59
Biochar Basics and Current Research Sanjai J. Parikh Department of Land, Air and Water Resources [email protected] --- [email protected] University of California – Davis

Biochar Basics and Current Research · 2020. 10. 7. · Bound Metals (mg/kg) Pine Wood Biochar (510o C) Aqueous Metals (mg/L) Potenal impacts on pescide efficacy Reducing Heavy Metal

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Biochar Basics and Current Research

    SanjaiJ.ParikhDepartmentofLand,[email protected]@ucdavis.edu

    UniversityofCalifornia–Davis

  • Soil

    Biomass(cropresidues,manure,nutshells,woodchips)

    300-900°C,no/lowO2

    Biogas

    Biochar

    Biocharischarcoalcreatedfrombiomass,anddiffersfromcharcoalonlyinthesensethatitsprimaryuseisnotforfuel.Typicallyusedasasoilamendment.

    WhatisBiochar?

    BiocharmaybeproducedintenIonallyasasoilamendmentorasawastebyproductintheproducIonofbioenergy.

    BiocharproperIesareafuncIonoffeedstockmaterial

    producIonparameters.

    ThermalConversion

  • “TerraPretadeIndio”–AmazonianBlackEarth

    •  BrazilandotherpartsofSouthAmerica

    •  500to2500yrsB.P.•  AddiPonofcharcoal(black

    carbon/biochar)forsoilmanagement

    •  Today,highorganicmaRercontentandmoreferPle

    hRp://www.biochar-internaPonal.org/files/graphics/terra-preta.jpg

    Oxisol TerraPreta

    WhyBiochar?

  • •  BiocharproperIes,andperformance,areafuncIonoffeedstockmaterialandproducIonparameters.

    •  Whenusingbiochar,consideraIonfortheintendedposiIveoutcomemustbecarefullyevaluated.

    •  Althoughtherearecertainparametersthatdomakeaqualitybiochar,biocharqualityisdeterminedbyitsintendedpurpose.

    BiocharTypeMaNers

    4

  • •  Benefitsinconsistent

    •  MulPplevariables

    •  SomepotenPaldrawbacks

    •  Biocharisnotaspecificproductàumbrellaterm

    PotenPalReasonstoUseBiocharinSoil

    •  CarbonSequestraPon•  DroughtResilience•  SoilFerPlity•  ReduceNutrientLeakage•  CropYieldandQuality•  GreenhouseGasEmissions•  SoilRemediaPon•  SoilMicrobiology•  RaisesoilpH

  • Howdobiocharsdiffer?

    –  Surfacearea–  Ashcontent–  CaPonexchangecapacity(CEC)– Waterholdingcapacity

    –  pH–  H/CraPo–  C/NraPo–  Porosity–  ElementalcomposiPon

    •  funcPonofproducPontemperature,producPonmethod,residencePme,andfeedstock

    SomeKeyCharacteris0cs

    ManureWalnutshell

    PinechipsHogwaste

    WoodTurkeyLiRer

    Wood

  • 10

    100

    1000

    100-350OC351-600OC601-900OC

    S oftwoodS ludgeP omaceNuts hellManureHardwoodG ras s

    C:N

    C orns tover

    FeedstockImpacts

    DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu

  • 2

    4

    6

    8

    10

    12

    14

    100 -350 OC351 -600 OC

    601 -900 OC

    S oftwoodS ludgePomaceNuts hellManureHardwoodG ras s

    pH

    C orns tover

    0

    150

    300

    450

    800

    900100-350OC351-600OC601-900OC

    S oftwoodS ludgeP omaceNuts hellManureHardwoodG ras s

    Surface

    area(m

    2 /g)

    C orns tover

    BiocharSurfaceArea

    BiocharpH

    ProducPonTemperature

    Impacts

    DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu

  • 0

    50

    100

    225

    250 100-350OC351-600OC601-900OC

    S oftwoodS ludgeNuts hellManureHardwoodG ras s

    CEC(cm

    olc/k

    g)

