46
23 April 2014 Challenge the future Delft University of Technology Biomass Energy Addressing the rate limiting step Prof.dr.ir. Jules B. van Lier

Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

23 April 2014

Challenge the future

Delft University of Technology

Biomass Energy Addressing the rate limiting step

Prof.dr.ir. Jules B. van Lier

Page 2: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

2

Biomass COD is created by the photosynthetic reduction of

CO2.

Biomass Energy: how does it start?

CODtheo. = 8(4n+a-2b-3d)/(12n+a+16b +14d) mg COD/mg CnHaObNd

CnHaObNd + ¼ (4n+a-2b-3d) O2 nCO2 + ½(a-3d)H2O + dNH3

+ Energy!!!!

CO2 CnHaObNd

N, P, K

Page 3: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

3

Energy Recovery? Anaerobic Digestion!!

(heat, carriers, electricity)

Anaerobic

conversions COD

“heat”

Sludge

Reduced liquid

compounds: VFA,

alcohols, LCFA,

alkanes??*

*Zengler et al., ’99, Nature 401,

266-269: alkanes→CH4

Electrons:

MFC/BES

Energy content

biomass:

13.5 MJ/kg COD

3.8 kWh*/kg COD

(theoretical)

“Conservation of electrons”

Reduced gases:

CH4, H2, (H2S)

Page 4: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

4

Drivers and Application of AD

• Most widespread AD application worldwide: manure & slurry digestion:

• Biogas

• Fertiliser

•Most frequently applied scale: farm-scale digestion / domestic biogas

plants. E.g. India, China, Nepal:

• Nepal: 50,000 digesters

• China: > 30 million domestic biogas plants

• Current growing interest: industrial size biogas plants for green energy

generation and waste stabilisation

Page 5: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

5

EU success developed in Denmark: spread out over Europe!

Germany, Austria, Sweden are leading (Germany > 3.000 manure digesters)

Note: China: > 25.000 large scale digesters for agricultural wastes!

Centralised manure (co-)digestion /

energy crops Holsworthy plant (UK),

commissioned in 2002

(Courtesy: Nova Energie).

Bio-Energy Production!

Page 6: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

6

Crop /

residue

High value feed/

chemicals

Bioethanol/Biodiesel

Food

Biogas

Fertilizer/ Soil

conditioner Residues

valorization

Biorefinery Energy Food Industry

Anaerobic Digestion

(Pabon et al., 2013)

Role of AD for energy crops (residues)

in the bio-based economy

“Biomass cascading”

Page 7: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

7

What energy can we expect?

Assessing the biomethane potential

Oxitop: measuring P increase:

AMPTS: Online CH4 production:

See e.g. Angelidaki et al, 2008: IWA Task group

Large volume batch digesters:

Page 8: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

8

Manure

OFMSW

Industrial

waste

Crop

residues

Aerobic

sludge

Substrate BMP

(L CH4/ g VS)

Methane yield

(m3 CH4/ton ww)

Slaughterhouse waste 0.57 150

OFMSW 0.5-0.6 100-150

Energy crops 0.30-0.50 30-100

Straws, sugar beet

tops 0.2 - 0.4 36-145

Pig manure 0.29 - 0.37 17-22

Cow manure 0.11 - 0.24 7-14

Energy

crops

Biomethane Potential (BMP) of organic

substrates

(Lehtomaki et al, 2005)

BMP range: 0.1 - 0.6 L CH4/gVS

Page 9: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

9

• Substrate (1): exact species, time of harvest

• Substrate (2): pre-treatments (particle size, storage,

blending)

• Inoculum: Type (source, structure), age, concentration (S/I)

• Buffer solution: type, concentration

• Macronutrients and trace elements: accessibility

• Equipment: type of bioassay (batch, continuous)

• Operating conditions: temperature, pH, sampling frequency.

