16
Biodiesel adalah bahan bakar mesin diesel yang terbuat dari sumberdaya hayati yang berupa minyak lemak nabati atau lemak hewani. Senyawa utamanya adalah ester. Ester mempunyai rumus bangun sebagai berikut : Gambar 1 Rumus bangun ester Biodiesel dapat dibuat dari transesterifikasi asam lemak. Asam lemak dari minyak lemak nabati direaksikan dengan alkohol menghasilkan ester dan produk samping berupa gliserin yang juga bernilai ekonomis cukup tinggi. Biodiesel telah banyak digunakan sebagai bahan bakar pengganti solar. Bahan baku biodiesel yang dikembangkan bergantung pada sumber daya alam yang dimiliki suatu negara, minyak kanola di Jerman dan Austria, minyak kedelei di Amerika Serikat, minyak sawit di Malaysia, dan minyak kelapa di Filipina Indonesia mempunyai banyak sekali tanaman penghasil minyak lemak nabati, diantaranya adalah kelapa sawit, kelapa, jarak pagar, jarak, nyamplung, dan lain-lain. Beberapa tanaman yang potensial untuk bahan baku biodiesel dapat dilihat pada Tabel 1. Tabel 1 Beberapa tanaman penghasil minyak di Indonesia (Sumber : Pusat Penelitian Energi ITB) Agar dapat digunakan sebagai bahan bakar pengganti solar, biodiesel harus mempunyai kemiripan sifat fisik dan kimia dengan minyak solar.

biodisel ultrasonikator.docx

Embed Size (px)

Citation preview

Page 1: biodisel ultrasonikator.docx

Biodiesel adalah bahan bakar mesin diesel yang terbuat dari sumberdaya hayati yang berupa minyak lemak nabati atau lemak hewani. Senyawa utamanya adalah ester. Ester mempunyai rumus bangun sebagai berikut :

Gambar 1 Rumus bangun ester

Biodiesel dapat dibuat dari transesterifikasi asam lemak. Asam lemak dari minyak lemak nabati direaksikan dengan alkohol menghasilkan ester dan produk samping berupa gliserin yang juga bernilai ekonomis cukup tinggi.

Biodiesel telah banyak digunakan sebagai bahan bakar pengganti solar. Bahan baku biodiesel yang dikembangkan bergantung pada sumber daya alam yang dimiliki suatu negara, minyak kanola di Jerman dan Austria, minyak kedelei di Amerika Serikat, minyak sawit di Malaysia, dan minyak kelapa di Filipina Indonesia mempunyai banyak sekali tanaman penghasil minyak lemak nabati, diantaranya adalah kelapa sawit, kelapa, jarak pagar, jarak, nyamplung, dan lain-lain. Beberapa tanaman yang potensial untuk bahan baku biodiesel dapat dilihat pada Tabel 1.

Tabel 1 Beberapa tanaman penghasil minyak di Indonesia

(Sumber : Pusat Penelitian Energi ITB)

Agar dapat digunakan sebagai bahan bakar pengganti solar, biodiesel harus mempunyai kemiripan sifat fisik dan kimia dengan minyak solar. Salah satu sifat fisik yang penting adalah viskositas. Sebenarnya, minyak lemak nabati sendiri dapat dijadikan bahan bakar, namun, viskositasnya terlalu tinggi sehingga tidak memenuhi persyaratan untuk dijadikan bahan bakar mesin diesel. Perbandingan sifat fisik dan kimia biodiesel dengan minyak solar disajikan pada Tabel 2.

Page 2: biodisel ultrasonikator.docx

Tabel 2 perbandingan sifat fisik dan kimia biodiesel dan solar

(Sumber : Internasional Biodiesel, 2001)

Dibandingkan dengan minyak solar, biodiesel mempunyai beberapa keunggulan. Keunggulan utamanya adalah emisi pembakarannya yang ramah lingkungan karena mudah diserap kembali oleh tumbuhan dan tidak mengandung SOx. Perbandingan emisi pembakaran biodiesel dengan minyak solar disajikan dalam Tabel 3.