    C orns tover

    Someparametersshowlessobvioustrends

    DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu 9

  • NutrientContentofBiocharFeedstock Temperature

    °CpH FerIlizerequivalentraIo(kg/tonbiocar) Reference

    N P K

    Hardwood 450-600 5.7 3 0.3 6 Novaketal.2009

    Sojwood(pine)

    465 6.1 3 0.8 4 Novaketal.2009

    Cornstover 500 n/a 16 3 12 Breweretal.2009

    Leaves(E.saligna)

    550 11.8 17 3 15 Singhetal.2010

    Cowmanure

    550 8.9 11 5 23 Singhetal.2010

    Swinemanure

    350 8.2 37 39 18 Cantrell&MarPn2011700 8.2 26 59 26

    PoultryliRer

    350 8.7 50 30 60 Novaketal.2009

    700 10.3 30 40 90

    AdaptedfromSpokasetal.2012

  • ShouldIusebiochar?

    Whataboutcompost?

  • TheBiocharFronIer•  ResultsfromWebofScienceCoreCollecIon-QueriesonTopicKeyword:

    “Biochar”

    Occurrencesofsearchtermsinresultsareapproximateanddependentonins0tu0onssubscrip0ons.Theseresultsgatheredonsearchesforeachyear,accessedthroughUCDavis(02/24/2017).

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    2012

    2013

    2014

    2015

    2016

    0

    250

    500

    750

    1000

    1250

    1500

    1256

    873

    2000to2016= 4 ,0191900to2016= 4 ,135

    198

    465

    3

    123

    47128

    296

    13102

    725

    Occ

    uren

    cesinW

    ebofS

    cien

    cefo

    r"B

    ioch

    ar"

    1

    “Compost”

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    2012

    2013

    2014

    2015

    2016

    0

    250

    500

    750

    1000

    1250

    15002000to2016= 17,8491900to2016= 23,619

    1,035

    1,557

    Occ

    uren

    cesinW

    ebofS

    cien

    cefo

    r"C

    ompo

    st"

    774

    2

  • NumberofresearcharIclesaddressingspecificbiochartopicareas(2013)

    GurwickNP,MooreLA,KellyC,EliasP(2013)ASystemaPcReviewofBiocharResearch,withaFocusonItsStabilityinsituandItsPromiseasaClimateMiPgaPonStrategy.PLoSONE8(9):e75932.doi:10.1371/journal.pone.0075932

  • “Biocharisnotasingleen0tybutratherspansawiderangeofblackcarbonforms.”•  50%ofstudiesshowyieldincreaseswithbiochar(orblackcarbon)

    à50%reportdecreasesornosignificantdecreases

    •  Agronomicbenefitsindegradedsoilsareojenemphasized,negligibleandnegaPveresultsnotgivenasmuchaRenPon.

    Biochardoesnotalwaysprovidebenefits.Wemustdeterminethecondi0onsforbiochars,soils,andcroppingsystemswheremaximumbenefitscanberealizedforadesiredoutcome.

    2012

  • •  Small,butsignificantbenefitforcropproducPvityfrombiocharaddedtosoil•  Meanincreaseof+10%àbenefitsobservedmorethen50%ofthe0me•  Range:-28%to+39%

    •  Greatestbenefits:•  Acidicsoils:+14%•  Neutralsoils:+13%•  Coursetexture:+10%•  Mediumtexture:+13%

    •  Greatestimprovementseenatrateof100tons/ha•  BestPerformingbiocharsinclude:PoultryliRerandwoodchips•  BiocharperformedbeRerinpotvsfieldtrials,and,influencedtotalbiomass

    morethanyieldmeasurements

    Analysisof16studiesand177treatments

    Biocharprovidesbenefitswhenitcanimpact:•  pH(“liming”),porosity,nutrientavailability

