Binder1.pdf

Embed Size (px)

Citation preview

  • 1. - 1 1.1 - 2 1.2 - 3 1.3 - 5 1.4 8 1.5 - 101.6 141.7 16

    2. - 462.1 482.2 49 2.3 - 54 2.4 59 2.5 63 2.6 66

    3. 69 3.1 KCI - 70

    3.2 - 77 3.3 85

    4 86 1. - 88 2. 89 3. 90 4. 91 5. 94 6. 95

  • 7. 97 8. 98

    5 99 1. 101 2. 103 3. 109 4. - 110 5. 115 6. - 119 7. 120 8. - 123 9. 125 10. 132

    6 T 133 1. T 135 2. - 138 3. - 141 4. 142 5. 144 6. 147 7. 149

  • 1.1 -

    1.2 -

    1.3 -

    1.4

    1.5 -

    1.6

    1.7

  • 1.1 - ( , , ,

    ) . . , , , , , . , , . , .

    - . -

    , , . - , , , . - , .

    - (Ritter 1899, Morsch 1909) . . 1960 . (Leonhardt 1965, Lampert & Thurlimann 1971). (Marti

    1980), (Mitchell &

  • Collins 1974, Collins & Mitchell 1980). 1980 B- D- , - (Schlaich & Weischede1981, Schlaich et al . 1987). CEB-FIP (1993) - , . AASHTO LRFD (1994) - , 2000 (1996) - . ACI 318-02 (2002) , , - , - . .

    1.2 - B- D-

    . B- , . D- , . , , , , - , , , , - - , D- .

    1.1 B- D- , 1.2 D- .

    , . D- , . - , . D- - .

  • 1.1 B- D-

    (a) Double Tee with Dapped End on Wall Corbel (b) Ledger Beam Supporting

    (c)Anchor Buttress for Post-tensioned Tank (d) Single Tee with Opening

    (e) Anchorage Zone in PSC I-Girder (f) Anchorage Zone in PSC Box Girder 1.2 (D- ) ( )

  • (g) Beam-Column Joints 1.2 (D- )

    1: .2: - .3: - .

    . - , 2 .

    4: . , 2 .

    5: . - .

    1.3 - -

    . , , , . . .

    - . , . .

  • . CEB-FIP (1993) -

    ( ) 1.3 3 - . ( ) ( ) .

    (a) ( ) (b) ( )

    (c) ( )

    1.3 CEB-FIP -

    CEB-FIP 1.3(c) - . , . 1.3(c) 1 1.3(a) (b) , (1.1) .

    , ,

    (1.1)

    , , ,

  • . (1.1) 0.5 1.3(a) - , 2

    1.3(b) -

    . -

    (Schlaich et al . 1987). D- - . 1.4 D- - .

    (a)

    (b)

    (c) 1.4 -

  • - - . . . . Schlaich et al .(1987) - .

    , , , , , .

    . .

    1.4 - . -

    1.5 (Strut), (Tie), (Nodal zone) 3 . 2 3 . .

    , . - .

    1.5 -

  • 1.4.1 - .

    . 1.6(a) , . 1.6(b) , 1.6(c) .

    (a) (b) (c) 1.6

    .

    , , , , ,

    .

    . .

    .

    , 1 . - . . , (Vecchio & Collins 1982, Ramirez & Breen 1983, Marti 1985,Schlaich & Schaefer 1991, Alshegeir 1992, Yun & Ramirez 1996, MacGregor 1997, 2005), .

    .

  • , , (= ), , ,

    .

    1.4.2 - .

    . . . . . . .

    , ,

    , (= )

    . (1.7) .

    . .

    1.5 - (Dimensioning) -

    , , - .

    1.5.1 - ,

    , ( PS

    ) .

    .

  • , .

    . .

    1.5.2 -

    . - . . . 1 2 . .

    ( ) . , . . ,(Marti 1985, Schlaich et al . 1987, Schlaich & Anagnostou 1990, 2001), .

    , . , , , , , . . , (Bergmeister et al. 1991, Marti 1991, Schlaich &

  • Anagnostou 1991, Schlaich & Schaefer 1991, Adebar 1993, Yun & Ramirez 1996, Yun 2006), .

