63
CPLNF Problem Solution Algorithm FCNF Problem Discussion Bilinear Relaxation Technique: Theoretical Results and Solution Algorithm Artyom Nahapetyan University of Florida Department of Industrial and Systems Engineering February 22, 2006

Bilinear Relaxation Technique: Theoretical Results and Solution …plaza.ufl.edu/artyom/Presentations/SupConf06.pdf · 2007. 12. 25. · CPLNF Problem Solution Algorithm FCNF Problem

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique:Theoretical Results and Solution Algorithm

    Artyom Nahapetyan

    University of FloridaDepartment of Industrial and Systems Engineering

    February 22, 2006

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    1 CPLNF ProblemMathematical FormulationBilinear Relaxation Technique

    2 Solution AlgorithmDynamic Cost Updating ProcedureDynamic Slope Scaling ProcedureNumerical Experiments

    3 FCNF ProblemMathematical Formulationε-ApproximationAdaptive Dynamic Cost Updating ProcedureNumerical Experiments

    4 Discussion

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Concave Piecewise Linear Network Flow Problem

    Problem: CPLNF

    Let G (N,A) represent a network where N and A are the sets ofnodes and arcs, respectively, and fa(xa) is the cost function of arca.

    minx

    ∑a∈A

    fa(xa)

    s.t.Bx = b

    xa ∈ [λ0a, λnaa ] ∀a ∈ A

    B - node-arc incident matrix of the network Gfa(xa) - concave piecewise linear functions

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

    fa(xa) =

    c1a xa + s

    1a xa ∈ [λ0a, λ1a)

    c2a xa + s2a xa ∈ [λ1a, λ2a)

    · · · · · ·cnaa xa + s

    naa xa ∈ [λna−1a , λnaa ]

    c1a > c2a > · · · > cnaa

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

    fa(xa) =

    c1a xa + 0 xa ∈ [0, λ1a)c2a xa + s

    2a xa ∈ [λ1a, λ2a)

    · · · · · ·cnaa xa + s

    naa xa ∈ [λna−1a , λnaa ]

    c1a > c2a > · · · > cnaa

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

    fa(xa) =

    c1a xa + 0(= f

    1a (xa)) xa ∈ [0, λ1a)

    c2a xa + s2a (= f

    2a (xa)) xa ∈ [λ1a, λ2a)

    · · · · · ·cnaa xa + s

    naa (= f

    naa (xa)) xa ∈ [λna−1a , λnaa ]

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

    fa(xa) = mink∈Ka{f ka (xa)} = min

    k∈Ka{cka xa + ska }

    Ka = {1, 2, . . . , na}

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Arc Cost Function

    Function fa(xa)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Application

    Discount Component in the Cost

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Mixed Integer Formulation

    Problem: CPLNF-IP

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka xka +

    ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b∑k∈Ka

    xka = xa

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka ,

    ∑k∈Ka

    yka = 1

    xka ≤ Myka , xka ≥ 0, yka ∈ {0, 1}

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Relaxation

    Problem:

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka xka +

    ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b∑k∈Ka

    xka = xa

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka ,

    ∑k∈Ka

    yka = 1

    xka = xayka , x

    ka ≥ 0, yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Relaxation

    Problem:

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka xka +

    ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka ,

    ∑k∈Ka

    yka = 1

    xka = xayka , y

    ka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Relaxation

    Problem: CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka yka

    xa + ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka ,

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Theoretical Results

    Lemma

    Any feasible vector of the CPLNF-IP problem is feasible to theCPLNF-R

    Lemma

    Any local optimum of the CPLNF-R problem is either feasible tothe CPLNF-IP or leads to a feasible vector of CPLNF-IP with thesame objective function value.

    Theorem

    A global optimum of the CPLNF-R problem is a solution or leadsto a solution of the CPLNF-IP .