  • BiocharuseinCA:SoilTextureandpH•  MostpotenPalforbenefitincoarsetexturedsoilsàpotenPal

    toincreaseporosity,organicCcontent,andenhanceferPlity•  ConsidersoilandbiocharpHàuseinacidicorneutralsoils

    likelytobemostbeneficial

    MapscreatedwithSoilProperPesAp(casoilresource.lawr.ucdavis.edu)

  • Governor's Office of Planning & Research (OPR) Biochar Research Advisory Group

    Chairs:SanjaiJ.Parikh(UCDavis),AmrithGunasakara(CDFA)

    SancIonedbyParPcipaPngstate/federalgovernmentenPPes,academicinsPtuPons,andnon-profitsinclude,butarenotlimitedto:•  Governor’sOfficeofPlanningandResearch(OPR)•  Governor’sOfficeofBusinessandEconomicDevelopment(Go-Biz)•  CaliforniaDepartmentofFoodandAgriculture(CDFA)•  StateWaterResourcesControlBoard(SWRCB)•  CaliforniaEnergyCommission(CEC)•  CaliforniaNaturalResourcesAgency(CNRA)•  CaliforniaDepartmentofForestryandFireProtecPon(CALFIRE)•  SierraNevadaConservancy(SNC)•  CaliforniaAssociaPonofResourceConservaPonDistricts(CARCD)•  CaliforniaDepartmentofResourcesRecyclingandRecovery(CalRecycle),•  AirResourcesBoard(ARB)•  USForestService(USFS)•  UniversityofCalifornia(Riverside,Merced,Davis,CooperaPveExtension)

  • Governor's Office of Planning & Research (OPR) Biochar Research Advisory Group

    Chairs:SanjaiJ.Parikh(UCDavis),AmrithGunasakara(CDFA)

    IntendedPurpose•  AssistthestateofCaliforniawithidenPfyingresearchgapsinthescienPficliterature,astheypertaintoCaliforniaspecificenvironmental,economic,andregulatorycondiPons

    IssuestoAddress•  Environmentalchallenges:drought,foresttreemortality,climatechange,etc.

    •  SoilwaterretenPon,cropproducPvity,carbonsequestraPoninsoils,andbioavailabilityofsoilorwatercontaminants

    •  BiocharproducPon:feedstocks,thermalconversiontechnologies•  Impactsofsoiltypes,crops,climate,biochartype,farmmanagement,etc.

  • Biochar (0, 5, 10 g kg-1 à 0, 10, 20 t/ha) –  Walnut shell biochar (900 °C, high surface area) –  Softwood biochar (600-700 °C, low surface

    area) Soil

    –  Yolo silt loam: Russell Ranch, UC Davis –  Reiff very fine sandy loam: UC Davis Vineyard

    Analysis –  Pressure plate – plant available water, field

    capacity, permanent wilting point –  Neutron tomography – imaging of water

    distribution

    Russell Ranch Sustainable Agriculture Facility, UC Davis

    UC Davis Vineyard

    BiocharSourceMaterial

    Temp(°C)

    Ash(wt%)

    Surf.Area(m2/g)

    C(wt%)

    C:N H(wt%)

    O(wt%)

    pHw(1:2)

    CECa(cmol/kg)

    Walnutshell 900 40 227 55 118 0.9 1.6 9.7 33

    Sojwood 600-700 6.4 2.00 58 142 4.2 32 6.8 67

    UCD Research: Examining Biochar Water Relations

    Wangetal.,inprepara0on

  • Biochar to “Close the Loop”

    modifiedfromPereiraetal.,2016

  • Impact of Biochar on Soil Water

    Softwood biochar – no impact in any scenario Walnut shell biochar •  Field Capacity: no impact, except for highest application rate in very

    fine sandy loam had slight increase

    •  Permanent Wilting Point: no impact in either soil

    •  Plant Available Water: slight increase in the fine sandy loam

    Soil Water Potential (-bars) 0 2 4 6 8 10 12 14 16

    Per

    man

    ent

    Wilt

    ing

    Poi

    nt

    Fiel

    d C

    apac

    ity

    Plant Available Water W

    ater

    Con

    tent

    Wangetal.,inprepara0on

  • Moisture Distribution Around Biochar with Drying (7 days)

    1 pixel ≈ 0.1 mm

    Neutron Tomography Analysis

    Can water within biochar become available as the bulk soil dries?