(Hansen et al , 2004);(Rozzi and Remigi, 2004);

(Muller, 2004);(Colleran et al. 1992)

Intrinsic values?

Large variability in BMP literature data:

(PhD thesis Claudia Pabon (2009)) EU Cropgen project

(Banks, Univ. South., UK)

Page 10: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

10

Up to 31%

difference in

BMP

0,41

0,35

0,31

0,34

0,31

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

Mixture S/I 0.5 Mixture S/I 1.5 Mixture S/I 2.5 Granular S/I 0.5 Granular S/I 2.5

BM

P (

l C

H4

ST

P/g

VS

)BMP: Impact Substrate/Inoculum

ratio and inoculum type: Inoculum type:

Digested primary sludge

Methanogenic granular sludge S/I ratios: 0.5 – 1.5 – 2.5

(Pabon-Pereira et al, WST 2012)

sludge mixture methanogenic

granular sludge

Page 11: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

11

101% 100%

85%

78%

86% 100%

69% 73%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5 mM 20 mM 30 mM 50 mM

BM

P (

l C

H4 -

ST

P/g

VS

0%

20%

40%

60%

80%

100%

120%

BMP not corrected blank BMP

BMP: Impact phosphate buffer

concentration..!

Max. conc.: 20 mM

Also blank test was

impacted…

(Pabon-Pereira et al, WST 2012)

Page 12: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

12

BMP: Impact substrate pre-treatment

Increase in BMP:

Freezing: No

significant influence

Blending: Up to 40%

Dry grinded: Up to

50%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Mustard Endive Green beans

BM

P (

l C

H4 -

ST

P/g

VS

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fib

er

co

nte

nt

(%V

S)

Fresh 1 cm Frozen 1 cm Frozen blended Dry grinded Fiber content

Impact blending and

grinding apparently

dependent on fibre

content

(Pabon-Pereira et al, WST 2012)

Page 13: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

13

BMP: impact drying and grinding

depends on fibre content:

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Braken Mustard Spartina Triticale Winter

bean

Endive Green

beans

% B

MP

in

cre

ase

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Lig

nin

+C

ell

ulo

se (

g/g

VS

)

Dry grinded

Lignin+cellulose

(Pabon-Pereira et al, WST 2012)

Page 14: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

14 14

First step AD conversion process (extent determines BMP)

Generally the overall rate limiting step

Conversion of polymeric compounds into soluble monomeric or

dimeric substrates.

Extra-cellular conversion by hydrolytic enzymes excreted by microbs

(dissolved compounds are taken up by biomass). Rate dependent

on surface availability and presence of refractory fibres!

Generally modeled using first order kinetics

Hydrolysis of particulate organic

substrates; “recap”

Batch digestion:

P= P0.e-kh.t

ln(P/P0)= -kh.t

CSTR digestion:

-kh.P + (P0-P)/SRT=0

(P0-P)/P= kh.SRT

dP/dt = -kh.P

(Eastman and Ferguson, 1991;

Hobson 1983; Noike et al. 1985).

Page 15: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

15 15

Lignin: 15-25%

- Complex aromatic structure

- high energy content

- anaerobic non-biodegradable

Hemi-cellulose: 23-32%

- Polymer of C5 and C6 sugars

- easy to hydrolyse

Cellulose: 38-50%

- Polymer of glucose

- easy to hydrolyse

Fibres limiting hydrolysis:

Ligno-cellulosic matter

Page 16: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

16

kh vs total fibre CROPGEN 2

y = -0,7915x + 0,8224

R2 = 0,695

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Total fiber (g/gVS)

-kh

kh vs lignin CROPGEN 2

y = -2,0655x + 0,6689

R2 = 0,8589

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,05 0,1 0,15 0,2 0,25

lignin (g/gVS)

-kh

kh vs lignin + cellulose CROPGEN 2

y = -0,9537x + 0,7879

R2 = 0,7932

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,1 0,2 0,3 0,4 0,5 0,6

lignin + cellulose (g/gVS)