    1.5.3 -

    . - . . , , , .

    , . 1.7(a) . 1.7(b) , . . . .

    (a) 1.7 ( )

  • (b) 1.7

    . . . . . 1.8 . , , , .

    1.8 -

  • 1.6(1) Adebar, P. and Zhou, Z., "Bearing Strength of Compressive Struts Confined byPlain Concrete." ACI Structural Journal, Vol. 90, pp. 534-541, 1993.(2) Alshegeir, A., "Analysis and Design of Disturbed Regions with Strut-TieModels." Ph. D. Thesis, School of Civil Engineering, Purdue University, WestLafayette, Indiana, 274 pp., 1992.(3) Alshegeir, A. and Ramirez, J.A., "Computer Graphics in Detailing Strut-TieModel", Journal of Computing in Civil Engineering, ASCE, Vol. 6, pp. 220-232,1992.(4) American Association of State Highway Transportation Officials, "AASHTO LRFDBridge Design Specifications", AASHTO, Washington D.C., 1994.(5) American Concrete Institute, "Building Code Requirements for StructuralConcrete (318-02) and Commentary (318R-02)", ACI, Farmington Hills, Michigan,2002.(6) Bergmeister, K., Breen, J.E. and Jirsa, J.O., "Dimensioning of the Nodes andDevelopment of Reinforcement." Report, IABSE Colloquium Structural Concrete,Stuttgart, pp. 551-564, 1991.(7) Collins, M.P. and Mitchell, D., "Shear and Torsion Design of Prestressed andNon-Prestressed Concrete Beams", Journal of the Prestressed Concrete Institute,Vol. 83, pp. 32-100, 1980.(8) Comite Euro-International Du Beton, "Model Code for Concrete Structures", 3rdEdition, Paris, 348 pp., 1978.(9) Comite Euro-International Du Beton, "CEB-FIP model code 1990", ThomasTelford Services, Ltd., London, 437 pp., 1993.(10) Lampert, P. and Thurlimann, B., "Ultimate Strength and Design of ReinforcedConcrete Beams in Torsion and Bending", International Association for Bridge andStructural Engineering, Publications, Vol. 31-I, pp. 107-131, 1971.(11) Leonhardt, F., "Reducing the Shear Reinforcement in Reinforced ConcreteBeams and Slabs", Magazine of Concrete Research, Vol. 17, No. 53, 1965.(12) MacGregor, J.G., "Reinforced Concrete Mechanics and Design", Prentice Hall,Englewood Cliffs, New Jersey, 939 pp., 1997.(13) Marti, P., "On Plastic Analysis of Reinforced Concrete", Institute of StructuralEnigneering, Report No. 104, ETH Zurich, 176 pp., 1980.

