24
© 2012 IHS PEP Report 284 Abstract Process Economics Program Report 284 BIO-BASED ADIPIC ACID (December 2012) Global adipic acid (ADA) demand is estimated at 2.3 million metric tons in 2012 and is growing at 35% per year. Nylon 66 accounts for about 85% of the total adipic acid demand. The other applications are polyurethanes (5%), adipic esters (4%), and others (6%). Major global producers of ADA include Invista, Ascend, Honeywell, BASF, Radici, China Shenma, and PetroChina. The average price has been $1,600/mt in 2012. High-purity fiber-grade adipic acid is used to make nylon 66, while lower purity adipic acid is used primarily to produce polyurethanes. The purpose of this report is to evaluate the process engineering and corresponding economics for producing ADA from the conventional cyclohexane oxidation process, and compare the results to emerging bio-chemical routes for the purpose of determining 1) the competitive cost position of bio-routes compared to the conventional process, and 2) identifying the areas of bio-chemical processing in which meaningful technology advances can substantially improve cost competitiveness. Recently, start-up companies such as Rennovia, Verdezyne, BioAmber, Celexion, and Genomatica have developed bio-based routes to produce adipic acid, aiming at creating 100% bio-based nylon; some have reached advanced pilot or demonstration scales. There are two basic motivations for considering alternative greenfeedstock sources for making ADA: 1) in the long term, they could be less expensive to produce than conventional methods using crude oil derivative cyclohexane and 2) societal demands for producing industrial chemicals via sustainablemethods may create artificial incentives (green mandates, price subsidies, loan guarantees, government sponsored technology development) or technology-specific market demand that results in requirements for producing ADA from bio-chemical resources. Adipic acid has traditionally been produced from various petroleum-based feedstocks (e.g., phenol, benzene, and cyclohexane), but shifts in the hydrocarbon market have resulted in the virtual elimination of phenol as a feedstock. In recent years, cyclohexane-based processes have accounted for about 93% of global production capacity. Two steps are involved in ADA production: 1) oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) and 2) nitric acid oxidation of KA oil to produce adipic acid. This report reviews and compares the conventional DuPont/Invista cyclohexane-based process to bio-based processes developed by 1) Verdezyne using genetically modified enzymes to ferment glucose to adipic acid, and 2) Rennovia for using air oxidation to convert glucose to glucaric acid, followed by hydrodeoxygenation to convert glucaric acid to adipic acid. We find that the Rennovia process has a high potential to be cost competitive with the conventional cyclohexane oxidation process, while the Verdezyne process has the potential to be cost competitive. The advantage of both bio-routes is their use of $300/mt glucose feedstock, compared to the conventional process using cyclohexane having a market price of $1,250/mt in 2012. However, significant challenges affect both alternative processes in their ability to achieve high feedstock selectivity and catalyst productivity (in the case of Rennovia), and high enzyme turnover rates and satisfactory kinetics for the Verdezyne enzyme fermentation route.

Bio-Based Adipic Acid - · PDF file3URFHVV(FRQRPLFV 3URJUDP $SULYDWHUHSRUWE\WKH. Report No. 284 . BIO-BASED ADIPIC ACID . by Anthony Pavone December 2012 Santa Clara, California 95054

Embed Size (px)

Citation preview

© 2012 IHS PEP Report 284

Abstract

Process Economics Program Report 284

BIO-BASED ADIPIC ACID

(December 2012)

Global adipic acid (ADA) demand is estimated at 2.3 million metric tons in 2012 and is

growing at 3–5% per year. Nylon 66 accounts for about 85% of the total adipic acid demand. The

other applications are polyurethanes (5%), adipic esters (4%), and others (6%). Major global

producers of ADA include Invista, Ascend, Honeywell, BASF, Radici, China Shenma, and

PetroChina. The average price has been $1,600/mt in 2012. High-purity fiber-grade adipic acid is

used to make nylon 66, while lower purity adipic acid is used primarily to produce polyurethanes.

The purpose of this report is to evaluate the process engineering and corresponding

economics for producing ADA from the conventional cyclohexane oxidation process, and

compare the results to emerging bio-chemical routes for the purpose of determining 1) the

competitive cost position of bio-routes compared to the conventional process, and 2) identifying

the areas of bio-chemical processing in which meaningful technology advances can substantially

improve cost competitiveness.

Recently, start-up companies such as Rennovia, Verdezyne, BioAmber, Celexion, and

Genomatica have developed bio-based routes to produce adipic acid, aiming at creating 100%

bio-based nylon; some have reached advanced pilot or demonstration scales. There are two

basic motivations for considering alternative ‘green’ feedstock sources for making ADA: 1) in the

long term, they could be less expensive to produce than conventional methods using crude oil

derivative cyclohexane and 2) societal demands for producing industrial chemicals via

‘sustainable’ methods may create artificial incentives (green mandates, price subsidies, loan

guarantees, government sponsored technology development) or technology-specific market

demand that results in requirements for producing ADA from bio-chemical resources.

Adipic acid has traditionally been produced from various petroleum-based feedstocks (e.g.,

phenol, benzene, and cyclohexane), but shifts in the hydrocarbon market have resulted in the

virtual elimination of phenol as a feedstock. In recent years, cyclohexane-based processes have

accounted for about 93% of global production capacity. Two steps are involved in ADA

production: 1) oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) and

2) nitric acid oxidation of KA oil to produce adipic acid.

This report reviews and compares the conventional DuPont/Invista cyclohexane-based

process to bio-based processes developed by 1) Verdezyne using genetically modified enzymes

to ferment glucose to adipic acid, and 2) Rennovia for using air oxidation to convert glucose to

glucaric acid, followed by hydrodeoxygenation to convert glucaric acid to adipic acid.

We find that the Rennovia process has a high potential to be cost competitive with the

conventional cyclohexane oxidation process, while the Verdezyne process has the potential to be

cost competitive. The advantage of both bio-routes is their use of $300/mt glucose feedstock,

compared to the conventional process using cyclohexane having a market price of $1,250/mt in

2012. However, significant challenges affect both alternative processes in their ability to achieve

high feedstock selectivity and catalyst productivity (in the case of Rennovia), and high enzyme

turnover rates and satisfactory kinetics for the Verdezyne enzyme fermentation route.

Process Economics Program

A private report by the

Report No. 284

BIO-BASED ADIPIC ACID

by Anthony Pavone

December 2012

Santa Clara, California 95054

IHS Chemical agrees to assign professionally qualified personnel to the preparation of

the Process Economics Program’s reports and will perform the work in conformance with

generally accepted professional standards. No other warranties expressed or implied are made.

Because the reports are of an advisory nature, neither IHS Chemical nor its employees will

assume any liability for the special or consequential damages arising from the Client’s use of the

results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical,

its officers, and employees harmless from any liability to any third party resulting directly or

indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical

pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS

Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS

HANDBOOK Program covers most major chemicals and chemical products produced throughout

the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide

detailed lists of chemical producers by company, product, and plant for the United States,

Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and

Mexico.