    Biochar in wet soil

    Drying

    Biochar in dry soil

    Moisture Released from Biochar

    Wangetal.,inprepara0on

  • ImpactofbiocharandsoiltypeonsoilaggregaIon

    BiocharSourceMaterialTemp(°C)

    Ash(wt%)

    Surf.Area(m2/g)

    C(wt%)

    C:N H(wt%)

    O(wt%)

    pHw(1:2)

    CECa(cmol/kg)

    WS:Walnutshell 900 40 227 55 118 0.9 1.6 9.7 33

    EB:Sojwood+algaldigestate 600-700 6.4 2.00 58 142 4.2 32 6.8 67

    •  Vina:finesandyloam•  Yolo:siltloam•  60weekincubaPons:80%waterholdingcapacity,23±1°C

    Wangetal.,inprepara0on

  • MineralFerIlizerCompost Biochar+MineralFerIlizer

    Biochar+Compost

    Compost(CP)

    Biochar+MineralFertilizer(MF+BC)

    Biochar+

    Compost(CP+BC)

    MineralFertilizer

    (MF)

    +/-Biochar

    Fertilize

    rTyp

    e

    MineralferPlizer:UAN-32Compost:Poultrymanurecompost

    Compost(CP)

    Biochar+MineralFertilizer(MF+BC)

    Biochar+

    Compost(CP+BC)

    MineralFertilizer

    (MF)

    +/-Biochar

    Fertilize

    rTyp

    e

    MineralferPlizer:UAN-32Compost:Poultrymanurecompost

    RusselRanch,UCDavis:Walnutshellbiochar(900°C)appliedat10t/hainMay2012

    Photo:corn,Summer2013

    Griffinetal.,2017..

  • Tomato Tomato

    Corn Corn

    :2013 :2015

    :2012 :2014

    CropYieldaferBiocharApplicaIon

    mg/kgdryso

    il

    Soil:ExtractableK+

    •  1yearagingofbiocharprovidednutrientsandincreasedcropyieldinyear2

    •  Short-termincreasesinK+,Ca2+andPO4-P

    RusselRanch,UCDavis:Walnutshellbiochar(900°C)appliedat10t/hainMay2012

    Griffinetal.,2017.

  • BindingofOrganicChemicalsandMetals

    •  SorpPonoforganicagrochemicals•  DifferentaffiniPesofphenylureaherbicidesforbiochars:

    walnutshellbiocharbinding>so`wood>turkeyliaer>hogwaste>wood/algaldigest.

    Bindingconstant(KF)ofbiocharsandsoilforselected

    herbicides

    Wangetal.J.Environ.Sci.Health,B,2015

    WS

    0 20 40 60 80 100 120 140 160 180 2000

    1000

    2000

    3000

    4000

    5000

    6000

    C dP bN iC u

    Wa lnutS he llB iocha r(900oC )

    0 20 40 60 80 100 120 140 160 180 2000

    1000

    2000

    3000

    4000

    5000

    6000C dP bN iC u

    P ine WoodB iocha r(510oC )

    Boun

    dMetals(mg/kg)

    AqueousMetals(mg/L)

    PotenPalimpactsonpesPcideefficacy ReducingHeavyMetalBioavailability

    •  BiocharshavedifferingreacPvity•  Walnutshellbiocharbindsmoremetalsthanpinewoodbiochar

    Datafrom

    :Baire

    talJEQ

    ,2016

    Bind

    ingAffi

    nityParam

    eter

  • SoilremediaIon

    BiocharproducedfromBlackLocust(Robinapseudacacia)

    hRp://texastreeid.tamu.edu/content/TreeDetails/?id=112

    OpImizingBiochar

    Lehmann2007

    •  BiocharcanbecreatedforanintendeduseànutrientretenPon,limingagent,soilremediaPon,carbonsequestraPon,bioenergy

