76
In vitro assembled pre-initiation complex TFII yeast fly/man A 2 3 B 1 1 D 1 (15 TAFs) 1 (14/15 TAFs) E 2 2 F 3 2 H 9 1 Pol II 12 12 Total-TAFs 30 29 Total+TAFs 45 43/44

BioChem 111 Lecture 5 2015

Embed Size (px)

Citation preview

Page 1: BioChem 111 Lecture 5 2015

In vitro assembled pre-initiation complex

•  TFII yeast fly/man•  A 2 3•  B 1 1•  D 1 (15 TAFs) 1 (14/15 TAFs)•  E 2 2•  F 3 2•  H 9 1•  Pol II 12 12•  Total-TAFs 30 29•  Total+TAFs 45 43/44

Page 2: BioChem 111 Lecture 5 2015

Do such assemblies actually form at a promoter?

•  The assembly time is very long in vitro relative to normal rates of transcription initiation in vivo

•  The in vitro assemblies are on DNA not an in vivo template (chromatin)

•  The holoenzyme makes more sense

Page 3: BioChem 111 Lecture 5 2015

Yeast RNA Polymerase II Holoenzyme.

Page 4: BioChem 111 Lecture 5 2015
Page 5: BioChem 111 Lecture 5 2015

The CTD in the elongating complex

Page 6: BioChem 111 Lecture 5 2015

What are SRBs?•  SRB genes were identified in a genetic screen in yeast

as dominant gain of function suppressors of CTD truncation hence: suppressor of RPB1

•  The wild type RPB1 was replaced by a CTD deletion mutant which was conditionally lethal

•  Mutations in the SRB genes; 4, 5, and 6 allowed normal growth

•  It is thought that SRBs function to allow activators to work with the deleted CTD

Page 7: BioChem 111 Lecture 5 2015

SRBs exist in various complexes

•  The holoenzyme has SRBs; 2, 4, 5, 6, 7, 8, 9, 10 and 11

•  SRBs 2, 4, 5, 6 exist as an isolated complex•  SRBs 2, 4, 5, 6, 7 are associated with

components of the mediator complex in another isolated complex

Page 8: BioChem 111 Lecture 5 2015

SRBs 10 and 11

•  SRB 10 is cyclin C•  SRB 11 is cdk8•  Together they can phosphorylate the CTD in

addition to TFIIH’s cyclin H and cdk7 at S5

Page 9: BioChem 111 Lecture 5 2015

What is the mediator?•  The activity was identified by its ability to stimulate

specific transcription from a purified pol II system 10-fold

•  The mediator also stimulates activator response in the same pol II system 30-fold

•  In combination this results in a 300-fold activation of basal transcription

•  The mediator also stimulates CTD phosphorylation by TFIIH 30-50 fold

Page 10: BioChem 111 Lecture 5 2015
Page 11: BioChem 111 Lecture 5 2015
Page 12: BioChem 111 Lecture 5 2015

Mediator and Holoenzyme

Page 13: BioChem 111 Lecture 5 2015

MediatorStructure

Page 14: BioChem 111 Lecture 5 2015

MediatorbindstoAc1vatorboundtoDNAthenassociateswithPIC

Page 15: BioChem 111 Lecture 5 2015

Mediator-PolII-Pre-ini1a1onComplex

Page 16: BioChem 111 Lecture 5 2015

CTD Kinases and Elongation

Page 17: BioChem 111 Lecture 5 2015

Activators are modular

•  DNA binding domain•  Transcriptional activation domain•  Oligomerization domain•  Other specificity or protein-protein interacting

domains

Page 18: BioChem 111 Lecture 5 2015

12-18

DNA-BindingDomains

•  Proteindomainisanindependentlyfoldedregionofaprotein

•  DNA-bindingdomainshaveDNA-bindingmo1f– Partofthedomainhavingcharacteris1cshapespecializedforspecificDNAbinding

– MostDNA-bindingmo1fsfallinto3classes;zinc-containingmodules,homeodomainsandbZIPandbHLHmo1fs

Page 19: BioChem 111 Lecture 5 2015

12-19

12.2StructuresoftheDNA-BindingMo1fsofAc1vators

•  DNA-bindingdomainshavewell-definedstructures

•  X-raycrystallographicstudieshaveshownhowthesestructuresinteractwiththeirDNAtargets

•  Interac1ondomainsformingdimers,ortetramers,havealsobeendescribed

•  MostclassesofDNA-bindingproteinscan’tbindDNAinmonomerform

Page 20: BioChem 111 Lecture 5 2015

12-20

Zinc-ContainingModules

•  Thereareatleast3kindsofzinc-containingmodulesthatactasDNA-bindingmo1fs

•  Alluseoneormorezincionstocreateashapetofitanα-helixofthemo1fintotheDNAmajorgroove– Zincfingers– Zincmodules– Modulescontaining2zincand6cysteines