CONTENTS

© 2012 IHS iii PEP Report 284

GLOSSARY ........................................................................................................................ XXIV

1 INTRODUCTION ........................................................................................................ 1-1

2 SUMMARY ................................................................................................................. 2-1

PROCESS TECHNOLOGY DESCRIPTIONS ............................................................ 2-1

Conventional Adipic Acid Production Technology from Cyclohexane ....................... 2-1

Adipic Acid Production Technology from Glucose via Verdezyne Fermentation ....... 2-3

Adipic Acid Production Technology from Glucose via Rennovia Industrial

Catalysis ..................................................................................................................... 2-4

PRODUCTION ECONOMICS .................................................................................... 2-5

Capital Cost Comparison ............................................................................................ 2-6

Variable Production Cost Comparison ....................................................................... 2-6

Total Production Cost Comparison ............................................................................ 2-7

3 ADIPIC ACID INDUSTRY STATUS ........................................................................... 3-1

ADIPIC ACID MARKET USES ................................................................................... 3-1

ADIPIC ACID DEMAND AND DEMAND GROWTH ................................................... 3-5

Chinese Demand for Adipic Acid ................................................................................ 3-6

BUSINESS DRIVERS FOR ADIPIC ACID ................................................................. 3-7

MATERIAL SUBSTITUTION BETWEEN NYLON 66 AND NYLON 6 ........................ 3-8

POLYMER INTERMATERIAL SUBSTITUTION ......................................................... 3-8

Industry Capacity Utilization ....................................................................................... 3-10

ENVIRONMENTAL DRIVERS .................................................................................... 3-11

COMMERCIAL CAPACITY ADIPIC ACID PRODUCERS ......................................... 3-11

2012 Adipic Acid Nameplate Production Capacity ..................................................... 3-11

ADIPIC ACID PRODUCING COMPANIES ................................................................ 3-14

Announced Adipic Acid Production Capacity Increases ............................................ 3-17

Adipic Acid Capacity Shutdowns ................................................................................ 3-18

Caprolactam Capacity Additions ................................................................................ 3-18

ADIPIC ACID PRODUCT GRADES AND COMPOSITION ....................................... 3-19

TECHNOLOGY LICENSORS AND DEVELOPERS .................................................. 3-20

BIO-BASED ADIPIC ACID PROCESS DEVELOPERS ............................................. 3-22

CONTENTS (Continued)

© 2012 IHS iv PEP Report 284

ADIPIC ACID PRICE AND MARGIN HISTORY ......................................................... 3-23

Historical Annual Prices for Adipic Acid ..................................................................... 3-23

Short-Term Prices for Adipic Acid .............................................................................. 3-25

Nylon 66 versus Adipic Acid Margins ......................................................................... 3-26

4 TECHNOLOGY OF CONVENTIONAL ADIPIC ACID PRODUCTION ...................... 4-1

NOMENCLATURE ..................................................................................................... 4-1

MOLECULAR STRUCTURE ...................................................................................... 4-1

PROCESS SAFETY AND DESIGN IMPLICATIONS ................................................. 4-2

Chronic Health Effects ................................................................................................ 4-2

Combustion ................................................................................................................ 4-3

Dust Explosion Potential ............................................................................................. 4-3

Exposure and Personal Protective Equipment ........................................................... 4-4

Operational Safety Issues .......................................................................................... 4-4

Spark Reducing Packaging ........................................................................................ 4-5

ADIPIC ACID PROPERTIES ...................................................................................... 4-5

Physical Properties ..................................................................................................... 4-5

Thermodynamic Properties ........................................................................................ 4-7

Solution Properties ..................................................................................................... 4-8

COMMERCIAL ADIPIC ACID PRODUCTION BY-PRODUCTS ................................ 4-10

COMMERCIAL MANUFACTURING TECHNOLOGY OPTIONS ............................... 4-14

CONVENTIONAL TWO-STAGE CYCLOHEXANE OXIDATION PROCESS ............ 4-17

First-Stage Air Oxidation of Cyclohexane to KA Oil ................................................... 4-18

Air Oxidation Enhanced with Boric Acid ..................................................................... 4-21

Second-Stage Nitric Acid Oxidation of KA Oil to Adipic Acid ..................................... 4-26

NOx Bleaching with Hot Air ........................................................................................ 4-31

Nitric Acid Absorber .................................................................................................... 4-32

Adipic Acid Concentrator ............................................................................................ 4-32

Adipic Acid Crystallization from Nitric Acid Mother Liquor ......................................... 4-35

Adipic Acid Crystallization from Aqueous Solution ..................................................... 4-36

Residual Aqueous Liquor Recovery ........................................................................... 4-37

Recycle Processing of Nitric Acid Mother Liquor ....................................................... 4-38

CONTENTS (Continued)

© 2012 IHS v PEP Report 284

ONE-STEP AIR OXIDATION OF CYCLOHEXANE TO ADIPIC ACID ...................... 4-42

SCIENTIFIC DESIGN AIR OXIDATION PROCESS .................................................. 4-42

KA OIL MANUFACTURING FROM PHENOL ............................................................ 4-42

CYCLOHEXANOL FROM CYCLOHEXENE .............................................................. 4-44

ADIPIC ACID FROM BUTADIENE ............................................................................. 4-45

CHEMISTRY OF COMMERCIAL ADIPIC ACID PRODUCTION ............................... 4-48

Integrated Chemistry Product Chain .......................................................................... 4-48

Chemistry for Producing Cyclohexane from Benzene ............................................... 4-49

Chemistry for Producing KA Oil from Cyclohexane ................................................... 4-51

Chemistry for Oxidizing KA Oil to Adipic Acid Using Aqueous Nitric Acid ................. 4-53

Role of Vanadium Catalyst ......................................................................................... 4-54

Chemistry for Producing KA Oil from Phenol ............................................................. 4-55

Asahi Chemistry for Producing Cyclohexanol from Cyclohexene .............................. 4-56

Chemistry of Butadiene-Based Adipic Acid ................................................................ 4-57

Hydrogen Peroxide Chemistry for Producing Adipic Acid .......................................... 4-57

5 TECHNOLOGY FOR NON-COMMERCIAL BIO-BASED ROUTES TO ADIPIC

ACID ........................................................................................................................... 5-1

DRATHS’ FERMENTATION PROCESS USING MUCONIC ACID ........................... 5-1

BIOAMBER/CELEXION PROCESS ........................................................................... 5-5

GENOMATICA FERMENTATION PROCESS FOR ADIPIC ACID ............................ 5-9

RENNOVIA INDUSTRIAL CHEMISTRY PROCESS FOR ADIPIC ACID

PRODUCTION ........................................................................................................... 5-13

Rennovia Glucaric Acid Route ................................................................................... 5-14

Rennovia Furan Route to Adipic Acid ........................................................................ 5-16

VERDEZYNE FERMENTATION FOR PRODUCING ADIPIC ACID .......................... 5-18

6 DESIGN BASIS FOR ADIPIC ACID PRODUCTION ................................................. 6-1

BUSINESS OBJECTIVES .......................................................................................... 6-1

SCOPE OF PROJECT ............................................................................................... 6-2

DESIGN PHILOSOPHY ............................................................................................. 6-3

DESIGN PRIORITIES ................................................................................................ 6-3

Process Safety ........................................................................................................... 6-4

CONTENTS (Continued)

© 2012 IHS vi PEP Report 284

Operating Reliability ................................................................................................... 6-4

Consistency in Producing On-Spec Adipic Acid ......................................................... 6-4

Environmental Emission Conformance ...................................................................... 6-5

Hazardous Waste Incineration ................................................................................... 6-6

Flexibility for Economic Optimization .......................................................................... 6-6

Ease of Operations and Maintenance ........................................................................ 6-6

Scheduled Plant Turnarounds .................................................................................... 6-7

