISH1.0 10 14.5 61.8 0.5 W2.0 1.5 2.85 0.59 0.00051 1016 0.00557 1069 4.67 14.85 29.69 8.93 22.62 31.55 ISH1.25 10 15.62 67.4 0.5 W2.0 1.0 2.78 0.89 0.00049 1097 0.00737 1210 6.09 16.81 33.61 7.55 33.93 41.48 ISH1.5 10 16.75 73 0.5 W2.0 1.0 2.86 0.89 0.00049 1200 0.00729 1319 6.04 18.32 36.64 8.08 33.93 42.01

X- direction

W 2.0 @ 1.0 in

16.75 in

5.00 in 5.00 in6.75 in

38#3

0.50 in

10.00 in10.00 in

W 2.0 @ 1.0 in

15.62 in

5.00 in 5.00 in5.62 in

34#3

0.50 in

10.00 in

Cross section ISL1.0 Cross section ISL1.5

Cross section ISH1.0 Cross section ISH1.25 Cross section ISH1.5

6.00 in 6.00 in5.50 inW 2.9 @ 1.0 in

32#3

0.50 in12.00 in

20.25 in

6.00 in 6.00 in8.25 inW 2.9 @ 1.0 in

38#3

0.50 in12.00 in

W 2.0 @ 1.5 in

5.00 in 5.00 in4.50 in

32#3

0.50 in

14.50 in

17.50 in

Cross section L72 20#4 Cross section L72 14#5

Cross section L72 15#5 Cross section L72 16#5

16.00 in

W 5.0 @ 1.0 in

20#4

0.75 in

16.00 in

W 5.0 @ 1.0 in

14#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

16#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

15#5

0.75 in

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Name dx (in) dy (in) P (k) cover (in) spiral sh (in) rl (%) rs (%)

ISL1.0 12 17.5 98.5 0.5 W2.9 1.0 1.97 1.05 ISL1.5 12 20.25 106 0.5 W2.9 1.0 1.97 1.05 ISH1.0 10 14.5 61.8 0.5 W2.0 1.5 2.85 0.59 ISH1.25 10 15.62 67.4 0.5 W2.0 1.0 2.78 0.89 ISH1.5 10 16.75 73 0.5 W2.0 1.0 2.86 0.89

W 2.0 @ 1.0 in

16.75 in

5.00 in 5.00 in6.75 in

38#3

0.50 in

10.00 in10.00 in

W 2.0 @ 1.0 in

15.62 in

5.00 in 5.00 in5.62 in

34#3

0.50 in

10.00 in

Cross section ISL1.0 Cross section ISL1.5

Cross section ISH1.0 Cross section ISH1.25 Cross section ISH1.5

6.00 in 6.00 in5.50 inW 2.9 @ 1.0 in

32#3

0.50 in12.00 in

20.25 in

6.00 in 6.00 in8.25 inW 2.9 @ 1.0 in

38#3

0.50 in12.00 in

W 2.0 @ 1.5 in

5.00 in 5.00 in4.50 in

32#3

0.50 in

14.50 in

17.50 in

Cross section L72 20#4 Cross section L72 14#5

Cross section L72 15#5 Cross section L72 16#5

16.00 in

W 5.0 @ 1.0 in

20#4

0.75 in

16.00 in

W 5.0 @ 1.0 in

14#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

16#5

0.75 in

16.00 in

W 5.0 @ 1.0 in

15#5

0.75 in

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

fy My (k-in) fu X Mu (k-in) mD Vu SC Vu DC Vc (k) Vs (k) Vn (k)0.0003 2026 0.00431 2235 7.36 31.04 62.08 18.84 60.13 78.970.00026 2763 0.00378 3074 6.02 42.69 85.39 18.44 60.13 78.570.00036 1413 0.00329 1478 3.97 20.53 41.06 13.46 22.62 36.080.00034 1649 0.00395 1795 4.91 24.93 49.86 15.43 33.93 49.360.00032 1957 0.00368 2120 4.83 29.44 58.89 16.33 33.93 50.26

