39
Biogeography-Based Optimization Dan Simon Cleveland State University Fall 2008

Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

Biogeography-Based Optimization

Dan SimonCleveland State University

Fall 2008

Page 2: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

2

Outline

1. Biogeography2. Optimization3. Other Population-Based Optimizers4. Benchmark Functions & Results5. Sensor Selection & Results6. Conclusion

Page 3: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

3

Biogeography

The study of the geographic distribution of biological organisms

• Mauritius• 1600s

Page 4: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

4

Biogeography

Species migrate between “islands” via flotsam, wind, flying, swimming, …

Page 5: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

5

Biogeography

• Habitat Suitability Index (HSI): Some islands are more suitable for habitation than others

• Suitability Index Variables (SIVs):Habitability is related to features such as rainfall, topography, diversity of vegetation, temperature, etc.

Page 6: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

6

Biogeography

As habitat suitability improves:– The species count increases– Emigration increases (more

species exit the habitat)– Immigration decreases (fewer

species come into the habitat)

Page 7: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

7

Biogeography

Ps = probability that habitat contains S species

ttPttPtttPttP

ssss

ssss

Δ+Δ+Δ−Δ−=Δ+

++−− 1111 )()()1)(()(

μλμλ

S species at time t, and no migration occurred

S–1 species at time t, and 1 species immigrated

S+1 species at time t, and 1 species emmigrated

Page 8: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

8

Biogeography

Convert the difference equation into a differential equation

⎪⎩

⎪⎨

=++−−=+++−

=++−=

−−

++−−

++

max11

max1111

11

)(1,,1)(

0)(

SSPPSSPPP

SPPP

sssss

sssssss

sssss

s

λμλμλμλ

μμλ

(Smax+1) coupled differential equations that can be combined into a single matrix equation.

Page 9: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

9

Biogeography

APP =

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

+−+−

+−+−

=

−−−

)(00)(

)(00)(

1

112

2110

100

nnn

nnnn

A

μλλμμλλ

μμλλμμλ

Page 10: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

10

BiogeographySuppose E=I. Then

max count, species where)/1(

/

SnknkE

nEk

k

k

==−=

=λμ

Page 11: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

11

Biogeography

So the population reaches equilibrium when P is equal to the eigenvector corresponding to the zero eigenvalue of A

APPEA

nnnn

nnnn

EA

=

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−

−−

=

'1/100

/1/2

/21/00/11

Page 12: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

12

Biogeography

[ ]

⎪⎩

⎪⎨⎧

+++=

+=−−−=

=

=∞

−+

+

)1,...,1)2/)1((ceil(

))2/)1((ceil,...,1()!1()!1(

!

)(

2

11

nniv

niiin

nv

vvv

vvP

in

i

Tn

i

Page 13: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

13

Biogeography-Based Optimization

1. Initialize a set of solutions to a problem.2. Compute “fitness” (HSI) for each solution.3. Compute S, λ, and μ for each solution.4. Modify habitats (migration) based on λ, μ.5. Mutatation based on probability.6. Typically we implement elitism.7. Go to step 2 for the next iteration if needed.

Page 14: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

14

Benchmark Functions14 standard benchmark functions were used to evaluate BBO relative to other optimizers.

• Ackley• Fletcher-Powell• Griewank• Penalty Function #1• Penalty Function #2• Quartic • Rastrigin

• Rosenbrock• Schwefel 1.2• Schwefel 2.21• Schwefel 2.22• Schwefel 2.26• Sphere• Step

Page 15: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

15

Benchmark Functions

Functions can be categorized as• Separable or nonseparable – for example,

(x+y) vs. xy• Regular or irregular – for example,

sin x vs. abs(x)• Unimodal or multimodal – for example,

x2 vs. cos x

Page 16: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

16

Benchmark FunctionsPenalty function #1:nonseparable, regular, unimodal

Page 17: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

17

Benchmark FunctionsStep function:

separable, irregular, unimodal

2

1])5.0([floor)( ∑

=

+=n

iixxf

Page 18: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

18

Benchmark FunctionsRastrigin:

nonseparable, regular, multimodal

∑=

−+=n

iii xxnxf

1

2 )]2cos(10[10)( π

Page 19: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

19

Benchmark FunctionsRosenbrock:

nonseparable, regular, unimodal

∑−

=+ −+−=

1

1

2221 ])1()(100[)(

n

iiii xxxxf

Page 20: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

20

Benchmark FunctionsSchwefel 2.22:

nonseparable, irregular, unimodal

∏∑==

+=n

ii

n

ii xxxf

11||||)(

Page 21: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

21

Benchmark FunctionsSchwefel 2.26:

separable, irregular, multimodal

∑=

−=n

iii xxxf

1||sin)(

Page 22: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

22

Optimization Algorithms

• Ant colony optimization (ACO)• Biogeography-based optimization (BBO)• Differential evolution (DE)• Evolutionary strategy (ES)• Genetic algorithm (GA)• Population-based incremental learning (PBIL)• Particle swarm optimization (PSO)• Stud genetic algorithm (SGA)