Tabel 3 perbandingan emisi pembakaran biodiesel dengan solar

(Sumber : Internasional Biodiesel, 2001)

Page 3: biodisel ultrasonikator.docx

Selain itu, beberapa keunggulan biodiesel yang lain adalah :

1. Lebih aman dalam penyimpanan karena titik kilatnya lebih tinggi2. Bahan bakunya terbaharukan3. Angka setana tinggi

Trigliserida

Minyak atau lemak adalah substansi yang bersifat non soluble di air (hidrofobik) terbuat dari satu mol gliserol dan tiga mol asam lemak. Minyak atau lemak juga biasa dikenal sebagai trigliserida (Sonntag, 1979). Struktur kimia trigliserida disajikan pada Gambar 2.

Gambar 2. Rumus bangun trigliserida

R1, R2, dan R3 merupakan rantai hidrokarbon yang berupa asam lemak dengan jumlah atom C lebih besar dari sepuluh. Senyawa inilah yang akan dikonversi menjadi ester melalui reaksi transesterifikasi.

Indonesia memiliki banyak sekali tumbuhan penghasil minyak lemak nabati bahan baku produksi biodiesel. Kekayaan alam ini masih belum banyak dikembangkan. Kandungan dan komposisi asam lemak dari berbagai tumbuhan di Indonesia dapat dilihat pada Tabel 2.4.

Tabel 4 Kandungan dan Komposisi minyak nabati beberapa tumbuhan

(sumber : Eckey,1954; Knothe,1997; Soerawidjja, 2002)

Page 4: biodisel ultrasonikator.docx

Asam Lemak Bebas

Selain mengandug trigliserida, minyak lemak nabati juga mengandung asam lemak bebas (free fatty acid), fosfolipid, sterol, air, odorants, dan pengotor-pengotor lainnya. Di antara kandungan-kandungan tersebut yang perlu diperhatikan ialah asam lemak bebas.

Asam lemak bebas merupakan pengotor yang tidak boleh ada dalam reaksi transesterifikasi. Asam lemak bebas bereaksi dengan basa (katalis reaksi transesterifikasi) membentuk sabun dan air. Selain itu, reaksi transesterifikasi menghasilkan produk samping berupa gliserin. Sabun sulit dipisahkan dari gliserin, sehingga adanya asam lemak bebas dalam reaksi transesterifikasi dapat menyebabkan kesulitan dalam pemisahan produk.

Alkohol

Alkohol digunakan sebagai reaktan dalam reaksi esterifikasi maupun transesterifikasi. Alkohol yang sering digunakan adalah metanol, etanol, propanol, dan isopropanol. Dalam skala industri, metanol lebih banyak digunakan karena harganya lebih murah daripada alkohol yang lain.

Alkohol diumpankan dalam reaksi esterifikasi maupun transesterifikasi dalam jumlah berlebih untuk mendapatkan konversi maksimum. Pemakaian alkohol yang berlebih tentu saja menambah biaya produksi pembuatan biodiesel, oleh karena itu alkohol sisa di daur ulang.

Katalis

Seperti reaksi kimia pada umumnya, pada reaksi esterifikasi dan transesterifikasi ditambahkan katalis untuk mempercepat laju reaksi dan meningkatkan perolehan.

(i) Katalis Reaksi Esterifikasi

Reaksi esterifikasi berjalan baik jika dalam suasana asam. Katalis yang sering digunakan untuk reaksi ini adalah asam mineral kuat, garam, gel silika, dan resin penukar kation.

Asam mineral yang banyak dipakai adalah asam klorida, asam sulfat, dan asam fosfat. Asam klorida banyak dipakai untuk skala laboratorium, namun jarang dipakai untuk skala industri karena sangat korosif. Asam fosfat jarang digunakan sebagai katalis karena memberikan laju reaksi yang relatif lambat. Asam sulfat paling banyak digunakan dalam industri karena memberikan konversi tinggi dan laju reaksi yang relatif cepat.

Selain asam mineral, katalis yang sering dipakai adalah resin penukar kation. Keunggulan katalis ini adalah fasanya yang padat sehingga pemisahannya lebih mudah dan dapat dipakai berulang. Selain itu, ester yang terbentuk tidak perlu dinetralkan. Namun, resin penukar kation merupakan katalis yang mahal dibandingkan dengan asam mineral.

Page 5: biodisel ultrasonikator.docx

(ii) Katalis Reaksi Transesterifikasi

Katalis yang sering digunakan untuk reaksi transesterifikasi yaitu alkali, asam, atau enzim. Penggunaan enzim masih belum umum dibandingkan alkali dan basa karena harganya mahal dan belum banyak penelitian yang membahas kinerja katalis ini.