Y- direction

8072

88

Shake Table

Test in Single Curvature

8058

72

Shake Table

Test in Double Curvature

L72 16#5 Hysteretic Behavior (El centro x 4.0), EQ uniaxial

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Top Lateral displacement (in)

Ba

se

sh

ea

r (k

ips

)

Page 11: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

Beam with hinges

Zero length element

M

P

Elastic element

Inelastic fiber element

3D model, cantilever beam inelastic fiber

elements

Uniaxial concrete material Concrete04

Mander’s model – Degradation

according to Karsan-Jirsa

Page 12: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

Uniaxial material ReinforcingSteel Strain rate effect according Zadeh -

Saiidi

Page 13: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

Bond Slip according to Wehbe – Saiidi

As Moment – rotation hysteresis

u

dffl bys

4

)(1

u

dfl by

42 AN

ls .

)(8 syysssb fffu

dl

bd

cfu

'5.9u

dfl bs

4ys ff

ys ff

AN

ls .

m

s

sb

E

fdl8

2

Page 14: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

C + AL + PD C + AL + PD : As single Column, constant axial load and Pdelta effect.: As single Column, constant axial load and Pdelta effect. C + UT + PD C + UT + PD : As single Column, Unbonded tendon and Pdelta effect.: As single Column, Unbonded tendon and Pdelta effect.

P=80 K

Rigid link

Point Mass

Rigid link

Beam with Hinges

Fiber section

Fiber section

Zero length Element

Elastic Element

C+AL+PD

Rigid linkPoint Mass

Rigid link

Beam with Hinges

Fiber section

Fiber section

Zero length Element

Truss Element

C+UT+PD

Page 15: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

MR + C+PD+ UT MR + C+PD+ UT : Mass frame, column including unbonded tendon & PD.: Mass frame, column including unbonded tendon & PD.

MR+C+PD+UT

Point Mass

Rigid link

Beam with Hinges

Corotational Truss Ele.

Rigid links

Corotational Truss Ele.

Rigid links

Corotational Truss Ele.

Elastic Beams

Truss Element

Additional mass

Page 16: Bidirectional Mass Platform (Single Curvature)

Analytic models (OpenSees)Analytic models (OpenSees)

MR+C+PD+UT

Page 17: Bidirectional Mass Platform (Single Curvature)

EarthquakesEarthquakes

El CentroEl Centro: 0.33, 0.66, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, : 0.33, 0.66, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.04.0SylmarSylmar: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, : 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.61.6

Mendocino- PetroliaMendocino- Petrolia: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, : 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.41.4Northridge-SepulvedaNorthridge-Sepulveda: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, : 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.41.4

KobeKobe: 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, : 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.42.4Northridge- ArletaNorthridge- Arleta: 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, : 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, 3.03.0Northridge- Newhall:Northridge- Newhall: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.81.8LomaPrieta- CorralitosLomaPrieta- Corralitos: 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, : 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, 3.03.0LomaPrieta- CapitolaLomaPrieta- Capitola: 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, : 0.3, 0.6, 0.9, 1.2, 1.4, 1.5, 1.8, 2.1, 2.4, 2.7, 3.03.0

UNRUNR

UCLAUCLA

UIUCUIUC

Page 18: Bidirectional Mass Platform (Single Curvature)

Elastic SpectrumElastic Spectrum

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5

SA (g

)

T (s)

Sylmarx1.8

Arletax3.0

Newhallx1.8

Kobex2.4

Corralitosx3.0

Capitolax2.7

Mendocinox1.6

Sepulvedax1.6

Centrox40.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5

SA (g

)

T (s)

Sylmarx1.8

Arletax3.0

Newhallx1.8

Kobex2.4

Corralitosx3.0

Capitolax2.7

Mendocinox1.6

Sepulvedax1.6

Centrox4

Page 19: Bidirectional Mass Platform (Single Curvature)