    •  FeedstockandproducPonparameterscanbevariedtoforopPmalperformance

    Jeffreyetal.2015

    •  Asinglebiocharisunlikelytobetheidealmaterialformanydifferentintendedoutcomes

  • Biochar?•  variableproduct–notallthesameorequal•  benefitscanbereal,butcanalsobehighlyvariable•  willnotalwaysprovidebenefits•  benefitsmostlikelywhenop0mizedforspecificclimate-soil-

    plant-croppingsystems,ANDanintendedoutcome•  knowledgebaseisrapidlygrowing•  addiPonalinformaPononphysical,chemical,andbiological

    mechanismsisneeded

    Biocharhaspoten0altobepartof“thesolu0on”;athoughful,prescrip0ve,andprudentapproachis

    mostlikelytoyieldconsistentbenefits

  • AcknowledgementsCollaborators: •  Daoyuan Wang, UC Davis •  Deirdre Griffin, UC Davis •  Kate Scow, UC Davis •  Fungai Mukome, William Jessup Univ. •  Steve Fonte, Colorado State Univ. •  Johan Six, ETH Zurich •  Daniel Bair, UC Davis •  Sarah Hafner, UC Davis •  Ina Popova, Univ. of Idaho •  Chongyang Li, UC Davis •  Thomas Young, UC Davis •  Ronald Walker, UC Davis •  Dr. A. Barzin Moradi, FREP CDFA

    ParikhGroup,EnvironmentalSoilChemistry,UCDavis

    Funding: •  USDA-NIFA Grant #2012-67009-20070 •  USDA Hatch Formula Funding CA 2122-H & multistate regional project W-3045 •  California Energy Commission Grant #500-09-035 •  National Institute of Environmental Health Sciences (NIEHS) grant number 5 P42

    ES004699 (NIH and the contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH)

    •  UC Davis Agric. Sustainability Inst. & David and Lucille Packard Foundation

  • Over1,100biocharsindatabase&

    growing

    biochar.u

    cdavis.ed

    u

  • References•  Brewer,C.E.,K.Schmidt-Rohr,J.A.SatrioandR.C.Brown(2009)."CharacterizaPonofBiocharfromFastPyrolysisandGasificaPonSystems."

    EnvironmentalProgress&SustainableEnergy28(3):386-396.•  Cantrell,K.B.andJ.H.MarPn(2012)."StochasPcstate-spacetemperatureregulaPonofbiocharproducPon.PartII:ApplicaPontomanure

    processingviapyrolysis."JournaloftheScienceofFoodandAgriculture92(3):490-495.•  Jeffery,S.,F.G.A.Verheijen,M.vanderVeldeandA.C.Bastos(2011)."AquanPtaPvereviewoftheeffectsofbiocharapplicaPontosoilsoncrop

    producPvityusingmeta-analysis."AgricultureEcosystems&Environment144(1):175-187.•  Pereira,E.I.,E.C.Suddick,andJ.Six(2016).CarbonAbatementandEmissionsAssociatedwiththeGasificaPonofWalnutShellsforBioenergyand

    BiocharProducPon.PLoSONE11(3)•  Novak,J.M.,I.Lima,X.B.,J.W.Gaskin,C.Steiner,K.C.Das,M.Ahmedna,D.Rehrah,D.W.WaRs,W.J.BusscherandH.Schmobert(2009).

    "CharacterizaPonofdesignerbiocharsproducedatdifferenttemperaturesandtheireffectsonalomysand."AnnalsofEnvironmentalScience3:195-206.

    •  Singh,B.,B.P.SinghandA.L.Cowie(2010)."CharacterisaPonandevaluaPonofbiocharsfortheirapplicaPonasasoilamendment."SoilResearch48(7):516-525.