Page 21: BioChem 111 Lecture 5 2015

12-21

ZincFingers

•  DescribedbyKluginGTFTFIIIA•  Ninerepeatsofa30-residueelement:

– 2closelyspacedcysteinesfollowed12aminoacidslaterby2closelyspacedhis1dines

– Coordina1onofaminoacidstothemetalhelpsformthefinger-shapedstructure

– Richinzinc,enoughfor1zincionperrepeat– Specificrecogni1onbetweenthezincfingeranditsDNAtargetoccursinthemajorgroove

Page 22: BioChem 111 Lecture 5 2015

Zn Finger.

Page 23: BioChem 111 Lecture 5 2015

A-helix b-pleated sheet.

Znfinger1ofZif268rightsideisaan1parallelβ-sheetontherightsideisanα-helix

Page 24: BioChem 111 Lecture 5 2015

ArrangementofthreeZnfingersofZif268

Page 25: BioChem 111 Lecture 5 2015

Three fingers binding to DNA.

Page 26: BioChem 111 Lecture 5 2015

12-26

TheGAL4Protein

•  TheGAL4proteinisamemberofthezinc-containingfamilyofDNA-bindingproteins

•  EachGAL4monomercontainsaDNA-bindingmo1fwith:– 6cysteinesthatcoordinate2zincionsinabimetalthiolatecluster

– Shortα-helixthatprotrudesintotheDNAmajorgrooveistherecogni1onmodule

– Dimeriza1onmo1fwithanα-helixthatformsaparallelcoiledcoilasitinteractswiththeα-helixonanotherGAL4monomer

Page 27: BioChem 111 Lecture 5 2015

Gal 4 binding to DNA.

Page 28: BioChem 111 Lecture 5 2015

12-28

TheNuclearReceptors

•  Athirdclassofzincmoduleisthenuclearreceptor

•  Thistypeofproteininteractswithavarietyofendocrine-signalingmolecules

•  Proteinplusendocrinemoleculeformsacomplexthatfunc1onsasanac1vatorbybindingtohormoneresponseelementsands1mula1ngtranscrip1onofassociatedgenes

Page 29: BioChem 111 Lecture 5 2015

12-29

TypeINuclearReceptors

•  Thesereceptorsresideinthecytoplasmboundtoanotherprotein

•  Whenreceptorsbindtotheirhormoneligands:– Releasetheircytoplasmicproteinpartners– Movetonucleus– Bindtoenhancers– Actasac1vators

Page 30: BioChem 111 Lecture 5 2015

12-30

Glucocor1coidReceptors

•  DNA-bindingdomainwith2zinc-containingmodules

•  OnemodulehasmostDNA-bindingresidues

•  Othermodulehasthesurfaceforprotein-proteininterac1ontoformdimers

Page 31: BioChem 111 Lecture 5 2015

Glucocor1coidreceptorDNArecogni1onhelix

Page 32: BioChem 111 Lecture 5 2015

12-32

TypesIIandIIINuclearReceptors

•  TypeIInuclearreceptorsstaywithinthenucleusboundtotargetDNAsites

•  Withoutligandsthereceptorsrepressgeneac1vity

•  Whenreceptorsbindligands,theyac1vatetranscrip1on

•  TypeIIIreceptorsare“orphan”whoseligandsarenotyetiden1fied

Page 33: BioChem 111 Lecture 5 2015

TheAntennapediaphenotype-homeo1cgenes

Page 34: BioChem 111 Lecture 5 2015

12-34

Homeodomain-DNAComplex•  HomeodomainscontainDNA-bindingmo1ffunc1oningashelix-turn-helixmo1fs

•  Arecogni1onhelixfitsintotheDNAmajorgrooveandmakesspecificcontactsthere

•  N-terminalarmnestlesintheadjacentminorgroove

Page 35: BioChem 111 Lecture 5 2015

12-35

ThebZIPandbHLHDomains

•  bZIPproteinsdimerizethroughaleucinezipper– Thisputstheadjacentbasicregionsofeachmonomerinposi1ontoembraceDNAtargetlikeapairoftongs

•  bHLHproteinsdimerizethroughahelix-loop-helixmo1f– AllowsbasicpartsofeachlonghelixtograsptheDNAtargetsite

•  bHLHandbHLH-ZIPdomainsbindtoDNAinthesameway,theformerhaveextradimeriza1onpoten1alduetotheirleucinezippers

Page 36: BioChem 111 Lecture 5 2015

Leucinezipperisaparallelcoiledcoil

Page 37: BioChem 111 Lecture 5 2015

Leucine zipper bound to DNA.

bZipmo1fofGCN4boundtoitsDNATarget

Page 38: BioChem 111 Lecture 5 2015

Leucine zippers.