Reciprocating Machinery Drivers ............................................................................... 6-7

Maximum return on investment .................................................................................. 6-7

Buildings ..................................................................................................................... 6-8

Security and Vulnerability Analysis ............................................................................ 6-8

Production Design Criteria .......................................................................................... 6-9

PLANT LOCATION FACTOR ..................................................................................... 6-9

PEPCOST FACTOR ................................................................................................... 6-10

REGULATORY ENVIRONMENT AND EHS STANDARDS ....................................... 6-11

CONSTRUCTION METHODOLOGY ......................................................................... 6-11

OFFSITE FACILITIES ................................................................................................ 6-12

Black Start Capability ................................................................................................. 6-13

PROCESS CONTROL PHILOSOPHY ....................................................................... 6-13

Project to Provide Machine Condition Monitoring Instrumentation ............................ 6-13

MATERIALS OF CONSTRUCTION ........................................................................... 6-13

ENGINEERING AND DESIGN STANDARDS ............................................................ 6-14

SITE-SPECIFIC DESIGN CONDITIONS ................................................................... 6-14

CAPITAL AND OPERATING COST BASES .............................................................. 6-15

Capital Investment ...................................................................................................... 6-15

Project Construction Timing ....................................................................................... 6-16

Available Utilities ........................................................................................................ 6-16

Production Cost Factors ............................................................................................. 6-17

Feedstock, Product, and Energy Pricing .................................................................... 6-17

Effect of Operating Level on Production Costs .......................................................... 6-18

Project Design Capacity ............................................................................................. 6-19

CONTENTS (Continued)

© 2012 IHS vii PEP Report 284

FEEDSTOCK AND PRODUCT SPECIFICATIONS ................................................... 6-19

Adipic Acid Product .................................................................................................... 6-19

Cyclohexane Feedstock ............................................................................................. 6-20

Glucose Feedstock ..................................................................................................... 6-20

ADIPIC ACID PRODUCT PACKAGING AND SHIPPING SPECIFICATIONS........... 6-21

7 ADIPIC ACID FROM CYCLOHEXANE VIA CONVENTIONAL TWO-STAGE

OXIDATION PROCESS ............................................................................................. 7-1

CYCLOHEXANE PROPERTIES AND DESIGN ISSUES .......................................... 7-1

Cyclohexane Sourcing and Specifications ................................................................. 7-1

Physical Properties of Cyclohexane and Design Implications ................................... 7-2

Thermodynamic Properties of Cyclohexane and Design Implications ....................... 7-5

Cyclohexane Bulk Storage Considerations ................................................................ 7-5

Cyclohexane Feedstock Specification ........................................................................ 7-6

PROCESS DESCRIPTION ........................................................................................ 7-7

Section 100—Air Oxidation of Cyclohexane to Crude KA Oil .................................... 7-9

Cyclohexane Scrubbing ......................................................................................... 7-9

Activated Carbon Polishing Beds .......................................................................... 7-10

Cobalt Naphthenate Catalyst Addition .................................................................. 7-11

Boric Acid Addition ................................................................................................ 7-12

Cyclohexane Air Oxidation Reaction to KA Oil ...................................................... 7-14

Cyclohexyl Hydroperoxide (CHHP) Converter ...................................................... 7-16

Section 200—Purification of Crude KA Oil ................................................................. 7-22

Cyclohexane Recovery Column ............................................................................ 7-22

KA Oil Purification Column .................................................................................... 7-24

Boric Acid Recovery and Recycle ......................................................................... 7-24

Section 300—Nitric Acid Oxidation of KA Oil to Crude Adipic Acid ........................... 7-27

Overall Processing Scheme .................................................................................. 7-27

Wetted Materials Considerations for Nitric Acid .................................................... 7-30

Nitric Acid Storage Day Tanks ............................................................................... 7-30

Copper Vanadate Catalyst Composition and Use ................................................. 7-31

Nitric Acid Oxidation Reactors Design .................................................................. 7-33

Nitric Acid Bleacher Design ................................................................................... 7-34

Adipic Acid Concentrator Design ........................................................................... 7-34

Nitric Acid Absorber ............................................................................................... 7-35

CONTENTS (Continued)

© 2012 IHS viii PEP Report 284

Section 400—Adipic Acid Crystallization .................................................................... 7-35

Crude Acid Suspension Crystallization Using Oslo Crystallizer ............................ 7-36

Crystal Separation Using Pusher Centrifuge ......................................................... 7-39

Crude Adipic Acid Crystallization in Nitric Acid ..................................................... 7-40

Adipic Acid 1st-Stage Aqueous Crystallization ...................................................... 7-42

Adipic Acid 2nd-Stage Aqueous Crystallization .................................................... 7-42

Section 500—Adipic Acid Drying and Packaging ....................................................... 7-43

Adipic Acid Explosion Potential during Drying and Solids Transport .................... 7-43

Proposed Adipic Acid Rotary Vacuum Drying System .......................................... 7-43

Addition of Adipic Acid Flow Improver ................................................................... 7-45

Section 600—By-Product Recovery to Methyl Esters ................................................ 7-46

NVR Composition and Source ............................................................................... 7-46

NVR Processing Options ....................................................................................... 7-46

Conversion of NVR to Methyl Esters ..................................................................... 7-47

Invista NVR Processing Scheme........................................................................... 7-48

Mixed Ester Production Process Description ........................................................ 7-50

Witco Approach for Converting Non-Volatile Residue (NVR) Directly to

Polyester Polyols ................................................................................................... 7-53

Design Approach for this Project ........................................................................... 7-53

Section 700—AGS By-Product Production ................................................................ 7-53

Nitric Acid Mother Liquor Purge Stream from Crystallization ................................ 7-53

Evaporation of Nitric Acid and Water from the Purge Stream ............................... 7-55

Recovery of Vanadium and Copper Catalyst Metals............................................. 7-56

AGS Aqueous Crystallization and Centrifuging ..................................................... 7-56

AGS Crystal Drying ............................................................................................... 7-57

Section 800—Nitrous Oxide Destruction .................................................................... 7-57

Rationale for Nitrous Oxide (N2O) Destruction ...................................................... 7-58

NITROUS OXIDE DESTRUCTION TECHNOLOGIES .............................................. 7-59

Thermal Reduction of Nitrous Oxide .......................................................................... 7-59

Lanxess Thermal Decomposition of N2O .............................................................. 7-60

Catalytic Reduction of Nitrous Oxide .......................................................................... 7-61

DuPont Canada Experience in Nitrous Oxide Reduction ...................................... 7-61

BASF Approach to Nitrous Oxide Destruction ....................................................... 7-62

Invista N2O Abatement Technology ...................................................................... 7-64

Performance of N2O Destruction Systems ................................................................. 7-67

CONTENTS (Continued)

© 2012 IHS ix PEP Report 284

UOP Pressure Swing Absorption ............................................................................... 7-69

BASF Ammonia-Based N2O Destruction Process ..................................................... 7-69

Proposed N2O Destruction Processing Design .......................................................... 7-70

PROCESS FLOW DIAGRAMS .................................................................................. 7-71

MATERIAL BALANCE ................................................................................................ 7-71

EQUIPMENT LIST ...................................................................................................... 7-88

Itemized Capital Cost Estimate .................................................................................. 7-95

Segmentation of Itemized Capital Costs .................................................................... 7-103