Alkali yang sering digunakan yaitu natrium metoksida (NaOCH3), natrium hidroksida (NaOH), kalium hidroksida (KOH), kalium metoksida, natrium amida, natrium hidrida, kalium amida, dan kalium hidrida (Sprules and Price, 1950). Natium hidroksida dan natrium metoksida merupakan katalis yang paling banyak digunakan. Natrium metoksida lebih efektif dibandingkan natrium hidroksida (Fredman et. al., 1984; Hartman, 1956) tetapi harganya lebih mahal dan beracun. Untuk perbandingan molar alkohol dan asam lemak 6:1, perolehan ester untuk NaOH 1% dan NaOCH3 0,5% hampir sama setelah direaksikan selama 60 menit Namun, pada perbandingan molar alkohol dan asam lemak 3:1, katalis natrium metoksida menunjukkan hasil yang lebih baik (Fredman et. al., 1984).

Kalium hidroksida (KOH) mempunyai beberapa kelebihan dibandingkan dengan katalis lainnya. Pada akhir proses, KOH yang tersisa dapat dinetralkan dengan asam fosfat menjadi pupuk (K3PO4) sehingga proses produksi biodiesel dengan katalis KOH tidak menghasilkan limbah cair yang berbahaya bagi lingkungan. Selain itu, KOH dapat dibuat dari abu pembakaran limbah padat pembuatan minyak nabati.

Asam yang dapat digunakan diantaranya asam sulfat (H2SO4), asam fosfat, asam klorida, dan asam organik. Katalis asam yang paling banyak banyak dipakai adalah asam sulfat.

Pada kondisi operasi yang sama, katalis alkali jauh lebih cepat daripada katalis asam (Fredman et. al., 1984). Alkali dapat memberikan perolehan yang tinggi untuk waktu reaksi sekitar 1 jam sedangkan asam baru memberikan perolehan ester yang tinggi setelah bereaksi selama 3-48 jam. Pada alkali perolehan ester akan memuaskan untuk perbandingan molar alkohol dan asam lemak 6:1 sedangkan pada asam baru memberikan perolehan ester yang memuaskan untuk perbandingan molar alkohol dan asam lemak 30:1. Tetapi, katalis alkali tidak mengizinkan adanya kandungan asam lemak bebas dalam jumlah besar pada reaktan karena akan terjadi reaksi penyabunan. Oleh karena itu, untuk minyak nabati yang banyak mengandung asam lemak bebas dan air maka penggunaan katalis asam patut dipertimbangkan.

Reaksi Pembuatan Biodiesel

Ester dapat dibuat dari minyak lemak nabati dengan reaksi esterifikasi atau transesterifikasi atau gabungan keduanya.

(i) Reaksi Esterifikasi

Reaksi esterifikasi merupakan reaksi antara asam lemak bebas dengan alkohol membentuk ester dan air. Reaksi yang terjadi merupakan reaksi endoterm, sehingga memerlukan pasokan kalor dari luar. Temperatur untuk pemanasan tidak terlalu tinggi yaitu 55-60 oC (Kac, 2001). Secara umum reaksi esterifikasi adalah sebagai berikut :

Page 6: biodisel ultrasonikator.docx

Reaksi esterifikasi dapat dilakukan sebelum atau sesudah reaksi transesterifikasi. Reaksi esterifikasi biasanya dilakukan sebelum reaksi transesterifikasi jika minyak yang diumpankan mengandung asam lemak bebas tinggi (>0.5%). Dengan reaksi esterifikasi, kandungan asam lemak bebas dapat dihilangkan dan diperoleh tambahan ester.

(ii) Reaksi Transesterifikasi

Reaksi Transesterifikasi sering disebut reaksi alkoholisis, yaitu reaksi antara trigliserida dengan alkohol menghasilkan ester dan gliserin. Alkohol yang sering digunakan adalah metanol, etanol, dan isopropanol. Berikut ini adalah tahap-tahap reaksi transesterifikasi :

Page 7: biodisel ultrasonikator.docx

Secara keseluruhan reaksi transesterifikasi adalah sebagai berikut :

Trigliserida bereaksi dengan alkohol membentuk ester dan gliserin. Kedua produk reaksi ini membentuk dua fasa yang mudah dipisahkan. Fasa gliserin terletak dibawah dan fasa ester alkil diatas. Ester dapat dimurnikan lebih lanjut untuk memperoleh biodiesel yang sesuai dengan standard yang telah ditetapkan, sedangkan gliserin dimurnikan sebagai produk samping pembuatan biodiesel. Gliserin merupakan senyawaan penting dalam industri. Gliserin banyak digunakan sebagai pelarut, bahan kosmetik, sabun cair, dan lain-lain.