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Theoretical Results

    Lemma

    Any feasible vector of the CPLNF-IP problem is feasible to theCPLNF-R

    Lemma

    Any local optimum of the CPLNF-R problem is either feasible tothe CPLNF-IP or leads to a feasible vector of CPLNF-IP with thesame objective function value.

    Theorem

    A global optimum of the CPLNF-R problem is a solution or leadsto a solution of the CPLNF-IP .

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Theoretical Results

    Lemma

    Any feasible vector of the CPLNF-IP problem is feasible to theCPLNF-R

    Lemma

    Any local optimum of the CPLNF-R problem is either feasible tothe CPLNF-IP or leads to a feasible vector of CPLNF-IP with thesame objective function value.

    Theorem

    A global optimum of the CPLNF-R problem is a solution or leadsto a solution of the CPLNF-IP .

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Bilinear Relaxation Technique

    Economical Interpretation

    Problem: CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    [cka xa + s

    ka

    ]yka =

    ∑a∈A

    ∑k∈Ka

    f ka (xa)yka

    Bx = b∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    1 CPLNF ProblemMathematical FormulationBilinear Relaxation Technique

    2 Solution AlgorithmDynamic Cost Updating ProcedureDynamic Slope Scaling ProcedureNumerical Experiments

    3 FCNF ProblemMathematical Formulationε-ApproximationAdaptive Dynamic Cost Updating ProcedureNumerical Experiments

    4 Discussion

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka yka

    xa + ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    cka yka

    xa + ∑a∈A

    ∑k∈Ka

    ska yka

    Bx = b∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    LP(y) (y is fixed)

    minx

    ∑a∈A

    ∑k∈Ka

    cka yka

    xaBx = b

    xa ∈ [0, λnaa ]

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    [cka xa + s

    ka

    ]yka

    Bx = b

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    CPLNF-R

    minx ,y

    ∑a∈A

    ∑k∈Ka

    [cka xa + s

    ka

    ]yka

    Bx = b

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    LP(x) (x is fixed)

    miny

    ∑a∈A

    ∑k∈Ka

    [cka xa + ska ]y

    ka

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

    The solution of the problem is a binary vector

    Can be solved using a search technique

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    LP(x) (x is fixed)

    miny

    ∑a∈A

    ∑k∈Ka

    [cka xa + ska ]y

    ka

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

    The solution of the problem is a binary vector

    Can be solved using a search technique

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Two Problems

    LP(x) (x is fixed)

    miny

    ∑a∈A

    ∑k∈Ka

    [cka xa + ska ]y

    ka

    ∑k∈Ka

    λk−1a yka ≤ xa ≤

    ∑k∈Ka

    λkayka

    ∑k∈Ka

    yka = 1

    yka ≥ 0

    The solution of the problem is a binary vector

    Can be solved using a search technique

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Dynamic Cost Updating Procedure (DCUP)

    DCUP: Iteratively Solves LP(x) and LP(y)

    Step 1: Let y0 denote the initial vector of yk0a , where y10a = 1 and

    yk0a = 0, ∀k ∈ Ka, k 6= 1. m← 1.

    Step 2: Let xm = argmin{LP(ym−1)}, andym = argmin{LP(xm)}.

    Step 3: If ym = ym−1 then stop. Otherwise, m← m + 1 and goto Step 2.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Theoretical Results

    Theorem

    Let (x∗, y∗) be the solution returned by DCUP. If y∗ is a uniquesolution of the LP(x∗) problem then (x∗, y∗) is a local minimum ofCPLNF-R.

    Theorem

    Given any initial binary vector y0, DCUP converges in a finitenumber of iterations.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Cost Updating Procedure

    Theoretical Results

    Theorem

    Let (x∗, y∗) be the solution returned by DCUP. If y∗ is a uniquesolution of the LP(x∗) problem then (x∗, y∗) is a local minimum ofCPLNF-R.