TOTAL FIXED CAPITAL COST ESTIMATE .............................................................. 7-106

PRODUCTION COST ESTIMATE ............................................................................. 7-108

Variable Cost of Adipic Acid Production via Cyclohexane ......................................... 7-108

Total Cost of Adipic Acid Production via Cyclohexane .............................................. 7-109

8 VERDEZYNE FERMENTATION PROCESS FOR MAKING ADIPIC ACID FROM

GLUCOSE .................................................................................................................. 8-1

VERDEZYNE TECHNOLOGY ................................................................................... 8-1

Verdezyne Metabolic Pathway (USPA 2012 0156761) .............................................. 8-3

PROCESS YIELD AND SELECTIVITY ...................................................................... 8-4

COMMERCIAL DESIGN CONSIDERATIONS ........................................................... 8-5

Fermentation Conditions ............................................................................................ 8-5

Requirement for Aqueous Crystallization ................................................................... 8-6

By-Product Monetization ............................................................................................ 8-6

Direct Formation of Diammonium Adipate Salt .......................................................... 8-7

Salt Splitting to Recover Adipic Acid from Diammonium Salt .................................... 8-8

DSM Alternative Approach to Salt Formation ............................................................. 8-12

Water Solution Purification and Recycle .................................................................... 8-12

Enzyme Catalyst Recycle ........................................................................................... 8-12

Continuous versus Batch Fermentation ..................................................................... 8-14

FEEDSTOCK GLUCOSE PROPERTIES ................................................................... 8-14

Open and Cyclic Molecular Structure ......................................................................... 8-15

PROPOSED COMMERCIAL PROCESS SEQUENCE AND DESCRIPTION ........... 8-16

Section 100—Enzyme Preparation ............................................................................ 8-17

CONTENTS (Continued)

© 2012 IHS x PEP Report 284

Section 200—Product Fermentation .......................................................................... 8-19

Section 300—Salt Splitting of Diammonium Adipate and Monoammonium

Adipate ........................................................................................................................ 8-20

Section 400—Two-Stage Aqueous Crystallization of Adipic Acid .............................. 8-21

Section 500—Adipic Acid Crystal Drying and Product Packaging ............................. 8-22

Section 600—Methyl Ester Production ....................................................................... 8-23

STREAM-BY-STREAM MATERIAL BALANCE ......................................................... 8-24

EQUIPMENT LIST ...................................................................................................... 8-34

ITEMIZED CAPITAL COST ESTIMATE ..................................................................... 8-39

TOTAL FIXED CAPITAL COST ................................................................................. 8-46

PRODUCTION COST ESTIMATE ............................................................................. 8-48

9 RENNOVIA PROCESS FOR MAKING ADIPIC ACID .............................................. 9-1

FEEDSTOCK AND PRODUCT MOLECULAR STRUCTURE ................................... 9-1

RENNOVIA TECHNOLOGY APPROACH ................................................................. 9-2

RENNOVIA PATENT PORTFOLIO ............................................................................ 9-3

Overall Process Yield and Feedstock Consumption .................................................. 9-4

Rennovia 1st-Stage Oxidation of Glucose to Glucaric Acid ....................................... 9-5

Glucose Oxidation Intermediate Products .................................................................. 9-8

Glucose Oxidation By-Products ................................................................................. 9-9

Rennovia 2nd-Stage Hydrodeoxygenation of Glucaric Acid to Adipic Acid ............... 9-11

COMMERCIAL PLANT DESIGN BASIS .................................................................... 9-14

COMMERCIAL PROCESS DESIGN .......................................................................... 9-15

PROCESS DESCRIPTION ........................................................................................ 9-17

Section 100—Glucose Oxidation with Air ................................................................... 9-18

Section 200—Glucaric Acid Hydrodeoxygenation to Adipic Acid ............................... 9-23

Section 300—Adipic Acid Crystallization .................................................................... 9-24

Section 400—Adipic Acid Drying and Packaging ....................................................... 9-27

Section 500—Acetic Acid Recovery ........................................................................... 9-28

Section 600—Mixed Methyl Ester Production ............................................................ 9-29

MATERIAL BALANCE ................................................................................................ 9-31

EQUIPMENT LIST ...................................................................................................... 9-44

CONTENTS (Concluded)

© 2012 IHS xi PEP Report 284

ITEMIZED CAPITAL COST ESTIMATE ..................................................................... 9-49

TOTAL FIXED CAPITAL COST ESTIMATE .............................................................. 9-58

PRODUCTION COST ESTIMATE ............................................................................. 9-60

Variable Production Cost Estimate ............................................................................. 9-60

Total Production Cost Estimate .................................................................................. 9-61

APPENDIX A PATENT SUMMARY TABLES ................................................................ A-1

APPENDIX B CITED REFERENCES ............................................................................. B-1

APPENDIX C PROCESS FLOW DIAGRAMS ................................................................ C-1

FIGURES

© 2012 IHS xii PEP Report 284

1.1 Adipic Acid Molecular Structure ............................................................................. 1-1

1.2 Adipic Acid Integrated Product Chain .................................................................... 1-2

2.1 Oxidation of Cyclohexane to KA Oil ...................................................................... 2-2

2.2 Nitric Acid Oxidation of KA Oil to Adipic Acid ........................................................ 2-2

2.3 Verdezyne Pathway to Adipic Acid from Glucose (USPA 2012 0156761) ............ 2-3

2.4 Verdezyne Fermentation Process Block Flow Diagram ........................................ 2-4

2.5 Glucaric Acid Molecular Structure ......................................................................... 2-4

2.6 Rennovia Process Block Flow Diagram ................................................................ 2-5

2.7 Adipic Acid Capital Cost Process Comparison ...................................................... 2-6

2.8 Adipic Acid Variable Cost Process Comparison .................................................... 2-7

2.9 Adipic Acid Total Production Cost Process Comparison ...................................... 2-8

3.1 Nylon Fiber and Resin Demand ............................................................................ 3-1

3.2 Forecast Nylon Demand Growth Rate .................................................................. 3-2

3.3 Global End-Use Demand Distribution for Adipic Acid in 2012 .............................. 3-5

3.4 Global Geographic Demand Distribution for Adipic Acid in 2011 .......................... 3-6

3.5 Chinese Adipic Acid Capacity, Production, Consumption, and Exports/Imports .. 3-6

3.6 Trends in Materials for Tire Cord ........................................................................... 3-9

3.7 Historic and Forecast Global Adipic Acid Capacity ............................................... 3-12

3.8 2012 Adipic Acid Capacity by Geographical Region ............................................. 3-13

3.9 2013 Adipic Acid Capacity Share by Producer ...................................................... 3-15

3.10 Historical US Export Price of Adipic Acid .............................................................. 3-24

3.11 Regional Adipic Acid Prices 2000–2011 ............................................................... 3-24

3.12 Exchange Rates (US$/RMB) Early 2012 .............................................................. 3-25

3.13 Nylon 66 Raw Material Prices (27-Jan-2012) ........................................................ 3-26

3.14 Long-Term Nylon 66 Product Chain Prices ........................................................... 3-27

4.1 Adipic Acid Molecular Structure ............................................................................. 4-2

4.2 Adipic Acid Boiling Point Curve ............................................................................. 4-7

4.3 Adipic Acid—Water Solubility Relationship with Temperature .............................. 4-9

4.4 Adipic Acid Hydrocarbon Solubility with Temperature........................................... 4-9

4.5 Crystallization Curve for AGS Mixtures (Monsanto USP 4254283, 3-Mar-1981) . 4-13

4.6 Monsanto High-Purity Crystallization Process (USP 4254283, 3-Mar-1981) ........ 4-14

4.7 Conventional Process Routes to Adipic Acid ........................................................ 4-15

FIGURES (Continued)