Analysis (El Centrox4 - XDisplacement)Analysis (El Centrox4 - XDisplacement)

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)

C+AL+PD

Page 20: Bidirectional Mass Platform (Single Curvature)

Analysis (El Centrox4 - XDisplacement)Analysis (El Centrox4 - XDisplacement)

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)

C+AL+PDMR+AL+PD

Page 21: Bidirectional Mass Platform (Single Curvature)

Analysis (El Centrox4 - XDisplacement)Analysis (El Centrox4 - XDisplacement)

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)

C+AL+PDMR+AL+PD

C+UT+PD

Page 22: Bidirectional Mass Platform (Single Curvature)

Analysis (El Centrox4 - XDisplacement)Analysis (El Centrox4 - XDisplacement)

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent (

in)

Time (s)

C+AL+PDMR+AL+PD

C+UT+PDMR+AL+PD

Page 23: Bidirectional Mass Platform (Single Curvature)

Analysis (Kobex2.4 - X Displacement)Analysis (Kobex2.4 - X Displacement)

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent

(in)

Time (s)

C+AL+PD

MR+C+UT

MR+C+AL

C+UT

Page 24: Bidirectional Mass Platform (Single Curvature)

Analysis (Sylmarx1.4 X Displacement)Analysis (Sylmarx1.4 X Displacement)

-2

-1

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

X D

ispl

acem

ent

(in)

Time (s)

C+AL+PD

MR+C+UT

MR+C+AL

C+UT

Page 25: Bidirectional Mass Platform (Single Curvature)

Analysis (Northridge-SPVx1.4 - X Displacement)Analysis (Northridge-SPVx1.4 - X Displacement)

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

X D

ispl

acem

ent

(in)

Time (s)

C+AL+PD

MR+C+UT

MR+C+AL

C+UT

Page 26: Bidirectional Mass Platform (Single Curvature)

Analysis (Mendocinox1.4- X Displacement)Analysis (Mendocinox1.4- X Displacement)

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180

X D

ispl

acem

ent

(in)

Time (s)

C+AL+PD

MR+C+UT

MR+C+AL

C+UT

Page 27: Bidirectional Mass Platform (Single Curvature)

Analysis (Displacement Summary)Analysis (Displacement Summary)

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300

Dis

plac

emen

t (in

)

Time (s)

Centro

Sylmar

Arleta

Newhall

Sepulveda

Kobe

Corralitos

Capitola

Mendocino

Page 28: Bidirectional Mass Platform (Single Curvature)

Measured Response (Hysteretic)Measured Response (Hysteretic)

Page 29: Bidirectional Mass Platform (Single Curvature)

ConclusionsConclusions

•From the analysis it was observed that the Mass Platform increased the response From the analysis it was observed that the Mass Platform increased the response of the RC column due to Pdelta. Nevertheless, this effect was balanced by the of the RC column due to Pdelta. Nevertheless, this effect was balanced by the action of the unbonded prestressed tendon inside the column. The final result, action of the unbonded prestressed tendon inside the column. The final result, resemble approximately the behavior of a single column.resemble approximately the behavior of a single column.

•Northridge at Sepulveda and Mendocino motions developed at UCLA, likewise El Northridge at Sepulveda and Mendocino motions developed at UCLA, likewise El Centro and Kobe earthquakes, showed to induce considerable response for the Centro and Kobe earthquakes, showed to induce considerable response for the single column analyzed.single column analyzed.

Page 30: Bidirectional Mass Platform (Single Curvature)

Future workFuture work

• We are working in the analytical stage to include bidirectional effects and model We are working in the analytical stage to include bidirectional effects and model the behavior of Shear dominated columns, both for circular and interlocking the behavior of Shear dominated columns, both for circular and interlocking columns.columns.

• In few weeks we will start the construction of the Mass Platform and our first set In few weeks we will start the construction of the Mass Platform and our first set of columns. We plan to test in summer.of columns. We plan to test in summer.