Pengotor

Pengotor yang ada dalam biodiesel diantaranya gliserin, air, dan alkohol sisa. Pemisahan pengotor dilakukan untuk mendapatkan biodiesel yang memenuhi kriteria untuk dijadikan bahan bakar.

(i) Gliserin

Gliserin dan ester membentuk dua fasa yang tidak saling larut. Gliserin yang berada di lapisan bawah karena densitasnya lebih besar dari ester. Pemisahan gliserin dari ester dapat dilakukan dengan cara dekantasi.

Gliserin merupakan produk samping proses pembuatan biodiesel yang bernilai ekonomis tinggi yang dapat dijual dalam keadaan mentah (crude glycerin) atau gliserin yang telah dimurnikan. Pemurnian gliserin akan lebih sulit jika terbentuk sabun hasil reaksi asam lemak bebas dengan basa.

Page 8: biodisel ultrasonikator.docx

(ii) Air

Salah satu produk samping reaksi esterifikasi adalah air. Air harus dihilangkan sebelum reaksi transesterifikasi. Pemisahan air ini dapat dilakukan dengan penguapan atau menggunakan absorber. Pemisahan air dengan penguapan lebih banyak dilakukan dalam industri biodiesel karena lebih murah.

Air menjadi sulit dipisahkan jika terdapat sabun hasil reaksi asam lemak bebas dengan basa. Air akan berikatan dengan sabun dan gliserin sehingga pemisahannya menjadi sulit.

Rute-Rute Proses Pembuatan Biodiesel

Pembuatan biodiesel dengan bahan baku minyak berasam lemak bebas tinggi akan menimbulkan banyak rute karena diperlukan satu reaksi atau lebih dan pemisahannya. berikut ini gambaran singkat mengenai rute-rute pembuatan biodiesel.

(i) Rute I (transesterifikasi – esterifikasi )

Pada rute ini, pembuatan ester alkil dari minyak nabati dilakukan dengan dua reaksi, transesterifikasi dan esterifikasi.

Asam lemak bebas dalam minyak lemak nabati direaksikan dengan basa membentuk sabun. Semua asam lemak bebas dikonversi menjadi sabun, sehingga minyak nabati yang masuk reaktor transesterifikasi bebas asam lemak bebas. Reaksi transesterifikasi dapat dilakukan satu tahap atau dua tahap, pada reaksi dua tahap dilakukan pemisahan gliserin di tengah-tengah reaksi, hal ini dilakukan agar kesetimbangan reaksi bergeser ke kanan, sehingga konversi yang diperoleh lebih tinggi.

Hasil yang diperoleh dari keluaran reaktor transesterifikasi adalah ester, gliserin, sabun, dan pengotor. Ester dipisahkan dari produk dan sabun diubah kembali menjadi asam lemak bebas dengan pengasaman. Asam lemak dapat diubah menjadi ester alkil dengan reaksi esterifikasi.

Asam lemak bebas bereaksi dengan alkohol menjadi ester dan air. Pada reaksi ini digunakan katalis asam, dapat berupa katalis homogen (cair) atau heterogen (padat). Katalis padat dapat memudahkan dalam proses pemisahan produk karena dapat disaring untuk kemudian dipakai kembali. Selain menghasilkan ester, reaksi esterifikasi juga menghasilkan produk samping berupa air.

Ester hasil reaksi esterifikasi masih bercampur dengan pengotor-pengotor sehingga harus dimurnikan. Pengotor paling banyak adalah gliserin. Gliserin mempunyai massa jenis yang lebih besar daripada ester sehingga fasa gliserin berada di bawah, pemisahannya dapat dilakukan dengan dekantasi. Gliserin dapat dimurnikan lebih lanjut dan menjadi produk samping yang bernilai ekonomi cukup tinggi. Biodiesel hasil reaksi esterifikasi dicampurkan kembali dengan biodiesel hasil reaksi transesterifikasi.