© 2012 IHS xiii PEP Report 284

4.8 Alternative Process Routes to Adipic Acid ............................................................ 4-15

4.9 Global Distribution of Adipic Acid Capacity by Technology ................................... 4-16

4.10 Cyclohexane to KA Oil Block Flow Diagram ......................................................... 4-19

4.11 Basic Stamicarbon KA Oil Process Flow Diagram ................................................ 4-20

4.12 Nypro Chemcial (Flixborough) KA Oil Process Process Flow Diagram ................ 4-21

4.13 Halcon Air Oxidation Process Patent (USP 3932513, 13-Jan-1976) .................... 4-23

4.14 Air Oxidation Improvement Using Boric Acid (Halcon USP 3243449) .................. 4-24

4.15 Boric Acid Recovery via Esso USP 3232704 ........................................................ 4-25

4.16 Boric Acid Recovery Crystallization Process (Halcon USP 3475500) .................. 4-26

4.17 DuPont 1967 Adipic Acid Process (USP 3359308) ............................................... 4-27

4.18 Adipic Acid from KA Oil via Nitric Acid Oxidation Block Flow Diagram ................. 4-28

4.19 Adipic Acid from KA Oil via Nitric Acid Oxidation Simplified Process Flow

Diagram ................................................................................................................. 4-29

4.20 Forced Circulation Crystallization System ............................................................. 4-30

4.21 Nitric Acid Solution Boiling Point Curve ................................................................. 4-34

4.22 Water Boiling Temperature under Vacuum Conditions ......................................... 4-34

4.23 Schematic of Oslo Crystallizer ............................................................................... 4-35

4.24 Early Monsanto Adipic Acid Crystallizer (USP 3102908, 3-Sep-1963) ................. 4-36

4.25 Adipic Acid Solubility Curve in Water .................................................................... 4-37

4.26 Nitric Acid Purge Liquid Processing (BASF USP 5210297, 11-May-1993)........... 4-40

4.27 Two-Stage Oxidation of Cyclohexane to Adipic Acid Block Flow Diagram ........... 4-41

4.28 Phenol Hydrogenation to Cyclohexanol Process Flow Diagram ........................... 4-43

4.29 Asahi Kasei Cyclohexene Process ........................................................................ 4-45

4.30 Butadiene Routes to Adipic Acid ........................................................................... 4-46

4.31 Butadiene Enzyme Pathways to Adipic Acid ......................................................... 4-48

4.32 Integrated Chemistry for Producing Adipic Acid .................................................... 4-48

4.33 Molecular Structure of Cyclohexanol and Cyclohexanone .................................... 4-49

4.34 Nylon 66 from ADA + HMDA ................................................................................. 4-49

4.35 Axens Cyclohexane Block Flow Diagram .............................................................. 4-50

4.36 Toray Cyclohexane Process Flow Diagram .......................................................... 4-51

4.37 Dehydrogenation of Cyclohexanol to Cyclohexanone .......................................... 4-52

4.38 Peroxy Intermediates for Oxidizing Cyclohexane to KA Oil .................................. 4-52

FIGURES (Continued)

© 2012 IHS xiv PEP Report 284

4.39 Nitric Acid Oxidation of KA Oil to Adipic Acid ........................................................ 4-53

4.40 Chemical Pathways to Adipic Acid Form KA Oil ................................................... 4-54

4.41 Role of Vanadium and Copper Catalysts in Nitric Acid Oxidation ......................... 4-55

4.42 Sequential Reduction and Reoxidation of HNO3 ................................................... 4-55

4.43 Chemistry for Converting Phenol to KA Oil ........................................................... 4-56

4.44 Chemical Pathway to ADA from Cyclohexene Using H2O2 ................................... 4-58

5.1 Bio-Based Six Carbon Molecules .......................................................................... 5-1

5.2 Muconic Acid Platform ........................................................................................... 5-2

5.3 Draths Muconic Acid Fermentation Pathway to Adipic Acid (USP 5798236) ....... 5-3

5.4 Detailed Pathway for Draths Fermentation Synthesis of ADA—Initial Steps

(USP 5616496) ...................................................................................................... 5-4

5.5 Detailed Pathway for Draths Fermentation Synthesis of ADA—Final Steps

(USP 5616496) ...................................................................................................... 5-5

5.6 Celexion Fermentation Pathways to Adipic Acid (WO 2010/068944 A2,

USP 8133704) ....................................................................................................... 5-6

5.7 BioAmber Patent for Succinic Acid Processing (USP 8084626) ........................... 5-8

5.8 Succinic Acid Solubility (BioAmber USP 8084626) ............................................... 5-9

5.9 Succinic Acid Solubility as Function of pH ............................................................ 5-9

5.10 Genomatica Hydroxy Pathway from C4 + C2 Fragments to Adipic Acid

(USP 8088607) ...................................................................................................... 5-11

5.11 Genomatica Oxo Pathway from C4 + C2 Fragments to Adipic Acid

(USP 8088607) ...................................................................................................... 5-12

5.12 Genomatica Muconic Acid Pathway from D-Glucose to Adipic Acid

(USP 8088607) ...................................................................................................... 5-13

5.13 Rennovia Approach to Biochemicals Production .................................................. 5-13

5.14 Rennovia Pathway from Glucose to Glucaric Acid ................................................ 5-14

5.15 Structure of Hydroxy Dicarboxylic Acid ................................................................. 5-14

5.16 Rennovia Pathway from Glucaric Acid to Adipic Acid ........................................... 5-15

5.17 Rennovia Oxidation of Glucose to Glucaric Acid (USPA 20100317823) .............. 5-16

5.18 Rennovia Hydrodeoxygenation of Glucaric Acid to Adipic Acid

(USPA 20100317823) ........................................................................................... 5-16

5.19 Rennovia Furan Intermediate Product from Carbohydrate ................................... 5-17

5.20 Rennovia HMF Production from Carbohydrates ................................................... 5-17

5.21 Rennovia Adipic Acid Production from HMF ......................................................... 5-18

FIGURES (Continued)

© 2012 IHS xv PEP Report 284

5.22 Verdezyne Pathway to Adipic Acid from Glucose (USPA 2012 0156761) ............ 5-20

5.23 Verdezyne Alternative Pathway to Adipic Acid via Fatty Acid

(USPA 2012 0156761) .......................................................................................... 5-21

5.24 Verdezyne Pathway to Adipic Acid from Sugars and Triglycerides

(USPA 2012 0156761) .......................................................................................... 5-22

5.25 Verdezyne Intermediates Products to Adipic Acid from Sugar ............................. 5-23

5.26 Verdezyne Adipic Acid from Fats and Oils ............................................................ 5-24

5.27 Verdezyne Adipic Acid from Paraffins ................................................................... 5-25

5.28 Verdezyne Carbon Number Selectivity for Strain H43 .......................................... 5-26

5.29 Verdezyne Carbon Number Selectivity for Strain H53 .......................................... 5-27

6.1 Project Scope of Work ........................................................................................... 6-2