  • (14) Marti, P., "Basic Tools of Reinforced Concrete Beam Design", Journal ofAmerican Concrete Institute, Vol. 82, pp. 46-56, 1985.(15) Marti, P., "Dimensioning and Detailing", IABSE Colloquium: Structural Concrete,Stuttgart, pp. 411-443, 1991.(16) Mitchell, D. and Collins, M.P., "Diagonal Compression Field Theory-A RationalModel for Structural Concrete in Pure Torsion", Journal of American ConcreteInstitute, Vol. 71, pp. 396-408, 1974.(17) Morsch, E., "Concrete-steel Construction", English Translation by E.P.Goodrich, McGraw-Hill, New york, 368 pp., 1909.(18) Ramirez, J.A. and Breen, J.A., "Proposed Design Procedures for Shear andTorsion in Reinforced and Prestressed Concrete", Research Report No. 248-4FCenter for Transportation Research, Univ. of Texas, Austin, 254 pp., 1983.(19) Ritter, W., "Die Bauweise Hennebique (Hennebiques Construction Method)",Schweizerische Bauzeitung (Zurich), Vol. 17, pp. 41-43, 49-52 and 59-61, 1899.(20) Schlaich, J. and Weischede, D., "Detailing Reinforced Concrete Structures",Canadian Structural Concrete Conference 1981, Department of Civil Engineering,University of Toronto, Toronto, pp. 171-198, 1981.(21) Schlaich, J., Schaefer, K. and Jennewein, M., "Towards a Consistent Design ofStructural Concrete", Journal of the Prestressed Concrete Institute, Vol. 32, pp.74-150, 1987.(22) Schlaich, J. and Schaefer, K., "Design and Detailing of Structural ConcreteUsing Strut-and-tie Models", The Structural Engineer, Vol. 69, 1991.(23) Schlaich, M. and Anagnostou, G., "Stress Fields for Nodes of Strut-and-TieModels", Journal of Structural Engineering, ASCE, Vol. 116, pp. 13-23, 1990.(24) Vecchio, F.J. and Collins, M.P., "The Response of Reinforced Concrete toIn-Plane Shear and Normal Stresses", Publication No. 82-03, Dept. of CivilEngineering, University of Toronto, 332 pp., 1982.(25) Yun, Y.M. and Ramirez, J.A., "Strength of Struts and Nodes in Strut-TieModel", Journal of Structural Engineering, ASCE, Vol. 122, 1996.(26) Yun, Y.M., "Strength of Two-Dimensional Nodal Zones in Strut-Tie Models",Journal of Structural Engineering, ASCE, Accepted for Publication, 2006.

    (27) , " ", , 1996. (28) , " - ", ,

  • , , 2001. (29) " - (I): ",

    , 25 1 , pp. 49-59, 2005.

  • 1.7

    --

    -

    1. 2. - 3. - 4. - 5. - 6. - 7. - 8. STAD 2D

  • 1

    (ACI, AASHTO)

    (FEM)

    -

    -- 2

    45o

  • - 2

    (Strut)

    (Tie)

    (Nodal Zone)

    nr PP =

    - 3

  • Double Tee with Dapped End on Wall Corbel

    Ledger Beam Supporting

    Anchor Buttress for Post-tensioned Tank

    Single Tee with Openning

    3 -

    D-Regions on Beam-Column D-Regions on Shear Wall

    D-Regions on Corbel

    3 -

  • 3Anchorage Zone in PSC I-Girder Anchorage Zone in PSC Box Girder

    Anchorage Zone in PSC Girder

    -

    Pile Cap Beam Subject to Torsion

    Beam-Column Joints

    3 -

  • - 4

    1 : .

    2 : - .

    3 : - . . - , 2 .

    - 4

    4 : . , 2 .

    5 : . - .

  • - ()5

    < Estimated Load Paths > < Strut-Tie Models >

    - ()5

  • Stress Trajectories

    Strut-Tie Model

    - ()5

    .MinLF miii =

    - ( )5

    ? (o)

    - (o)

    (x)

    (x)

    - (o) :

  • - ( )5

    < Poor Models > < Good Models >

    (Tie)

    Steel Tie :

    Concrete Tie :

    (Nodal Zone) - -

    - 6

    sssssscscscsr AfAfP +=(Strut)

    )]([ stpepsstststr ffAAfP ++= ctctctr AfP =

  • AASHTO LRFD (1994) : fc /(0.8+1701) 0.85 fc MPa Bergmeister et al. (1991) : (0.5+15/ ) fc psi

    CEB-FIP Model Code (1990) : 0.7 fcd(0.85- fc/250) MPawhere fc=concrete strength from a cylinder test, fcd= fc /1.5

    Marti (1985) : 0.6fc Ramirez and Breen (1983) : 30 psi

    Vecchio & Collins (1982), Canadian Code (1984) : fc /(0.8+1701) Nielsen et al. (1978) : (0.7- fc/29,000) fc psi Thurlimann (1976) : 0.36fc+700 (for fc 4800 psi) psi

    fc

    fc

    6 - ( )

    Moderately confined diagonal struts going directly from point load tosupport with shear span to depth ratio less than 2.0 0.85 fc

    Struts forming arch mechanism 0.75 fc Alshegeir(1992)Arch members in prestressed beams and fan comp. members 0.50 fc

    Undisturbed and highly stressed compression struts 0.95 fc

    Proposed byConcrete StrutsEff. Str.