Biodiesel yang dihasilkan masih berupa produk mentah sehingga perlu dimurnikan. Pemurniannya dapat dilakukan dengan dua cara yaitu dengan pencucian menggunakan air atau pemurnian dengan penukar ion (penukar anion untuk mengikat asam dan penukar kation untuk mengikat basa yang tersisa dari

Page 9: biodisel ultrasonikator.docx

reaksi transesterifikasi). Pencucian dilakukan untuk menghilangkan garam, alkohol, dan pengotor yang larut dalam air.

Rute ini tidak sesuai untuk memproduksi biodiesel dari minyak lemak nabati yang mengandung asam lemak bebas tinggi karena memerlukan bahan baku berupa asam dan basa relatif lebih banyak.

(ii) Rute II (esterifikasi – transesterifikasi)

Seperti pada rute I, Rute ini juga menggunakan dua reaksi, yaitu esterifikasi dan transesterifikasi, namun pada rute ini reaksi esterifikasi dilakukan sebelum reaksi tranesterifikasi. Hal ini dilakukan untuk menghilangkan asam lemak bebas sekaligus menambah perolehan biodiesel. Reaksi esterifikasi dapat dilakukan dengan katalis homogen maupun heterogen. Esterifikasi dengan katalis homogen menghasilkan produk yang bersifat asam sehingga sebelum reaksi transesterifikasi, kelebihan asam ini harus dinetralkan terlebih dahulu. Penetralan dapat dilakukan dengan penambahan basa atau menggunakan resin penukar anion. Penetralan menggunakan basa menghasilkan garam yang dapat menjadi pengotor, hal ini tidak terjadi pada penetralan menggunakan penukar ion.

Reaksi esterifikasi menghasilkan produk samping berupa air. Air harus dipisahkan sebelum reaksi transesterifikasi. Pemisahan ini dapat dilakukan dengan penguapan atau menggunakan absorber.

Umpan masuk reaktor transesterifikasi berupa trigliserida, ester, dan pengotor. Trigliserida direaksikan dengan metanol menghasilkan ester dan gliserin. Reaksi transesterifikasi dapat dilakukan dua tahap untuk mendapatkan konversi tinggi. Pada reaksi dua tahap, pemisahan gliserin dilakukan diantara kedua reaksi. Pemisahan gliserin ini berguna untuk menggeser kesetimbangan ke kanan sehingga konversinnya menjadi lebih tinggi.

Reaksi transesterifikasi menghasilkan produk samping berupa gliserin. Ester dan gliserin tidak saling larut sehingga dapat dipisahkan dengan dekantasi. Fasa ester dimurnikan lebih lanjut untuk mendapatkan biodiesel yang sesuai dengan standard mutu yang disyaratkan. Fasa ester masih mengandung pengotor-pengotor, seperti : sisa katalis, garam, metanol, dan pengotor lainnya. Pemurnian fasa ester alkil dapat dilakukan dengan dua cara, yaitu pencucian dengan air atau menggunakan penukar ion.

(iii) Rute III (esterifikasi dengan metanol superkritik)

Metanol superkritik adalah metanol yang berada pada kondisi diatas temperatur dan tekanan kritiknya, yaitu 350 oC dan 30 MPa. Esterifikasi dengan metanol superkritik mempunyai beberapa keunggulan yaitu waktu yang diperlukan untuk mencapai konversi yang diinginkan jauh lebih kecil daripada dengan cara konvensional dan proses pemisahan produknya lebih mudah karena tidak menggunakan katalis, sehingga tidak ada pengotor berupa katalis sisa. Namun, esterifikasi ini juga mampunyai kelemahan yaitu kondisi operasi harus pada temperatur dan tekanan tinggi.

http://chemical-engineer.digitalzones.com/biodiesel.html

Page 10: biodisel ultrasonikator.docx

Principle of Ultrasonic Process

Traditionally, sound is a subject studied in physics and it is not a well-met topic in a chemistry course and, so, is somewhat unfamiliar to practicing chemists. However, sonochemistry, which is defined as the use of sound to promote or enhance chemical reactions, has recently received much attention in several chemical reactions concerning sustainability process [5].