6.2 Historical Location Factors for Germany and Japan ............................................. 6-10

6.3 Historical Values of US PEP Cost Index ............................................................... 6-11

7.1 Physical Structure of Cyclohexane Molecule ........................................................ 7-1

7.2 Cyclohexane Boiling Point Curve .......................................................................... 7-4

7.3 Cyclohexane Phase Diagram ................................................................................ 7-4

7.4 Air Oxidation of Cylohexane to KA Oil Block Flow Diagram ................................. 7-7

7.5 Two-Stage Scrubbing of Air Oxidation Reactor Vapors ........................................ 7-10

7.6 Molecular Structure of Cobalt(II) Naphthenate ...................................................... 7-11

7.7 Boric Acid Solubility Curve in Water ...................................................................... 7-14

7.8 Air Oxidation Reaction Diagram ............................................................................ 7-15

7.9 Rhone-Poulenc Process for CHHP Conversion (USP 3927105) .......................... 7-18

7.10 DuPont Cyclohexane Oxidation and CHHP Conversion Approach

(USP 6703529, 9-Mar-2004) ................................................................................. 7-21

7.11 CHHP Decomposition Reactor Section ................................................................. 7-21

7.12 KA Oil Conventional Purification Scheme (DuPont USP 3365490) ...................... 7-22

7.13 KA Oil Purification Scheme ................................................................................... 7-23

7.14 Cyclohexanol Boiling Curve ................................................................................... 7-24

7.15 Boric Acid Recovery and Recycle Approach (Monsanto USP 3895067) .............. 7-26

7.16 Proposed Boric Acid Recovery System ................................................................. 7-27

7.17 Oxidizing Cyclohexanone to Adipic Acid via Nitric Acid ........................................ 7-28

7.18 KA Oil Nitric Acid Oxidation Block Flow Diagram

(DuPont USP 3365490, 23-Jan-1968) .................................................................. 7-28

FIGURES (Continued)

© 2012 IHS xvi PEP Report 284

7.19 Nitric Acid Oxidation Current Processing Scheme ................................................ 7-29

7.20 Recommended Materials in Nitric Acid Service .................................................... 7-30

7.21 Nitric Acid in Water Boiling Curve .......................................................................... 7-31

7.22 Role of Vanadium and Copper Catalyst ................................................................ 7-32

7.23 Nitric Acid Oxidation Reactor Process Flow Diagram ........................................... 7-34

7.24 Proposed Adipic Acid Purification Block Flow Diagram ........................................ 7-36

7.25 Evaporative Crystallization Mechanism (DuPont USP 5471001, 28-Nov-1995) ... 7-37

7.26 Forced Circulation (Oslo) Crystallizer .................................................................... 7-38

7.27 Nozzle Locations for Oslo Crystallizer (Draft Tube) .............................................. 7-39

7.28 Nitric Acid Crystallizer and Centrifuge for Crude Adipic Acid ................................ 7-41

7.29 Invista 2-Stage Adipic Acid Drying (USP 6946571, 20-Sep-2005) ....................... 7-44

7.30 Rotary Dryer Temperature Profile ......................................................................... 7-44

7.31 Adipic Acid 2-Stage Rotary Vacuum Drying .......................................................... 7-45

7.32 DuPont NVR Processing Scheme (USP 6703529) ............................................... 7-47

7.33 By-Product Recovery via Esterification Block Flow Diagram ................................ 7-50

7.34 Methanol: Water Distillation Curve (284051)—Methanol Mol Fraction versus

Temperature (°C) ................................................................................................... 7-51

7.35 By-Product Recovery Process Flow Diagram ....................................................... 7-52

7.36 AGS Recovery Block Flow Diagram ...................................................................... 7-55

7.37 Nitric Acid Mother Liquor Purge Treatment Process Flow Diagram ...................... 7-57

7.38 Thermal Reduction of Nitrous Oxide Block Flow Diagram (284052) ..................... 7-60

7.39 Lanxess Thermal Decomposition of N2O at Leverkusen ....................................... 7-60

7.40 DuPont Canada N2O Destruction Schematic ........................................................ 7-62

7.41 BASF N2O Destruction Facility in Germany (284056) ........................................... 7-64

7.42 Invista N2O Thermal Destruction System .............................................................. 7-65

7.43 Invista N2O Catalytic Destruction System ............................................................. 7-66

7.44 Invista N2O to NO Catalytic Oxidation System ...................................................... 7-67

7.45 Status of N2O Abatement at Adipic Acid Plants .................................................... 7-68

7.46 BASF N2O Destruction via NH3 Reaction over Zeolite (USP 7951742) ................ 7-70

7.47 N2O Conversion to Nitrogen Oxide Process Flow Diagram .................................. 7-71

7.48 Adipic Acid from Cyclohexane via Conventional Two-Stage Oxidation Process

Process Flow Diagram .......................................................................................... C-3

8.1 Verdezyne Pathway to Adipic Acid from Glucose (USPA 2012 0156761) ............ 8-3

FIGURES (Continued)

© 2012 IHS xvii PEP Report 284

8.2 Verdezyne Glucose Pathway to Adipic Acid (USPA 2012 0156761) .................... 8-4

8.3 Oxygen Saturated in Fresh and Sea Water .......................................................... 8-5

8.4 Cargill USP 7186856 Producing Ammonium Salt of Produced Acid ..................... 8-7

8.5 BioAmber ADA Recovery from DAA and MAA (USPA 2011/0266133 A1) ........... 8-8

8.6 Monoammonium Adipate Solubility (USPA 2011/0266133 A1) ............................ 8-10

8.7 BioAmber Adipic Acid Purification from DAA and MAA

(USPA 2011/0266133 A1) ..................................................................................... 8-11

8.8 BioAmber Solubility Curve for Adipic Acid in Water (USPA 2011/0269993) ......... 8-12

8.9 Enzyme Recycling Requirement for Bio-Lactic Acid ............................................. 8-13

8.10 Enzyme Recovery via Amine Extraction ............................................................... 8-13

8.11 Glucose Chemical Structure .................................................................................. 8-14

8.12 Ring Structure of Glucose ..................................................................................... 8-15

8.13 Stressed Three-Dimensional Configuration of Ringed Glucose Structure ............ 8-16

8.14 Verdezyne Fermentation Process Block Flow Diagram ........................................ 8-16

8.15 Section 100—Enzyme Preparation ....................................................................... 8-19

8.16 Section 200—Glucose Fermentation .................................................................... 8-20

8.17 Section 300—Salt Splitting and Concentration ..................................................... 8-21

8.18 Section 400—Aqueous Crystallization .................................................................. 8-22

8.19 Section 500—ADA Drying and Packaging ............................................................ 8-23

8.20 Section 600—By-Product Esterification Section ................................................... 8-24

8.21 Verdezyne Fermentation Process for Making Adipic Acid from Glucose

Process Flow Diagram .......................................................................................... C-19

9.1 Glucose Molecular Structure ................................................................................. 9-1

9.2 Adipic Acid Molecular Structure ............................................................................. 9-2

9.3 Glucaric Acid Molecular Structure ......................................................................... 9-2

9.4 Rennovia Two-Stage Oxidation Chemistry ........................................................... 9-2

9.5 Rennovia Feed Consumption versus Yield ........................................................... 9-5

9.6 Rennovia Oxidation of Glucose to Glucaric Acid ................................................... 9-5

9.7 Oxygen Solubility in Water .................................................................................... 9-6

9.8 Gluconic Acid Molecular Structure ........................................................................ 9-8

9.9 Glucuronic Acid Molecular Structure ..................................................................... 9-8

9.10 Rennovia High Throughput Screening Results ..................................................... 9-12

9.11 Structure of Intermediate C6 Oxidized Product...................................................... 9-13

FIGURES (Concluded)