    Schlaichet al.

    (1987)

    Undisturbed and uniaxial state of compressive stress that may exist for prismatic struts0.85 fcTensile strains and/or reinforcement perpendicular to axis of strutmay cause cracking parallel to the strut with normal crack width 0.68 fcTensile strains causing skew crack and/or reinforcement at skew angles to the strut's axis 0.51 fc

    Severely cracked webs of slender beams with strut angle of 450.45 fcSeverely cracked webs of slender beams with strut angle of 300.25 fc

    MacGregor(1988)

    Isolated compression struts in deep beams or D-regions 0.50 fc

    For skew cracks with extraordinary crack width. Skew cracks wouldbe expected if modeling of the struts departs significantly from thetheory of elasticity's flow of internal forces

    0.34 fc

    Schlaich et al. (1987) , MacGregor (1988) & Alshegeir (1992)

    6 - ( )

  • fc = 12 fc v2=0.55+15/ 1 MacGregor (1997)

    1.00 (*) 0.80 0.65 0.60

    =30 0.30 =45 0.55

    cf

    (*) : A s f y, C= ; a= ; bef =

    )]1(4[ efbaC

    6 - ( )

    = (ACI 11.7.4.3)

    0.400.60

    0.60(ii) A3.3 0.75(i) A.3.3

    1.00

    American Concrete Institute (2002)

    fc=0.85fc

    6 - ( )

  • Yun & Ramirez (1996), Yun & Choi (2000)

    6 - ( )

    1)

    2)

    3)

    1)

    6 - ( )

  • 6 - ( )

    2)

    6 - ( )

  • TQfQf ]][][[][ =

    ( STRUT ORIENTATION)

    6 - ( )

    3) 6

    Construct a finite element model of structuralconcrete with external loads.

    Conduct finite element analysis of the plainstructural concrete..

    Select a final strut-tie model that satisfies thestrut-tie models geometric compatibility

    condition and strength limits of nodal zones.

    Evaluate steel tie forces by using finite elementanalysis of the strut-tie model subjected

    to external loads.

    Are the currently evaluated steel tie forces thesame as the previously evaluated steel tie forces?

    No

    Use the strut-tie model foranalysis or design purposes.

    Apply the currently evaluated steel tieforces to the plain concrete finite

    element model as confining forces.

    Yes

    - ( )

  • 6 - ( )

    Adebar and Zhou (1993): 0.60 fc 0.6(1+2) 1.8 fc0.60 fc+72 () (fc>5000 psi)

    where

    A1 = loaded area, A2 = supporting surface area,h/b = aspect ratio (height/width) of compression strut

    Jirsa et al. (1991): 0.80 fcMarti (1985): 0.60 fc

    Canadian Code (1984), AASHTO LRFD (1994):0.85 fc for nodes bounded by comp. struts or bearing areas;0.75 fc for nodes anchoring only one tension tie;0.60 fc (0.65 fc for AASHTO) for nodes anchoring tensions

    ties in more than one direction

    fc

    ( ) 0.11/33.0 12 = AA,

    ( ) 0.11/33.0 = bh

    6 - ()

  • Schlaich (1987), MacGregor (1988) & Bergmeister et al. (1991)

    Triaxially confined nodes2.5fcUnconfined nodes with bearing platesfc(A/Ab)0.5Confined nodesfc(A/Ab)0.5 +(Acore/Ab)flat(1-s/d)2

    0.65fc for fc10000psi

    (0.9-0.25fc/10000)fcFor 4000 fc10000psi

    Bergmeisteret al.(1991)

    Unconfined nodes without bearing plates

    0.80fc for fc4000psi

    Nodes anchoring tension ties in more than one direction0.50 fc Nodes anchoring one tension tie0.65 fc

    MacGregor(1988)

    Nodes bounded by compressive struts and bearing areas0.85 fc

    Nodes where reinforcement is anchored in or crossing the node0.68 fc

    Schlaich et al.(1987)

    CCC-nodes0.85 fc Proposed byNodesEff. Strength

    6 - ()

    MacGregor (1997)

    1.000.850.75

    1fc=v1v2fc v2=0.55+15/ 'fc

    American Concrete Institute (2002)

    1.000.800.60

    ,

    fc=0.85fc

    .