It is known that an acoustic wave is a propagation of pressure oscillation in a given medium (gas, liquid or solid), with the velocity of sound producing both the rarefication and compression phases. Figure 3 shows that sound waves are often disclosed as a series of vertical lines or shaded colors, where line separation or color depth represent the intensity or amplitude of the sine wave; the pitch of the sound depends upon the frequency of the wave. According to the sound spectrum, an ultrasonic wave is an acoustic wave whose frequency is above 20 kHz, which is not audible to human. Hence, when a liquid is irradiated by a strong ultrasonic wave, the pressure at some regions in the liquid becomes negative (expansion) because the acoustic amplitude of the wave is larger than the ambient pressure. Therefore, if the pressure wave propagating through a liquid has enough intensity, formation of vapor bubbles may occur because the gas dissolved in the liquid can no longer be kept dissolved, because the gas solubility is proportional to the pressure; this is known as the cavitation phenomenon [11].

Figure 3.

Sound waves interaction with a liquid medium [13]. The bubble growth due to the expansion-compression cycles resulting in the formation of localized “hot spots”.

Page 11: biodisel ultrasonikator.docx

The bubbles formed in the cavitation phenomenon grow from nuclei, over many acoustic cycles, through an elastic process [10]. During the expansion cycle an inflow occurs into the bubble, due to the gradient in gas concentration of the fluid shell surrounding the bubble. As the gas diffusion rate into the bubble is proportional to the concentration gradient of dissolved gas, the net inflow of gas into the bubble is essentially higher during the expansion process. Then, when acoustic bubbles reach a critical size range they undergo a violent collapse. There are three at least theories to explain the chemical effects arising from the collapse of cavitation bubbles:

1. electrical theory, 2. plasma discharge theory and 3. super-critical theory.

Another approach is the “hot spot” theory. This theory suggests that bubbles growth is almost adiabatic up to the collapse. At this point, the gas in the bubble core is rapidly compressed (life time in the order of nanoseconds); hence, temperature of thousands of degrees and pressure of more than hundreds of atmospheres can be locally generated; this is the “hot spot” condition. It is noteworthy that, in addition to the extreme conditions of the “hot spot”, a secondary region formed by a thin layer of the liquid surrounding the collapsed bubble, it is also transiently heated, although to a lesser extent; this thin layer is about 200 nm in thickness and may reach a temperature of 1726 ºC [11], see a simplified scheme of the “hot spot” model is shown in Figure 4.

Figure 4.

Page 12: biodisel ultrasonikator.docx

Hot-Spot model in the cavitation process [11].

The physicochemical properties of the solvent and solute, and also the gas in the bubble, have notorious effects on the cavitation phenomenon. Therefore, the sonochemical process is very complicated; it is more frequently influenced by the solvent because cavities are spontaneously formed with solvents having high vapor pressure, low viscosity, and low surface tension. Consequently, as liquid must overcome intermolecular forces to form bubbles, poor cavitation efficiency is obtained when solvents with low vapor pressure, high viscosity, surface tension and density are used. Nevertheless, these kinds of solvents have higher threshold for cavitation but more harsh conditions once cavitation begins; this might help in some chemical reactions [12]. On the other hand, there are several gas phase properties that affect sonochemical cavities, Adewuyi [13] recently reported that heat capacity ratio (also known as polytropic ratio, γ), thermal conductivity and solubility are the most important gas properties. γ is involved with the amount of heat released and, hence, affect the final temperature and pressure produced in the adiabatic compression, according to the following equations [14, 15]:

Where T0 = bulk medium temperature, Pv = pressure in the bubble when bubble size is maximum or vapor pressure of the solution, Pa = acoustic pressure in the bubble at the moment of collapse. Thus, a gas with high thermal conductivity improves the heat transfer from collapsed bubbles to the liquid; this means that it reduces the temperature achieved in an implosion. The solubility of the gas in the liquid is also relevant. The more soluble the gas, the more likely it is to diffuse into the cavitation bubble. Soluble gases should originate the formation of larger number of cavitation nuclei and extensive bubble collapse, because these gases are readily forced back to the liquid phase. Therefore, a decrease of the bulk liquid temperature increases the rate of sonochemical reaction, unlike most chemical reaction systems. This is reasonable because the amount of dissolved gas increases and the vapor pressure of the liquid decreases and, then, less vapor diffuses into the bubble thus cushioning the cavitational collapse; in this condition the implosion more violent.