© 2012 IHS xviii PEP Report 284

9.12 Input/Output Diagram for Rennovia Process ......................................................... 9-14

9.13 Rennovia Adipic Acid Block Flow Diagram ........................................................... 9-16

9.14 Glucose Air Oxidation Process Flow Diagram ...................................................... 9-18

9.15 Glucose Solubility in Water .................................................................................... 9-21

9.16 Glucose and Fructose Molecular Structure ........................................................... 9-21

9.17 Glucose Viscosity in Water .................................................................................... 9-22

9.18 Glucaric Acid Hydrodeoxygenation Process Flow Diagram .................................. 9-23

9.19 Adipic Acid Crystallization Process Flow Diagram ................................................ 9-24

9.20 Adipic Acid Solubility in Acetic Acid ....................................................................... 9-26

9.21 Adipic Acid Drying and Packaging Process Flow Diagram ................................... 9-27

9.22 Acetic Acid Recovery Process Flow Diagram ....................................................... 9-28

9.23 Heterogeneous Extractive Distillation .................................................................... 9-29

9.24 Mixed Methyl Ester Production Process Flow Diagram ........................................ 9-30

9.25 Rennovia Process for Making Adipic Acid

Process Flow Diagram .......................................................................................... C-31

TABLES

© 2012 IHS xix PEP Report 284

1.1 Status of Bio-Based Adipic Acid Developers ......................................................... 1-3

3.1 Nylon 66 End Uses ................................................................................................ 3-2

3.2 Chemical Formulations Containing Adipic Acid ..................................................... 3-3

3.3 End-Use Products Containing Adipic Acid ............................................................ 3-4

3.4 Market Drivers for Bio-Based Adipic Acid Commercial Success .......................... 3-7

3.5 Solvay/Rhodia Forecast of Nylon End-Use Market Demand Growth .................... 3-7

3.6 Production Integration for Nylon 66 and Nylon 6 ................................................... 3-8

3.7 Competing Engineering Plastics ............................................................................ 3-10

3.8 Adipic Acid Capacity by Country to 2011 .............................................................. 3-12

3.9 Forecast Adipic Acid Capacity by Country 2012–2016 ......................................... 3-14

3.10 2013 Adipic Acid Capacity Share by Producer ...................................................... 3-15

3.11 2012 Adipic Acid Capacity by Plant Site ............................................................... 3-16

3.12 Adipic Acid Capacity Additions .............................................................................. 3-18

3.13 Adipic Acid Capacity Eliminations ......................................................................... 3-18

3.14 Caprolactam Capacity Additions ........................................................................... 3-19

3.15 Invista Fiber-Grade Adipic Acid Specification ....................................................... 3-19

3.16 Radici Fiber-Grade Adipic Acid Specification ........................................................ 3-20

3.17 Adipic Acid Active Process Licensors ................................................................... 3-21

3.18 ADA Technology Developer/Operating Company Partnerships ........................... 3-22

3.19 Bio-Based Adipic Acid Technology Summary ....................................................... 3-23

3.20 Alibaba Offering Prices for Chinese Adipic Acid (January 2012) .......................... 3-25

3.21 Nylon Raw Material Margins (27-Jan-2012) .......................................................... 3-26

4.1 Adipic Acid Alternate Names ................................................................................. 4-1

4.2 Adipic Acid Nomenclature ..................................................................................... 4-1

4.3 Adipic Acid Summary Hazards Table .................................................................... 4-2

4.4 Adipic Acid Hazard Parameters ............................................................................. 4-4

4.5 Adipic Acid Physical Properties ............................................................................. 4-6

4.6 Other Adipic Acid Physical Properties ................................................................... 4-7

4.7 Adipic Acid Thermodynamic Properties ................................................................ 4-8

4.8 Adipic Acid Solution Properties ............................................................................. 4-10

4.9 KA Oil Basic Physical Properties ........................................................................... 4-10

4.10 Adipic Acid Yields .................................................................................................. 4-11

TABLES (Continued)

© 2012 IHS xx PEP Report 284

4.11 Ascend Materials AGS Product Composition ........................................................ 4-11

4.12 Invista Dibasic Acid Composition .......................................................................... 4-11

4.13 Physical Properties of Adipic, Glutaric, and Succinic Acid .................................... 4-12

4.14 Status of Hydrocarbon Process Routes to Adipic Acid ......................................... 4-16

4.15 Unit Feedstock Consumption for Conventional Adipic Acid Processes ................ 4-17

4.16 Unit Energy Consumption for Conventional Adipic Acid Processes ..................... 4-17

4.17 Boric Acid Enhancement US Patents .................................................................... 4-22

4.18 Typical Operating Conditions for Nitric Acid Oxidation Reactors .......................... 4-31

4.19 Operating Conditions for Adipic Acid Concentrator ............................................... 4-32

4.20 Boiling Point of Acid Concentrator Components ................................................... 4-33

4.21 Representative Water-Rich Crystallization Liquor Composition

(Monsanto USP 4254283) ..................................................................................... 4-38

4.22 Typical Nitric Acid Mother Liquor Composition

(BASF USP 5210297, 11-May-1993) .................................................................... 4-39

4.23 Amberlyst 40Wet Ion Exchange Resin Specifications........................................... 4-41

4.24 Asahi Kasei US Patents for Its Cyclohexene Process .......................................... 4-44

5.1 Relevant US Patents on Draths Process .............................................................. 5-3

5.2 BioAmber US Patents ............................................................................................ 5-6

5.3 BioAmber US Patent Applications ......................................................................... 5-7

5.4 Genomatica US Patents Involving Adipic Acid ...................................................... 5-10

5.5 Genomatica US Patent Applications Involving Adipic Acid ................................... 5-10

5.6 Typical Rennovia Hydrodeoxygenation Reactor Conditions ................................. 5-15

5.7 Rennovia US Patent Applications for Adipic Acid ................................................. 5-15

5.8 Verdezyne Patents and Applications ..................................................................... 5-19

5.9 Verdezyne Adipic Acid Performance Claims ......................................................... 5-20

6.1 Construction Cost Location Factors ...................................................................... 6-10

6.2 IHS Offsite Capital Cost Components ................................................................... 6-12

6.3 Relevant Project Standards Setting Organizations ............................................... 6-14

6.4 Temperature Design Considerations ..................................................................... 6-15

6.5 Project Utility Unit Costs ........................................................................................ 6-18

6.6 Project Feedstock Unit Costs ................................................................................ 6-18

6.7 Adipic Acid Fiber-Grade Product Specification ..................................................... 6-20

6.8 Cyclohexane Feedstock Specification ................................................................... 6-20

TABLES (Continued)

© 2012 IHS xxi PEP Report 284

6.9 Glucose Feedstock Specification .......................................................................... 6-21

7.1 Major Cyclohexane Producers .............................................................................. 7-2

7.2 Chevron-Phillips Cyclohexane Sales Specification ............................................... 7-2

7.3 Physical Properties of Cyclohexane ...................................................................... 7-3

7.4 Thermodynamic Properties of Cyclohexane ......................................................... 7-5

7.5 Cyclohexane Prior Cargo Restrictions .................................................................. 7-6

7.6 Project Cyclohexane Feedstock Specification ...................................................... 7-7

7.7 Cyclohexane to Adipic Acid—Overall Design Basis .............................................. 7-8

7.8 Design Basis-Air Oxidation of Cyclohexane to KA Oil .......................................... 7-9

7.9 Cobalt(II) Naphthenate Properties ......................................................................... 7-12

7.10 Typical Boric Acid Commercial Specification ........................................................ 7-13

7.11 Properties of Boric Acid ......................................................................................... 7-13