-kh

Slope R2

Total fibre - 0.79 0.695

Lignin+cellulose - 0.95 0.793

Lignin -2.06 0.858

Impact fibre content hydrolysis rate

(Claudia Pabon, PhD thesis, 2009)

(EU-Cropgen)

Batch digestion:

ln(P/P0)= -kh.t

Page 17: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

17

CSTR; hydrolysis is rate limiting; COD: 100g/l; BMP=80%

Impact hydrolysis rate on CH4

production at fixed SRT/HRT

Effect hydrolyis rate on CH4-production

0

5

10

15

20

25

0 20 40 60 80 100 120

HRT (days)

CH

4-p

rod

ucti

on

(m

3/m

3)

kh=0,05/daykh=0,2/dayBMP

G. Zeeman, WUR

CSTR digestion:

(P0-P)/P= kh.SRT

Page 18: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

18

Observed problems in industrial

scale digesters:

• Less biogas than expected

• Production of non-stabilised digestates

• pH drops with energy rich substrates

• High effluent VFAs

ΔCH4 /Δt determined by BMP of substrate and SMA of methanogenic

biomass. Possible retardation caused by:

- inadequate mixing (drop in SMA)

- substrate overloading (drop in SMA)

- presence of refractory fibres (drop in BMP)

- inhibition of hydrolysis step (drop in BMP)

Angelidaki (2005): evaluation of 18 centralised scale biogas plants:

A large residual CH4 potential remains in main reactor…

Page 19: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

19

Pretreatment of lignocellulose

Improved AD by pre-treating lignocellulosic biomass

- Improved accessibility of (hemi-)cellulose (higher BMP)

- Digestion of additional intermediates formed during pre-treatment (VFA,

aldehydes)

- Possibility to apply AD at high solid concentrations; no product inhibition.

Figure 1: Bonding of cellulose, hemicellulose and lignin (Keeton

et al., 1994)

(e.g. Moisier et al, 2005)

Thermo-chemical

Page 20: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

20

A novel approach for bio-methanation

of agro-industrial residues:

Enzymatic pretreatment and subsequent high-rate bio-

methanation in EGSB reactors

Hydrolysis Simple

organic

compounds

Enzyme

addition

BSG = Brewer’s spent grain

BSG hydrolysate:

85 g COD/L!

15-20 g sugars/L

Haoyu et al., 2013, 2014

Page 21: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

21

Start-up of EGSB reactor with pre-

hydrolysed BSG: risk of overloading!

VFA accumulation, sludge wash-out

Haoyu et al., 2013, 2014

Page 22: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

22

Two-stage versus one-stage BSG

methanation: granule conservation

• HRT: 8h

• pH: 4.3~4.9

Influent

Pre-acidification

tank

Recyclin

g

Effluent

EGSB

Influent

One-stage, Day 16

One-stage, Day 55

One-stage, Day 70

Two-stage, Day 16

Two-stage, Day 55

Two-stage, Day 70

Haoyu et al., 2013, 2014

Page 23: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

23

End of One-stage

Two-stage versus one-stage BSG

methanation: max. OLR 5-7 times CSTR

loading capacities

Haoyu et al., 2013, 2014

Page 24: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

24

Sugar VF

A

CH4 Fibre

H A M

lignin

cellulose

Hemi-

cellulose

Hydrolysis rate assessed by analysing

fermentation products and biogas

Hydrolysis inhibition causing

disappointing CSTR performances?