    •  Spokas,K.A.,K.B.Cantrell,J.M.Novak,D.W.Archer,J.A.Ippolito,H.P.Collins,A.A.Boateng,I.M.Lima,M.C.Lamb,A.J.McAloon,R.D.LentzandK.A.Nichols(2012)."Biochar:ASynthesisofItsAgronomicImpactbeyondCarbonSequestraPon."JournalofEnvironmentalQuality41(4):973-989.

    ParikhGroupBiocharPublicaPons•  Bair,D.A.,F.N.D.Mukome,I.E.Popova,T.A.Ogunyoku,A.Jefferson,D.Wang,S.C.Hafner,T.M.YoungandS.J.Parikh(2016)."SorpPonof

    PharmaceuPcals,HeavyMetals,andHerbicidestoBiocharinthePresenceofBiosolids."JournalofEnvironmentalQuality.•  Griffin,D.E.,D.Wang,S.J.Parikh,K.M.Scow.2017.Short-livedeffectsofwalnutshellbiocharonsoilsandcropyieldsinalong-termfield

    experiment.Agriculture,EcosystemsandEnvironment.236:21-29.•  Mukome,F.N.D.andS.J.Parikh(2015).Chemical,Physical,andSurfaceCharacterizaPonofBiochar.Biochar:ProducPon,CharacterizaPon,

    andApplicaPons.Y.-S.Ok,S.M.Uchimiya,S.X.ChangandN.Bolan.BocaRaton,FL,CRCPress.•  Mukome,F.N.D.,J.SixandS.J.Parikh(2013)."Theeffectsofwalnutshellandwoodfeedstockbiocharamendmentsongreenhousegas

    emissionsfromaferPlesoil."Geoderma200–201(0):90-98.•  Mukome,F.N.D.,X.Zhang,L.C.R.Sillva,J.SixandS.J.Parikh(2013)."UseofchemicalandphysicalcharacterisPcstoinvesPgatetrendsin

    biocharfeedstocks."JournalofAgriculturalandFoodChemistry61(9):2196-2204.•  Mukome,F.N.D.,A.L.D.Kilcoyne,andS.J.Parikh.2014.AlteraPonofbiocharcarbonchemistryduringsoilincubaPons:SR-FTIRandNEXAFS

    invesPgaPon.SoilSci.Soc.Amer.J.78:1632-1640.•  Pereira,E.I.P,E.Suddick,I.Mansour,F.N.D.Mukome,S.J.Parikh,K.M.Scow,J.W.Six.2015.BiocharaltersnitrogentransformaPonsbuthas

    minimaleffectsonnitrousoxideemissionsinanorganicallymanagedleRucemesocosm.2015.Biol.Fert.Soils.51:573-582.•  Wang,D.,D.E.Griffin,S.J.ParikhandK.M.Scow(2016)."Impactofbiocharamendmentonsoilwatersolublecarboninthecontextof

    extremehydrologicalevents."Chemosphere160:287-292.•  Wang,D.,F.N.D.Mukome,D.Yan,H.Wang,K.M.ScowandS.J.Parikh(2015)."PhenylureaherbicidesorpPontobiocharsandagricultural

    soil."JournalofEnvironmentalScienceandHealthPartB-PesPcidesFoodContaminantsandAgriculturalWastes50(8):544-551.031

  • •  Withincreasingtemperature…à lowerbiocharyieldsà highersurfaceareaà higherpHà higherashcontentà lowersurfacechargeà increasedaromaPcity.à higherpercentCinthebiochar

    TheCcontentofbiocharscanrangewidely(36-94%;dependentonfeedstock),withCcontenttypicallyincreasingwithhigherpyrolysistemperatures

    TrendsinBiocharProperPes?

    e.g.,Mukomeetal.2013,MukomeandParikh2015,Novaketal.2009,Keiluweitetal.2010

    AB2511:clarifiesthat“biochar”isasoilamendmentthatisincludedinthedefini0onof“auxiliarysoilandplantsubstance”and,therefore,subjecttolicensingandlabelinglaws,anddefines“biochar”tomeanmaterialsderivedfromthermochemicalconversionofbiomassinanoxygen-limitedenvironmentcontainingatleast60percentcarbon.