Page 39: BioChem 111 Lecture 5 2015

bHLH Myo D bound to DNA.

StructureofthebHLHdomainofMyoDboundtoitsDNAtarget

Page 40: BioChem 111 Lecture 5 2015

12-40

12.3IndependenceoftheDomainsofAc1vators

•  DNA-bindingandtranscrip1on-ac1va1ngdomainsofac1vatorproteinsareindependentmodules

•  MakinghybridproteinswithDNA-bindingdomainofoneprotein,transcrip1on-ac1va1ngdomainofanother

•  Thehybridproteins1llfunc1onsasanac1vator

Page 41: BioChem 111 Lecture 5 2015

12-41

12.4Func1onsofAc1vators

•  BacterialcoreRNApolymeraseisincapableofini1a1ngmeaningfultranscrip1on

•  RNApolymeraseholoenzymecancatalyzebasalleveltranscrip1on– O`eninsufficientatweakpromoters– Cellshaveac1vatorstoboostbasaltranscrip1ontohigherlevelinaprocesscalledrecruitment

Page 42: BioChem 111 Lecture 5 2015

12-42

Eukaryo1cAc1vators•  Eukaryo1cac1vatorsalsorecruitRNApolymerasetopromoters

•  S1mulatebindingofgeneraltranscrip1onfactorsandRNApolymerasetoapromoter

•  2hypothesesforrecruitment:– GeneralTFcauseastepwisebuild-upofpreini1a1oncomplex

– GeneralTFandotherproteinsarealreadyboundtopolymeraseinacomplexcalledRNApolymeraseholoenzyme

Page 43: BioChem 111 Lecture 5 2015

12-43

ModelsforRecruitmentofPreini1a1onComplexComponentsinYeast

Page 44: BioChem 111 Lecture 5 2015

12-44

RecruitmentofTFIID

•  Acidictranscrip1on-ac1va1ngdomainoftheherpesvirustranscrip1onfactorVP16bindstoTFIIDunderaffinitychromatographycondi1ons

•  TFIIDisrate-limi1ngfortranscrip1oninsomesystems

•  TFIIDistheimportanttargetoftheVP16transcrip1on-ac1va1ngdomain

Page 45: BioChem 111 Lecture 5 2015

12-45

RecruitmentoftheHoloenzyme

•  Ac1va1oninsomeyeastpromotersappearstofunc1onbyrecruitmentofholoenzyme

•  Thisisanalterna1vetotherecruitmentofindividualcomponentsoftheholoenzymeoneata1me

•  Someevidencesuggeststhatrecruitmentoftheholoenzymeasaunitisnotuncommon

Page 46: BioChem 111 Lecture 5 2015

12-46

RecruitmentModelofGAL11P-containingHoloenzyme

•  Dimeriza1ondomainofGAL4bindstoGAL11Pintheholoenzyme

•  A`erdimeriza1on,theholoenzyme,alongwithTFIID,bindstothepromoter,ac1va1ngthegene

Page 47: BioChem 111 Lecture 5 2015

Activation by Gal 11P and Gal 11-lex.

Page 48: BioChem 111 Lecture 5 2015

12-48

12.5Interac1onAmongAc1vators

•  Generaltranscrip1onfactorsmustinteracttoformthepreini1a1oncomplex

•  Ac1vatorsandgeneraltranscrip1onfactorsalsointeract

•  Ac1vatorsusuallyinteractwithoneanotherinac1va1ngagene–  Individualfactorsinteracttoformaproteindimerfacilita1ngbindingtoasingleDNAtargetsite

– SpecificfactorsboundtodifferentDNAtargetsitescancollaborateinac1va1ngagene

Page 49: BioChem 111 Lecture 5 2015

12-49

Dimeriza1on

•  Dimeriza1onisagreatadvantagetoanac1vatorasitincreasestheaffinitybetweentheac1vatoranditsDNAtarget

•  Someac1vatorsformhomodimersbutothersfunc1onasheterodimers

Page 50: BioChem 111 Lecture 5 2015

12-50

Ac1onataDistance

•  Bacterialandeukaryo1cenhancerss1mulatetranscrip1oneventhoughlocatedsomedistancefromtheirpromoters

•  Fourhypothesesaeempttoexplaintheabilityofenhancerstoactatadistance– Changeintopology– Sliding– Looping– Facilitatedtracking