7.12 Foundation Patents for CHHP Oxidation ............................................................... 7-16

7.13 Subsequent US Patents for CHHP Oxidation ....................................................... 7-17

7.14 Relevant CHHP Follow-up US Patents ................................................................. 7-20

7.15 CHHP Converter Design Basis .............................................................................. 7-22

7.16 Approaches to Boric Acid Recovery ...................................................................... 7-26

7.17 Ammonium Metavanadate Commercial Specification ........................................... 7-32

7.18 Copper Nitrate Generic Commercial Specification ................................................ 7-33

7.19 Applications for Ferrum Pusher Centrifuges ......................................................... 7-40

7.20 Crystallizer Feed Concentration ............................................................................ 7-41

7.21 Solubility in Water of AGS Components at 30°C ................................................... 7-42

7.22 Adipic Acid Flow Improver Approaches ................................................................. 7-46

7.23 Polymers Soluble in Methyl Esters ........................................................................ 7-48

7.24 Methyl Esters Produced from NVR (Invista USPA 20120101009) ........................ 7-48

7.25 NVR Processing Steps to Methyl Esters ............................................................... 7-49

7.26 Boiling Point of Primary Monoester Components .................................................. 7-51

7.27 Invista Methyl Ester Product Composition (Invista USPA 20120064252) ............. 7-52

7.28 Adipic Acid By-Product End-Use Applications (Invista USPA 2012/0064252) ..... 7-53

7.29 Typical Mother Liquor Composition after Crude Adipic Acid Crystallization ......... 7-54

7.30 US EPA Estimate of N2O Destruction Economics ................................................. 7-58

7.31 Environmental Impact of N2O Destruction Technologies ...................................... 7-59

TABLES (Continued)

© 2012 IHS xxii PEP Report 284

7.32 Adipic Acid and N2O Production at BASF Ludwigshafen Plant (284056) ............. 7-63

7.33 DuPont N2O Catalytic Destruction US Patents ..................................................... 7-66

7.34 IPCC Tabulation of N2O Destruction Performance ............................................... 7-67

7.35 N2O Abatement Performance at Three European Adipic Acid Plants ................... 7-69

7.36 Material Balance Sumary ...................................................................................... 7-72

7.37 Stream-by-Stream Material Balance ..................................................................... 7-73

7.38 Equipment List with Duty Specifications ................................................................ 7-89

7.39 Itemized Capital Cost Estimate ............................................................................. 7-96

7.40 Itemized Capital Cost Segmentation by FOB and Installation Cost ...................... 7-104

7.41 Itemized Capital Cost Segmentation by FOB Equipment Type ............................ 7-105

7.42 Itemized Capital Cost Segmented by Section of Plant .......................................... 7-106

7.43 Adipic Acid via Two-Stage Oxidation of Cyclohexane—Total Fixed Capital

Cost ....................................................................................................................... 7-107

7.44 Variable Cost of Adipic Acid Production via Cyclohexane .................................... 7-108

7.45 Adipic Acid Total Production Cost Estimate from Cyclohexane ............................ 7-110

7.46 Section 7 Appendix: Global Cyclohexane Producers ............................................ 7-111

8.1 Verdezyne Major Patents ...................................................................................... 8-2

8.2 Fermentation Broth Growth Promoters ................................................................. 8-6

8.3 Diammonium Adipate Properties ........................................................................... 8-9

8.4 Glucose Properties ................................................................................................ 8-15

8.5 Adipic Acid via Verdezyne Fermentation Design Basis ........................................ 8-17

8.6 Materials Supply to Enzyme Preparation Fermenters ........................................... 8-18

8.7 Typical Production Fermenter Broth Composition (WO 2010/003728) ................. 8-20

8.8 Unit Feedstock and By-Product Consumption ...................................................... 8-24

8.9 Stream-by-Stream Material Balance ..................................................................... 8-25

8.10 Equipment List with Duty Specifications ................................................................ 8-35

8.11 Itemized Capital Cost Index ................................................................................... 8-39

8.12 Segmented Tagged Equipment Capex by Type of Equipment ............................. 8-45

8.13 Segmented Tagged Equipment Capex by Section of Plant .................................. 8-46

8.14 Total Fixed Capital Cost Estimate ......................................................................... 8-47

8.15 Adipic Acid via Verdezyne Fermentation

Variable Cost Estimate .......................................................................................... 8-48

TABLES (Concluded)

© 2012 IHS xxiii PEP Report 284

8.16 Adipic Acid via Verdezyne Fermentation

Production Cost Estimate ...................................................................................... 8-50

9.1 Properties of Rennovia Feed, Intermediate and Final Product ............................. 9-3

9.2 Rennovia Patents and Applications ....................................................................... 9-4

9.3 Theoretical Yields of Glucose Oxidation Reaction ................................................ 9-6

9.4 Rennovia USPA 2011/0306790 Partial Yield Table .............................................. 9-7

9.5 Expected Glucose Oxidation Yield Pattern ........................................................... 9-9

9.6 Expected Mass Yield for Glucaric Acid Production from Glucaric Acid Air via

Oxidation ................................................................................................................ 9-10

9.7 Rennovia USPA 2011/0306790 Temperature and Residence Time Results ....... 9-10

9.8 Theoretical Yields of Glucaric Acid Hydrodeoxygenation Reaction ...................... 9-11

9.9 Theoretical Yields of Overall Glucose to Adipic Acid Reaction ............................. 9-12

9.10 Rennovia Conversion of Glucaric Acid to Adipic Acid (USPA 2011/0218318) ..... 9-13

9.11 Expected Commercial Yield for Glucaric Acid Hydrogenation .............................. 9-14

9.12 Expected Mass Yield for Adipic Acid Production from Glucaric Acid via

Hydrodeoxygenation .............................................................................................. 9-14

9.13 Rennovia Design Basis ......................................................................................... 9-15

9.14 Cargill Glucose Syrup Specification ...................................................................... 9-19

9.15 Commercial Feedstock Components .................................................................... 9-20

9.16 Adipic Acid Solubility in Common Solvents ........................................................... 9-25

9.17 Rennovia Process Material Balance Summary ..................................................... 9-31

9.18 Rennovia Process Material Balance ..................................................................... 9-32

9.19 Rennovia Process Equipment List ........................................................................ 9-45

9.20 Rennovia Itemized Capital Cost Estimate ............................................................. 9-50

9.21 Rennovia Segmented Itemized Capital Cost Estimate.......................................... 9-56

9.22 Rennovia Itemized Capex Segmented by Equipment Type .................................. 9-57

9.23 Rennovia Itemized Capex Segmented by Plant Section ....................................... 9-57

9.24 Rennovia Total Fixed Capital Cost Estimate ......................................................... 9-59

9.25 Factored Total Fixed Capital Cost Estimates ........................................................ 9-60

9.26 Rennovia Process Variable Production Cost Estimate ......................................... 9-61

9.27 Rennovia Process Total Production Cost Estimate ............................................... 9-62