    Theorem

    Given any initial binary vector y0, DCUP converges in a finitenumber of iterations.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

    Kim D., Pardalos P., “A Solution Approach to the FixedCharged Network Flow Problems Using a Dynamic SlopeScaling Procedure”, Operations Research Letters, 24, pp.195-203, 1999.

    Kim D., Pardalos P., “Dynamic Slope Scaling and TrustInterval Techniques for Solving Concave Piecewise LinearNetwork Flow Problems”, Networks, 35(3), pp. 216-222,2000.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    DSSP

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    An Alternative Formulation

    minx

    FT (x)x

    s.t.Bx = b

    xa ∈ [0, λnaa ]

    where F (x) is the vector of functions

    Fa(xa) =

    {fa(xa)

    xaxa > 0

    M xa = 0=

    c1a xa ∈ (0, λ1a]c2a +

    s2axa

    xa ∈ (λ1a, λ2a]· · · · · ·cnaa +

    snaaxa

    xa ∈ (λna−1a , λnaa ]M xa = 0

    .

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    Theoretical Results

    Theorem

    The solution provided by the DSSP is the solution of the followingproblem

    “find feasible x∗ such that FT (x∗)(x − x∗) ≥ 0, ∀xa ∈ [0, λnaa ],Bx = b”,

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Dynamic Slope Scaling Procedure

    Theoretical Results

    Theorem

    The solution provided by the DSSP is the solution of the followingproblem

    “find feasible x∗ such that FT (x∗)(x − x∗) ≥ 0, ∀xa ∈ [0, λnaa ],Bx = b”,

    User Equilibrium problem: FT (xu)x ≥ FT (xu)xuSystem Optimum problem: FT (x)x ≥ FT (x s)x s

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Numerical Experiments

    Test Problems

    30 problem sets

    Network size (nodes-arcs-supply/demand nodes): 12-35-2,20-100-3, 40-300-4, 100-2000-20, and 200-5000-50.Demand: U[10,20], U[20,30], or U[30,40]Number of linear pieces: 5 or 10.

    30 problems per problem set.

    In total - 900 problems.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Numerical Experiments

    Results

    DCUP better than DSSP - 50% of test problems .

    DSSP better than DCUP - 20% of test problems .

    30% of problems are the same.

    Relative Error - 1-2%.

    DCUP is 2-5 times faster than DSSP.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    1 CPLNF ProblemMathematical FormulationBilinear Relaxation Technique

    2 Solution AlgorithmDynamic Cost Updating ProcedureDynamic Slope Scaling ProcedureNumerical Experiments

    3 FCNF ProblemMathematical Formulationε-ApproximationAdaptive Dynamic Cost Updating ProcedureNumerical Experiments

    4 Discussion

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Mathematical Formulation

    Fixed Charge Network Flow Problem

    Problem: FCNF

    minx

    f (x) =∑a∈A

    fa(xa)

    s.t.Bx = b

    xa ∈ [0, λa] ∀a ∈ A

    where

    fa(xa) =

    {caxa + sa xa ∈ (0, λa]0 xa = 0

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    ε-Approximation

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    ε-Approximation

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    ε-Approximation

    minx

    φε(x) =∑a∈A

    φεaa (xa)

    s.t.

    Bx = b

    xa ∈ [0, λa] ∀a ∈ A.

    where ε denotes the vector of εa.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    Theoretical Results

    Definition

    X = {x |Bx = b, xa ∈ [0, λa],∀a ∈ A},V (X ) set of vertexes of X ,

    xε = argmin{φε(x) : x ∈ X} and x∗ = argmin{f (x) : x ∈ X}

    Theorem

    For all ε such that εa ∈ (0, λa], ∀a ∈ A, φε(xε) ≤ f (x∗).

    Theorem

    Let δ = min{xva |xv ∈ V (x), a ∈ A, xva > 0}. For all ε such that∀a ∈ A, εa ∈ (0, δ], φε(xε) = f (x∗).