    6 - ()

  • Yun & Ramirez (1996), Yun (2006)

    1)

    2)

    3)

    6 - ()

    .

    1)

    6 - ()

  • - .

    6 - ()

    6 - ()

  • 6 - ()

    180o

    6 - ()

  • 6 - ()

    2)

    6 - ()

  • 6 - ()

    3)

    3)

    2)

    1)

    - 7

    (Dimensioning)?

  • 1)

    ttietrt

    cstrutsrs

    fAPfAP

    - 7

    ,Prs & Prt :

    fc & ft :

    S & t :

    (KCI 2007)

    (ACI 318-05, KCI 2007)

    - 7

    2)

  • - 7

    3)

    - 7

    A

    A B

    B

    A B

  • - 7

    - 7

  • - 7

    T

    Clb la

    C

    wtcos

    lbsin

    wt

    ws= wtcos +lbsin

    Cwt cos

    lbsin

    lb

    wt

    T

    Cla

    ? 2003 KCI 8

    - 7

    (2003 KCI 6.3.2)

    (2003 KCI 7.3.5)

    (2003 KCI 5.7)

    ( , , )

  • STAD 2D8

    -

    -

    STAD 2D8

  • STAD 2D8

    STAD 2D8

  • STAD 2D8

    STAD 3D8

  • STAD 3D8

    STAD 3D8

  • STAD 3D8

  • 2.1

    2.2

    2.3 -

    2.4

    2.5

    2.6

  • --

    -

    1.

    2.

    3. -

    4.

    5.

    6.

  • 1= , mm= , mm= , mm2

    = , mm2

    = , mm2

    = i , mm2

    = , mm2

    = , mm2

    = , mm= , MPa= , MPa= , MPa= , MPa= MPa

    'As

    stA

    siA

    psAnA

    cA

    b

    dckf

    cuf

    'fs

    sef

    yf

    a

    = , , , kN= , kN= , kN= , kN= , , , , kN= , mm= i , mm= , mm / = , mm=

    = = i = , MPa= =

    nF

    nnF

    nsF

    ntF

    uF

    nlis

    sw tw

    s

    nipf

    1

  • 2

    B: .

    D: , , .

    2.1 D . . St. Venant . , . h . 2.1(a) 2.1(b) .

    2.1 ()(a)

    2

  • 2.1

    (b)

    2

    2.2(a) D. D 2.2(b) D . D B 2.2(C) B D B . B D . B - .

    a

    hh

    a a = 2ha = 2h

    D D

    h

    D D B

    h h

    a > 2h a > 2h

    hh

    (c) (a > 2h)

    (a) (a < 2h) (b) (a = 2h)

    2

    2.2

  • 2- : , ,

    B D .

    - - 2.3 , , ( ) . . , .

    P

    2.3 -

    2: - ,

    . D , 2.3

    . .

    () . 2.3 2.4 . , .

    , , . 2.4(b) 1:2 - . 2.4(a) .

    cA

    cuf

  • 2

    Ac

    2

    1

    1 2

    (a) (b) -

    2.4

    : - .

    . . , - , .

    : - , . 2.5 -

    3 . CCC , CCT . .

    C

    C

    C

    T

    C

    C

    T

    T

    C

    T

    T

    T

    (a) CCC (b) CCT (c) CCT (d) TTT

    2.5

    2

  • : . 2.6

    , 2.7 .

    (a) ( b) (c)

    2.6

    2

    2

    (= ) , . 2.6(a) CCC . , .

    2.6(b) CCT . 2.6(b) 2.6(c) .

    2.7(a), (b) . (5.2).

    321 :: nnn www321 :: CCC

  • TClb la

    C

    wtcos

    lbsin

    wt

    ws= wtcos +lbsin

    Cwtcos

    lbsin

    lb

    wt

    T

    Cla

    (a) 1 (b)

    2.7

    2

    - 3

    3.1 D . 2 , , . B .

    3.2 D - .

    1: .