Page 51: BioChem 111 Lecture 5 2015

12-51

HypothesesofEnhancerAc1on

Page 52: BioChem 111 Lecture 5 2015

12-52

3C:MethodtodetectDNAlooping

•  Chromosomeconforma1oncapture(3C)isatechniqueusedtodetermineifenhancerac1onrequiresDNAlooping

•  UsedtotestwhethertworemoteDNAregions,suchasanenhancerandapromoter,arebroughttogether

Page 53: BioChem 111 Lecture 5 2015

Chroma1nconforma1oncapture(3C)

Page 54: BioChem 111 Lecture 5 2015

12-54

GenomicImprin1ng

•  Becausemosteukaryotesarediploidorganisms,youwouldpredictthatitdoesnotmaeerwhichalleleofanygivengenecameformthemotherorthefather

•  Thisistrueinmostcasesbutthereareimportantexcep1ons

•  Thedifferencesbetweenthegenesresidesinhowtheyaremodified,orimprinted,differentlyinfemalesandmales

•  Evidenceexistsinmiceandhumans

Page 55: BioChem 111 Lecture 5 2015
Page 56: BioChem 111 Lecture 5 2015

Affinity chromatography transcription factor assay

Page 57: BioChem 111 Lecture 5 2015

Gal facilitates initiation complex formation.

Gal4s1mulatesPICforma1oninanuclearextract

Page 58: BioChem 111 Lecture 5 2015

TFIIB association with TFIID is stabilized by Gal4.

TFIIBassocia1onwithTFIIDisstabilizedbyGal4

Page 59: BioChem 111 Lecture 5 2015

TFIID and not TBP allows activator function in vitro.

Page 60: BioChem 111 Lecture 5 2015

Multiple sites for activator binding exhibit cooperativity in transcription and recruiting TFIIE.

Page 61: BioChem 111 Lecture 5 2015

Recruitment of holoenzyme through Gal 4-Gal11 interactions.

Page 62: BioChem 111 Lecture 5 2015

Leucine zippers.

Page 63: BioChem 111 Lecture 5 2015

DNA binding by the AP-1 family of activators use heterotypic dimers.

Page 64: BioChem 111 Lecture 5 2015

Metazoan Promoters are complex

Page 65: BioChem 111 Lecture 5 2015

Modular nature of enhancer elements in the sea urchin Endo 16 gene.

Page 66: BioChem 111 Lecture 5 2015

Integrative role of enhancer element A.

Page 67: BioChem 111 Lecture 5 2015

12-67

Enhanceosome

•  Anenhanceosomeisanucleoproteincomplexcontainingacollec1onofac1vatorsboundtoanenhancerinsuchawaythats1mulatestranscrip1on

•  ThearchetypalenhanceosomeinvolvestheIFNβenhancerwithastructurethatinvolveseightpolypep1desboundcoopera1velytoanessen1allystraight55-bpstrechofDNA

Page 68: BioChem 111 Lecture 5 2015

Human interferon gene promoter.

Page 69: BioChem 111 Lecture 5 2015
Page 70: BioChem 111 Lecture 5 2015

Insulator Function.

Page 71: BioChem 111 Lecture 5 2015

12-71

ModelofMul1pleInsulatorAc1on

Page 72: BioChem 111 Lecture 5 2015

Su(Hw)suppressorofhairywingisaninsulator

Page 73: BioChem 111 Lecture 5 2015

12-73

Summary

•  Someinsulatorshavebothenhancer-blockingandbarrierac1vi1es,butsomehaveonlyoneortheother

•  InsulatorsmaydotheirjobbyworkinginpairsthatbindproteinsthatcaninteracttoformDNAloopsthatwouldisolateenhancersandsilencerssotheycannolongers1mulateorrepresspromoters

•  InsulatorsmayestablishboundariesbetweenDNAregionsinachromosome

Page 74: BioChem 111 Lecture 5 2015

12-74

SignalTransduc1onPathways

•  Signaltransduc1onpathwaysbeginwithasignalingmoleculeinterac1ngwithareceptoronthecellsurface

•  Thisinterac1onsendsthesignalintothecellandfrequentlyleadstoalteredgeneexpression

•  Manysignaltransduc1onpathwaysrelyonproteinphosphoryla1ontopassthesignalfromoneproteintoanother

•  Thisleadstosignalamplifica1onateachstep

Page 75: BioChem 111 Lecture 5 2015

Signaling cascade

Page 76: BioChem 111 Lecture 5 2015

12-76

Ubiquityla1on

•  Ubiquityla1on,especiallymonoubiquityla1on,ofsomeac1vatorscanhaveanac1va1ngeffect

•  Polyubiquityla1onmarksthesesameproteinsfordestruc1on

•  Proteinsfromthe19Sregulatorypar1cleoftheproteasomecans1mulatetranscrip1on