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    Theoretical Results

    Definition

    X = {x |Bx = b, xa ∈ [0, λa],∀a ∈ A},V (X ) set of vertexes of X ,

    xε = argmin{φε(x) : x ∈ X} and x∗ = argmin{f (x) : x ∈ X}

    Theorem

    For all ε such that εa ∈ (0, λa], ∀a ∈ A, φε(xε) ≤ f (x∗).

    Theorem

    Let δ = min{xva |xv ∈ V (x), a ∈ A, xva > 0}. For all ε such that∀a ∈ A, εa ∈ (0, δ], φε(xε) = f (x∗).

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    ε-Approximation

    Theoretical Results

    Definition

    X = {x |Bx = b, xa ∈ [0, λa],∀a ∈ A},V (X ) set of vertexes of X ,

    xε = argmin{φε(x) : x ∈ X} and x∗ = argmin{f (x) : x ∈ X}

    Theorem

    For all ε such that εa ∈ (0, λa], ∀a ∈ A, φε(xε) ≤ f (x∗).

    Theorem

    Let δ = min{xva |xv ∈ V (x), a ∈ A, xva > 0}. For all ε such that∀a ∈ A, εa ∈ (0, δ], φε(xε) = f (x∗).

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Adaptive Dynamic Cost Updating Procedure

    Adaptive Dynamic Cost Updating Procedure(ADCUP)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Adaptive Dynamic Cost Updating Procedure

    Adaptive Dynamic Cost Updating Procedure(ADCUP)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Adaptive Dynamic Cost Updating Procedure

    Adaptive Dynamic Cost Updating Procedure(ADCUP)

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Numerical Experiments

    Test Problems

    36 problem sets

    Network size (nodes-arcs-supply/demand nodes): 20-100-3,40-300-4, 100-1000-10, and 150-3000-15.Variable cost: U[1,5], U[10,20], or U[30,40]Fixed cost: U[50,100], U[100,200], or U[200,400]

    30 problems per problem set.

    In total - 1080 problems.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Numerical Experiments

    Results: Small Networks

    ADCUP better than DSSP - 57% of test problems .

    DSSP better than ADCUP - 8% of test problems .

    35% of problems are the same.

    Relative error % (ADCUP,DSSP).

    Fixed CostVariable cost U[50,100] U[100,200] U[200,400]

    U[1,5] (2.5, 9.7) (3.2, 12.3) (3.9, 11.8)U[10,20] (0.2, 0.7) (0.5, 2.7) (1.3, 5.7)U[30,40] (0.1, 0.3) (0.2, 0.8) (0.7, 1.8)

    CPU time - ADCUP is 2-3 times faster than DSSP.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Numerical Experiments

    Results: Large Networks

    ADCUP better than DSSP - 94% of test problems .

    DSSP better than ADCUP - 2% of test problems .

    4% of problems are the same.

    (DSSP − ADCUP)/ min{DSSP,ADCUP}.Fixed Cost

    Variable cost U[50,100] U[100,200] U[200,400]U[1,5] 15.5 18.8 16.9

    U[10,20] 1.2 3.4 7.1U[30,40] 0.4 0.9 2.3

    CPU time - ADCUP is 5-20 times faster than DSSP.

  • CPLNF Problem Solution Algorithm FCNF Problem Discussion

    Conclusion

    The bilinear relaxation can be very useful for finding anapproximate solution in both problems.

    DSSP provides an equilibrium type of solution.

    DCUP guaranties convergence to a local minimum of therelaxation problem.

    Applications:

    Cutting plain algorithmBranch-and-Bound algorithm

    CPLNF ProblemMathematical FormulationBilinear Relaxation Technique

    Solution AlgorithmDynamic Cost Updating ProcedureDynamic Slope Scaling ProcedureNumerical Experiments

    FCNF ProblemMathematical Formulation-ApproximationAdaptive Dynamic Cost Updating ProcedureNumerical Experiments

    Discussion