  • biocoal.org/earth-mound-kiln/ biochar-internaPonal.org/projects/BiGchar

    BiocharProducIonTradiIonal Portable

    biochar-internaPonal.org/technology/producPon

    Industrial Process Bio-oil Biochar Syngas

    FastPyrolysisModerateT(~500°C)ShortresidencePme

    75%(25%H2O)

    12% 13%

    MediumPyrolysisLow-moderateTModerateresidencePme

    50%(25%H2O)

    25% 25%

    SlowPyrolysisLow-moderateTLongresidencePme

    30%(25%H2O)

    35% 35%

    GasificaPonHighT(>800°C)LongresidencePme

    5%(5%H2O)

    10% 85%TableadaptedfromhRp://www.feasta.org/wp-content/uploads/2009/03/csiro-biochar-climate-change-and-soil-report-feb-20091.pdf

  • Impact of Biochar on Field Capacity

    •  Silt Loam: Neither biochar impacted field capacity

    •  Very Fine Sandy Loam: High surface area biochar (walnut shell) slightly raised field capacity for the high application rate

    a a a a a a

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    EB WS

    Fiel

    d ca

    paci

    ty (g

    wat

    er/g

    dr

    y so

    il)

    Yolo Silt Loam 0 g/kg

    Softwood biochar (low surface area)

    Walnut shell biochar (high surface area)

    a a a a a b

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    EB WS Fi

    eld

    capa

    city

    (g w

    ater

    /g

    dry

    soil)

    Reiff Very Fine Sandy Loam

    Softwood biochar (low surface area)

    Walnut shell biochar (high surface area)

    FC

  • a a a

    a a

    a

    0 0.02 0.04 0.06 0.08

    0.1 0.12 0.14

    Reiff Yolo

    Perm

    anen

    t wilt

    ing

    poin

    t (g

    wat

    er/g

    dry

    soi

    l)

    0g/kg 5g/kg 10g/kg

    0 0.02 0.04 0.06 0.08

    0.1 0.12 0.14 0.16

    Reiff Yolo

    Plan

    t ava

    ilabl

    e w

    ater

    (g

    wat

    er/g

    dry

    soi

    l)

    Impact of Walnut Shell Biochar on Soil Water

    Walnut Shell Biochar

    •  Field Capacity (data not shown): no impact except for highest application rate in very fine sandy loam had slight increase

    •  Wilting Point: no impact in either soil

    •  Plant Available Water: slight increase in the fine sandy loam

    PW

    P

    PAW

    FC

  • Neutron Imaging of Biochar in Sand Columns

    168 h air dried 48 h oven dry

    These two images shows that the black points are mainly not

    caused by the hydrogenous functional group on biochar, but

    the water in biochar

    •  Silica sand columns, avoid interference from soil organic matter

    •  Walnut shell biochar (1-2 mm)

    •  Biochar amended samples were saturated for 48 h and imaged over a 168 h (7 d) drying period

    •  Neutron imaging radiographs analyzed on a pixel-by-pixel basis

    •  Moisture distributions calculated according to

    transmission of neutrons through column the over drying period

  • Closing the Circle

    Energizing the “Missing Link” toIntegrate Disparate Responses to California’s

    Critical Environmental Challenges

    David Morell, PhD.

    Fire, Water, & Carbon

    Sequestration

  • Excess biomass; water shortages; climate. How can we address this set of interrelated problems together rather than separately? How can we do this efficiently and effectively?

    BIOCHAR

    Sonoma Biochar Initiative

  • Forest to Farm

    Sonoma Biochar Initiative

  • 100 Million Dead Trees – Plus Ag Wastes

    Sonoma Biochar Initiative

  • Agricultural Water Crisis

    Sonoma Biochar Initiative

  • Agricultural Water Crisis

    Sonoma Biochar Initiative

  • Climate Change/Carbon Sequestration

    Sonoma Biochar Initiative

  • Carbon-Neutral to Carbon-Negative

    Sonoma Biochar Initiative

  • Moving from Concept to Implementation

    OK, this seems �like a great idea:

    Integrate �the silosBut how do we �

    make this a reality?