    D, , , , , . D D .

  • - 3 2: - .

    - .

    D B , - . - 3.1(a) . 3.1(a) p D B .

    , . . , , . - 3.1(b) . - .

    - 3

    (a) PSC -

    3.1-

    ()

  • 3.1 -

    (b) -

    - 3

    3: - . . 4 . - , 2.

    - 3

    - 4 . - ,

    .

    (1a)

    (1b)

    cA yfcufsA

    ccusnssus AfFF =sytnttut AfFF =

  • - 3 , ,

    ( =0.75) ( =0.9) . - .

    - . 1 (4.5), .

    (2)

    ,

    (3)

    , , , , , , . , , , .

    s

    ++= 6/6/4 lww

    lww

    ffbwA

    sm

    sm

    s

    s

    y

    cuss

    cucu

    csssm ff

    fww +=

    usF utFt

    b l smwswcuf cuf yf

    - 3

    4: 6 . , 2 .

    5: 5.1 . 5.2 ? 5.3 .

  • - 3

    - . D () - . - , - . - - (ESO) - . 3 D 3 - 3 - .

    3.3 , , (1) .

    (1)

    , , , , , ..

    un FF uF

    nF

    - 3

    3.4 - .

    - . .

    (4)

    (mm) (GPa) . , 60% .

    s

    =

    sc

    s fc

    fs 3.6125.26.94

    cc sfsf

  • 4

    2 - . 2.6(a) 2.7(a), (b) . 2 , .

    cA sw

    4.1 (2) .

    (2)

    , , 4.2 .

    ccuns AfF =cA cuf

    4.2 (3) .

    (3) ckscu ff 85.0= ,

    , .

    4.2.1 .

    s

    4

    4.2.1 : = 1.0s

  • 4

    2.4 . , , . 4.2.2 .

    s

    4.2.2 4.3 = 0.75, = 0.60 . , 1.0, - 0.85, 0.75. .

    ss

    4

    4.2.3 , , - . .

    s

    s

    4.2.4 4.2.1, 4.2.2, 4.2.3 . ( 4.1 ). 4.2.4 4.2.2 (b) 4.2.3 .

    s

    s

    4.2.3 : = 0.40 s

    4.2.4 : = 0.60 s

  • 4

    4.1

    (a)

    (b)

    4 4.3 4.2.2

    . 2:1 , .

    s

    4.3 2.4(b) - . 4.3 2 - 2 3 D , 2 2 - . 2.4 2:1 . 40MPa (4) 4.3 .

    4.2 . , .

    11

    11 sin bsfA ss

  • 4 , 1 4.2 . (4)

    . (4), 4.2 2 .

    3 2 - 4.3 2 . 4.2.2 . 60.0 s

    4.2

    As1

    As2

    s2

    s1

    2

    1

    4

    1.0 , 4.3 .

    4.3.1 40MPa , 4.3 (4) .

    (4)

    , .

    4.3.2 4.3 (12 ) ( ) . , 40 .

    ckf

    003.0sin ii

    si

    bsA

    1 2

    siA i is

  • 4

    4.4 . , . (5).

    (5) ''fAAfF ssccuns 2.1+= (5) .

    . SD30, SD35, SD40 , . 1.2(=0.90/0.75) (5) (1) .

    'sf'sf yf

    5

    5.1 (6) .

    (6)

    , ,

    . (6) 420MPa, 70MPa, .

    )( psepsystnt ffAfAF ++=)( pse ff + pyf

    psA pf

  • 5 5.2 - .

    .

    1. 1 2.7(a) . .

    tw

    2. - .

    (6)

    6.3 . 1 , 2.7(b) .

    3. 1 2 5.1 ( = , = ) .

    cuf

    twtnt bfF / b tf

    cuntt fFw /max. =

    5

    (a) (b)

    5.1

  • 5

    5.3 5.3.1-5.3.4 , , .

    . ( 2.7 5.1(a)) 90 .

    U U .

    , , .

    5

    5.3.1 .