Page 23: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

23Average performance of 100 simulations (n = 50)1161100014266517959251647085706.4E42.1E61023799192

PSO

55190614250018416642842128501.1E42.5E5516415197

GA

1003271813302112248Step10927859102501001347Sphere100177140137118108Schwefel 2.261428611094290100688Schwefel 2.22146265162227100161Schwefel 2.21110606425391100202Schwefel 1.210018617162531021711Rosenbrock134634536397100454Rastrigin1004.8E4700811762623213Quartic1005.4E54.2E458627155.0E5Penalty 21002.8E71.3E69.7E41.2E42.2E7Penalty 11002831696272117162Griewank1149174943851001013Fletcher103232197146100182Ackley

SGAPBILESDEBBOACO

Page 24: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

24

Aircraft Engine Sensor Selection

Health estimation• Better maintenance• Better control performance

Page 25: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

25

Aircraft Engine Sensor Selection

What sensors should we use?• Measure pressures, temperatures, speeds• A total of 11 sensors; some can be duplicated• Estimate efficiencies and airflow capacities• Optimize a combination of estimation

accuracy and financial cost• Use a Kalman filter for health estimation

Page 26: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

26

Aircraft Engine Sensor Selection

Suppose we want to pick N objects out of K classes while choosing from each class no more than M times. Example: We have red balls, blue balls, and greenballs (K=3). We want to pick 4 balls (N=4) with each color chosen no more than twice (M=2).6 Possibilities: {B, B, G, G}, {R, B, G, G}, {R, B, B, G}, {R, R, G, G}, {R, R, B, G}, {R, R, B, B}

Page 27: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

27

Aircraft Engine Sensor Selection

Pick N objects out of K classes while choosing from each class no more than M times.q(x)= (1 + x + x2 + … + xM)K

= 1 + q1 x + q2 x2 + … + xMK

Multinomial theorem: The number of uniquecombinations is equal to qN (order independent)

Page 28: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

28

Aircraft Engine Sensor Selection

Pick 20 objects out of 11 classes while choosing from each class no more than 4 times.q(x) = (1 + x + x2 + x3 + x4)11

= 1 + … + 3,755,070 x20 + …21 hours of CPU time for an exhaustive search.So we need a quick suboptimal search strategy.

Page 29: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

29

Aircraft Engine Sensor Selection

Average and best performance over 100 Monte Carlo simulations. Computational savings = 99.99% (21 hours → 8 seconds).

8.068.14PSO

8.028.02SGA

8.808.18PBIL

8.028.057.607.198.12Best8.048.158.068.018.22MeanGAESDEBBOACO

Page 30: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

30

Conclusion

• A new biologically-motivated optimizer• Paper and Matlab code is at

http://academic.csuohio.edu/simond/bbo

Page 31: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

31

Future Work

• Applications • Convergence• Dynamic/noisy fitness functions• Extinction is not the same as emigration• Take island proximity into account• Model species populations (demographics)• Species age affects extinction and emigration

Page 32: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

32

Future Work

• Migration curves are probably convex, and vary between islands

• Continuous BBO• Connections between BBO and other Eas• Migration varies with species mobility• Predator/prey relationships• Population sizes• Constrained BBO• Multiobjective BBO

Page 33: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

33

Future Work

• Number of islands• Combination with other EAs

– Tabu search, particle swarm optimization, use of global information, etc.

– Local memory of past performance for each island

– Fuzzy fitness functions

Page 34: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

34

Page 35: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

35

Other optimization methods

Ant colony optimization: Based on the pheromone deposition of ants

Page 36: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

36

Other optimization methods

Differential evolution: Based on simple difference-based modification of solutions

existing solutions

differenceexist

ing

solu

tion

new so

lution

Page 37: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

37

Other optimization methods

Evolutionary Strategy: Based on multiple parents contributing to offspring

The most fit offspring become the next generation of parents

Page 38: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

38

Other optimization methods

Genetic algorithms: Based on natural selection in biological evolution

crossoverpoint

selection parents children

Page 39: Biogeography-Based OptimizationQuartic 3213 262 1176 7008 4.8E4 100 Penalty 2 5.0E5 715 5862 4.2E4 5.4E5 100 Penalty 1 2.2E7 1.2E4 9.7E4 1.3E6 2.8E7 100 Griewank 162 117 272 696 2831

39

Other optimization methods

Particle swarm optimization: Based on the swarming behavior of birds, fish, etc.

Each particle (solution) learns from its neighbors and adjusts itself accordingly