    Sonoma Biochar Initiative

    Forest Fire Risk/�Dead Trees/Ag

    Biomass

    Water Supply Climate Change/�Carbon

  • Action: Strategies and Next Steps

    •  Support efforts at state level to keep most existing biomass to energy plants operational.

    •  Fast track funding and permitting to demonstrate promising technologies to process dead trees without trucking them out of the forest

    •  Secure funding from state agencies or private foundations for large-scale field trials to demonstrate biochar applications throughout California agriculture.

    Sonoma Biochar Initiative

  • Save & Convert Existing Biomass Plants

    Sonoma Biochar Initiative

  • Accelerate Use of Small Technologies

    Mobile Air Curtain Burners

    “Movable” thermal conversion systems

    Sonoma Biochar Initiative

  • Fast Track Use of Even Smaller Technologies

    Moxham Kiln Flame-Cap Kiln

    Sonoma Biochar Initiative

  • “As I was driving over the hill from the fire station to watch the demonstration in person all I could see was the heat column—there was no smoke at all. I couldn’t believe it!”

    Schell-Vista Fire Chief Ray Mulas

    Use Conservation Burn Technique

    Sonoma Biochar Initiative

  • Actions in More Detail

    Most importantly, look at tree mortality, forest fire risk, agricultural biomass, water shortages, and climate change as interrelated problems (and opportunities).

    See biochar production and use as a way to address them all, helping to close a circle of sustainable actions affecting our communities, our economy, and our environment. Execute “proof of concept” actions.

     

    Sonoma Biochar Initiative

  • Dead Trees to Biochar

    •  Cal/Fire and others identify appropriate “log deck” locations

    •  CCC teams and others cut dead trees, move biomass to “log decks”

    •  Extensive added �employment available

    •  Carry out smaller demonstrations first, then scale up as biochar production capacity increases

    Sonoma Biochar Initiative

  • Dead Trees to Biochar (cont.)

    •  Funding Potentially Available From:•  Cal/FIRE Risk Reduction Monies•  AB32 GHG Auction Monies•  Fire Insurance Premium Rebates/

    Reductions

    •  Sales of Biochar to CA Farmers

    Sonoma Biochar Initiative

  • Dead Trees to Biochar (cont.)

    •  Produce Biochar from Available Biomass•  Deploy Transportable Units at Log

    Decks and with Ag Biomass

    •  Transport Some Biomass�to Sawmills

    •  Use Conservation Burns•  Attack ag wastes similarly

    •  Demonstrations First, Then Scale Up

    Sonoma Biochar Initiative

  • Apply Biochar as Soil Amendment on California Farms

    •  Focus First on High-Water-Usage Farms•  Transport Available Biochar in Truckloads•  Blend with Compost, Apply as �

    Soil Amendment•  Initial and Ongoing Funding:

    •  Crop Insurance Rebates and Bank/Ag �credit Agency Loans

    •  Front-end Loans (interest bearing) Repaid from Savings on Water Use costs

    Sonoma Biochar Initiative

  • CAFieldTrialsAlreadyCompleted

    ¡  SonomaCountyCIGFieldTrialsCompleted¡  UpcomingDWR-FundedDemonstrations

    -WithUC-RiversideScientists¡  ExperienceinOver20Vineyards¡ WesternSAREFieldTrials(pending)

  • National and Global Climate Leadership

    •  Outreach and Education to California Farms•  Document On-farm Results (water savings, soil health improvement)•  Track and Publicize Carbon �

    Negative Actions

    •  Compare to # of gasoline �cars removed from roads

    •  Compare to # of solar �electric arrays equivalent

    Sonoma Biochar Initiative

  • David Morell, PhDSonoma Ecology Center510-551-4067 [email protected]

    Thank you!

    Sanjai ParikhDavid Morell