    5.3.2 , .

    5.3.3 , .

    5.3.4 4.3 .

  • 6

    6.1 6.2 (1) , .

    , , , , , . .

    6 6.2 (7) .

    (7)

    , 6.3 , .

    ncunn AfF =cuf nA uF

    , . , .

    , ,

    . 2.7(b) .

    .

    nA

    cA

  • 6

    6.1

    , . . 6.1, A-B . .

    1C 2C1RR 2R

    6

    2 2.5 CCC, CCT . CCC, CCT, CTT TTT (8) .

    . (8) .

    n

    6.3 , (8) .

    (8)

    6.3.1- 6.3.3 .ckncu ff 85.0=

    n

  • 6

    6.4 3 - 6.2 , .

    6.4 3 - .

    6.3.1-, : = 1.0

    6.3.2- : = 0.80

    6.3.3- : = 0.60

    nn

    n

  • 3.1 KCI -

    3.2 -

    3.3

  • 3.1 KCI - - 3.1

    . , , , . ( ) ,

    . .

    3.1

    1 - - - 3.2 .

    . 2 . .

    , . , . , .

  • 3.2 -

    2 - -

    3.3 .

    3.3 -

    3 - 1) ( ) .

    .

    :

    :

  • ( ) ( )

    . 4 ,

    . 4 ( ) .

    2)

    . . ( ) .

    :

    .

    :

    .

    4 - 1)

    , 2) - , 3) . - . ( ) ( )( ) ( ) .

    ( 4.1 4.2)

    .

    , 4.3.1

  • . 3.1 .

    3.1

    - 4 - CCC, CCT, CTT, TTT (3 ) , . . 3.4 3.1 - . ( ) . BC . 3.4 C . .

  • 3.4 -

    5 - 1) ,

    4.3.1 (4) .

    ( 4.3)

    , . . .

    , :

    7.7.3 ( ) . , .

    2) 5.3 , , ,

    . 8.2.5

  • .

    3.5 ( ( ) ( )). .

    3.5

    . .

    ( ( ) ( )) . .

  • 6 -

    3.6

  • 3.2 - -

    - . - - - . - - . -

    . KCI - -

    .

    ( 3.2 1a)

    ( 3.2 1b)

    KCI - STAD-2D. -

    3.1 .

    1 -

    . 3.7 .

    3.7

  • 2 - - 3.7 3.8 (TYPE I, TYPE II)

    - . - . , - . 3.8 - 3.1 - - .

    (a) TYPE I

    3.8 - ( )

  • (b) TYPE II

    3.8 -

    3 -

    . KCI - 4.2.1~4.2.4

    KCI - 4.2 , , . 3.2 KCI - 4.2.1~4.2.4

    . KCI - 5.1 .

  • 3.2(a) TYPE I

    (KCI (3))

    (STAD-2D)

    (KCI (3))

    (STAD-2D)

    4 0.75 0.71 11 1.00 1.006 0.75 0.63 12 1.00 1.007 0.75 0.63 13 0.75 0.759 0.75 0.71 14 0.75 0.7510 1.00 1.00 - - -

    (b) TYPE II

    (KCI (3))

    (STAD-2D)

    (KCI (3))

    (STAD-2D)

    6 0.75 0.58 17 1.0 0.958 0.75 0.21 18 1.0 1.009 0.75 0.48 19 1.0 0.9510 0.75 0.48 20 0.75 0.63

    11 0.75 0.21 21 0.75 0.70

    13 0.75 0.58 22 0.75 0.70

    16 0.75 0.63 - - -

    3.2

    3.3 . 3.3 4, 5 .

