BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

Embed Size (px)

Citation preview

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    1/22

    Biocalcification Responses toOcean Acidification:the Interplay of Physicochemistry and Physiology 

     Anne Cohenwith 

    Daniel McCorkle, Justin Ries, Michael HolcombSamantha de Putron (BIOS)

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    2/22

    • Aragonite is the favored CaCO3 polymorph in today’soceans

    • Skeletons made of a wide range of polymorphs;biominerals not simply precipitates from ambientseawater

    • Evidence for calcifying space within which organismsmanipulate saturation state• Despite this control, as seawater Ω decreases, significant

    negative impact on the ability to calcify

    • Why? Predictive capabilities requires mechanisticunderstanding (corals as an example)

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    3/22

    low & high

    Mg Mix

    Sea urchin tooth, Wang et al, 1997

    Fish otolith, Steve Weiner CalciteAragoniteBlue mussel (Anne Cohen)

    Pteropod

    CaCO3 in marine skeletons and skeletal structures

    VateriteGorgonian nodules, Zoe Bond

    A

    A

    High Mg-Calcite

    ACC interior,

    calcite exterior.

     Ascidian spicule, Joanna AizenbergHolothurian ossicle, Jefferey Simonson

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    4/22

    Physicochemical constrains on mineralogy

    Morse et al., Geology, 1997 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    5/22

    Organisms OvercomePhysicochemical Constraints

    aragonitic corals in Antarctica vaterite skeletons

    Low Mg-calcite

    in warm tropical

    oceans

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    6/22

    Mineralization can be intracellular, intercellular or extracellular:growing skeleton is seldom exposed directly to external seawater

    intracellular 

    x1200

    extracellular 

    1 mm

    Scleroblasts/vacuoles Leptogorgia

    (Watabe and Kingsley, 1989)

    Between utricles in Halimeda segment

    (Justin Ries, WHOI 2007; Torres and Baars, 1992)

    Beneath tissue in corals

    (Cohen and McConnaughey 2003)

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    7/22

    Mineralization by larval oyster inunder-saturated seawater

    Ω~3

    20µ

    m

    PI

    Cohen and McCorkle, 2007 

    Ω~0.95   Ω~0.2

    •Mineralization occurs•No dissolution

    •Malformations indicate disruption of normal calcification process

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    8/22

    Seawater is sequestered into calcifying compartment

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    9/22

    Seawater saturation state is elevated by influxof Ca2+ ions and efflux of protons

    Model(Cohen and McConnaughey 2003)

    Data(Al-Horani et al., 2003) 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    10/22

    Evidence consistent with localized Ca2+-ATPaseactivity at coral mineralization site

    Zoccola et al., 2004 

     Also in:

    Coccolithophores (Klaveness, 1976); gorgonians (Kingsley and Watabe 1985)

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    11/22

    In situ data consistent with highly supersaturated

    calcifying fluid (Ωaragonite>20)

    pH (total scale)

    8.0 8.5 9.0 9.5 10.0

     

       (  a  r  a  g  o  n   i   t  e   )

    0

    10

    20

    30

    40

    CO3=

     only

    CO3=

     + Ca

    Constant DIC = 1921; S=35, T=25

    (Initial alk = 2320, initial pCO2 = 280)

    initial = 4.5 (pCO2 = 280)

     

    = 21.4

     (pH = 9.3, Alk = 3640)

    modern = 3.8 (pCO2 = 375, Alk const)

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    12/22

    Spherulite and crystal morphology (aspect ratio)inversely proportional to fluid saturation state

    coral

    Ω~4   Ω~17   Ω>25

    Holcomb et al., in review 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    13/22

    Crystal morphologies in coral dissepimentconsistent with Ω~20-30

    0 10 20 30 40

    seawater saturation state (omega)

    0

    0.5

    1

    1.5

    2

    2.5

       1

       /  c  r  y  s   t  a   l  a  s  p

      e  c   t  r  a   t   i  o

    experimental aragonite

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    14/22

    Small changes in seawater saturation state elicit strongnegative response in many calcifiers

    pH (total scale)

    8.0 8.5 9.0 9.5 10.0

     

       (  a

      r  a  g  o  n   i   t  e   )

    0

    10

    20

    30

    40

    CO3=

     only

    CO3

    =

     + Ca

    Constant DIC = 1921; S=35, T=25

    (Initial alk = 2320, initial pCO2 = 280)

    initial = 4.5 (pCO2 = 280)

      = 21.4

     (pH = 9.3, Alk = 3640)

    modern = 3.8 (pCO2 = 375, Alk const)

    Langdon and Atkinson JGR, 2005 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    15/22

    Skeletal development in larval corals

     planulae

    innoculation

     primary polyp – 7 days post-spawn

    Cohen, McCorkle, de Putron 2007 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    16/22

    Systematic decrease in extent of skeletaldevelopment (1° and 2° septa, basal plate) in 8-day

    old corals with decreasing Ωaragonite

     =0.2=1=2.4=3.7

    Cohen et al., (in review) 

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    17/22

    Ob d d d d f l l l

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    18/22

    Observed and predicted sensitivity of larval coralcalcification to changes in sw saturation state

    0 1 2 3 4

    seawater saturation state (omega)

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

       %    d

      r  o  p   i  n  s  u  r  a  c  e  a  r  e  a

    OBSERVED

    PREDICTED

    2100 AD

    2300 AD

    2007 AD

    Cohen et al., in review  Caldeira and Wickett, 2005 

    Systematic changes in crystal morphology of larval

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    19/22

    Systematic changes in crystal morphology of larvalcoral aragonite with changes in Ωaragonite

    A it h lit d t l h l

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    20/22

     Aragonite spherulite and crystal morphology(1/aspect ratio) proportional to fluid saturation state

    Increasing crystal growth rate

    0 1 2 3 4seawater saturation state (omega)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

      c

      r  y  s   t  a   l  a  s  p  e  c   t  r  a   t   i  o

    30

    20

    10

    0

      e  s   t .  o  m  e  g  a  c  a   l  c   i   f  y   i  n  g   f   l  u   i   d

    Using relationship established for experimental abiogenicaragonite, estimate Ω of calcifying fluid

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    21/22

  • 8/18/2019 BiocalcificationResponses to Ocean Acidification: the Interplay of Physicochemistryand Physiology

    22/22

    • Biomineralization occurs in a controlledenvironment: seawater saturation state not equal tocalcifying fluid saturation state

    • Observed responses to changes in seawatersaturation state occur via (poorly understood)biological processes associated with

    biomineralization• In corals (and other organisms), energetic cost

    associated with raising fluid saturation state limitsgrowth rate

    • In many, but not all, organisms studied - larval andadult stages - the response is negative in terms ofsurvivability/viability