    3.3 ( )(a) TYPE I

    or () or ()1 Tie 31.66 8 Tie 10.332 Tie 38.89 9 Strut 379.363 Tie 31.65 10 Strut 155.824 Strut 379.37 11 Strut 670.825 Tie 10.33 12 Strut 155.816 Strut 428.19 13 Strut 586.367 Strut 428.19 14 Strut 586.36

  • 3.3(b) TYPE II

    or () or ()1 Tie 31.47 12 Tie 6.822 Tie 34.65 13 Strut 415.753 Tie 38.89 14 Tie 9.094 Tie 34.65 15 Tie 9.09

    5 Tie 31.47 16 Strut 210.48

    6 Strut 415.75 17 Strut 204.59

    7 Tie 6.82 18 Strut 670.74

    8 Strut 808.59 19 Strut 204.59

    9 Strut 951.29 20 Strut 210.48

    10 Strut 951.29 21 Strut 658.34

    11 Strut 808.59 22 Strut 658.34

    4 - - 3 ( ) -

    . KCI - 4.1 4.2 , . STAD-2D 3.9 . 3.9 -.

    (a) TYPE I 3.9 - ( )

  • (b) TYPE II 3.9 -

    5 - KCI - 6.2

    (1) , . . . 2 2 . - (6 :TYPE I, 8 :TYPE II) . 3.10(a), (b) .

    3.10(c), (d) . . . 3.10(c) 3.8 .

  • (a) 6 (TYPE I) (b) 8 (TYPEII)

    (c) 6 (d) 8

    (e) 6 (f) 8

    3.10

  • 6 - 4 5 3.3

    - . 3.4 .

    3.4 -(a) TYPE I

    () ()

    1 1139.6 31.662 1400.0 38.89

    3 1139.6 31.66

    5 371.93 10.33

    8 371.93 10.33

    (b) TYPE II

    () ()

    1 1132.9 31.472 1247.5 34.653 1400.0 38.894 1247.5 34.655 1132.9 31.47

    7 245.4 6.8215.91

    14 327.2 9.0912 245.4 6.82

    15.9115 327.2 9.09

  • 3.3 -

    3.1~3.2 - 2003

    3.5 .

    3.5

    -(KCI STM* )

    -

    (TYPE I, STAD-2D)

    -

    (TYPE II, STAD-2D)

    (KCI 2003)

    I 19.64 31.65 34.65 20.50

    II 39.28 38.89 38.89 41.00

    I26.44 10.33

    6.8226.80

    II 9.09

    ( : )

    *: STM= -

    ( 1) 2003 KCI (SI )

    :

    : ( 45 )

    ( 2) -

    (a) - (b) - (TYPE I) (c) - (TYPE II)

  • 1. - 2. 3. 4. 5. 6. 7. 8.

  • 4

    . (Pier Coping) .

    T . . - . - KCI - . .

    T - 5 . 4.1 . . . ( ) . .

  • 4.1

    1 - - T 4.2

    - . 3 ( ) . ( ) 2 2 . 4.2 , . .

    T (2 ) , . . 3

  • . , . , .

    T 2 . 2 . - 4.2 , , , . ., , , .

    4.2 -

    2 - -

    4.3 .

  • 4.3 -

    3 - 1) T , , .

    .

    :

    ( 5.1 5.2)

    :

    :

    . ( )

    ( ) .

    ( ) ( ) .

    2)

    . ( 4.4 ) .

  • ( ) .

    :

    :

    .

    :

    :

    , .

    4 - 4.4

    . 4.4 . ( ) ( ) . 4 ( ) - 4 (CCC, CCT, CTT, TTT) .

    4.4 ( )

  • 4.4 ( )

  • 4.4

  • 5 - 4.4

    .( ) ( ) ( ) ( ) .

    ( 4.1 4.2)

    .

    , 4.3.1 . 4.4 (a), (c) . .

    4.1 . - .

    4.1

    - ( ) . - - . 4.5

  • . , 4.5(b)

    , , , , .

    (a) - (b) 4.5 -

    6 - 6.2

    ( 6.1 ) . 5 4 . ( ) 6.2 (7) 6.3 (8)

    .

    ( 6.2 6.3)

    , , . 4.2 . - .

  • 4.2

  • 7 - 1), , , ,

    4.3.1 4.3.1 (4) .

    ( 4.3)

    , . ,, , , .

    :

    :

    :

    :

    , .

    2) 5.3 , , ,

    . 8.2.5 .

    ( ( )) . . ,

  • . .

    . .

    8 -

    4.6

    0.1.2.3.__4._