Page 25: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

25

0

2

4

6

8

10

12

14

16

18

20

9 10 11 12

HRT (days)

Hyd

roly

sis

(%)

Cow manure

0

2

4

6

8

10

12

14

16

18

20

0 1000 2000 3000 4000 5000 6000

NH4 (mg N/l)

Hyd

roly

sis

(%

)

1000 mg NH4+-N >4000 mg NH4

+-N

Hydrolysis at different NH4+-N

manure digestion in CSTR systems (mesophilic)

HRT = 10 days

(Zeeman,1991)

Page 26: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

26

Lipid hydrolysis rates in relation to

NH4+

0

20

40

60

80

100

0 1 2 3 4

Time (days)

H (%

)

2000 mg NH4+-N 7000 mg NH4

+-N

Digestion of Tributyrin at

varying [NH4+]

Increase of [NH4+] did not

decrease hydrolysis rate

Page 27: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

27

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

Inert dissolved COD (mg/l)

Hyd

roly

sis

(%

)

Cow manure HRT 10 days

Pig manure 1 HRT 15 days

Pig manure 2 HRT 10 days

Pig manure 2 HRT 15 days

Relation between inert dissolved COD

and Hydrolysis?

Ligno-cellulosic

biomass

limiting

hydrolysis??

Page 28: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

28

What are humic compounds: humic acids (HA) and fulvic

acids (FA)? End product of the biological decay of biota residues

• Hardly degradable organic acids

• Behave like weak polyelectrolytes

• HA higher MW than FA

• HA soluble at pH > 3.5

• FA soluble at all pH

(Engebretson & Wandruszka, 1994)

(Schulten and Schnitzer,1993) C308H328O90N5

MW = 5540Da

A closer look to humic compounds:

Page 29: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

29

Reactivity of humic compounds? - Bind cations and other molecules

- Oxygen containing functional groups responsible for reactivity

O

OH R

OH

OH

OH

O

O

O

O

OH

O

R’ R O R R`

Phenolic & Carboxyl

Main source of binding

Humic compounds’ reactive groups:

Page 30: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

30

Humic & Fulvic acids extraction

Fresh cow manure silage energy maize

HA FA

Fernandes et al., 2010

Page 31: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

31

-1

1

3

5

7

0 25 50 75 100 125 150Time (hours)

Hy

dro

lysi

s (%

)

0 g/l

0.5 g/l

1 g/l

2.5 g/l

5 g/l

HA manure

-1

1

3

5

7

0 50 100 150 200 250Time (hours)

Hy

dro

lysi

s (%

)

0 g/l

0.5 g/l

1 g/l2.5 g/l

5 g/l

HA maize

Cellulose Hydrolysis

Humic Acids affecting cellulose hydrolysis

Results:

Fernandes et al., 2010 - Cellulases

- Fibrobacter succinogenes

- pH = 7

Page 32: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

32

-1

1

3

5

7

0 25 50 75 100 125 150 175 200

Time (hours)

Hy

dro

lysi

s (%

)

0 g/l

0.5 g/l1 g/l

2.5 g/l5 g/l

FA manure

-1

1

3

5

7

0 5 10 15 20 25Time (hours)

Hyd

roly

sis

(%)

0 g/l0.5 g/l1 g/l2.5 g/l5 g/l

FA maize

Cellulose Hydrolysis

Fulvic Acids affecting cellulose hydrolysis

Results:

Fernandes et al., 2010

Page 33: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

33

0

20

40

60

80

100

0 10 20 30 40 50Time (hours)

Hyd

roly

sis

(%)

0 g/l

0.5 g/l

1 g/l

2.5 g/l

5 g/l

HA manure

0

20

40

60

80

100

0 25 50 75 100 125Time (hours)

Hy

dro

lysi

s (%

)

0 g/l 0.5 g/l

1 g/l 2.5 g/l

5 g/l

HA maize

Tributyrin Hydrolysis

Humic Acids affecting tributyrin hydrolysis

Results:

Fernandes et al., 2010

Page 34: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

34

What is the possible effect?

C

O

O-

O-

enzyme

cellulose

Ca 2+ Ca2+

- Cellulolytic enzymes scavenged by reactive functional

groups of humic substances (hydrolysis inhibition)

- Bivalent cations (Ca2+) mitigate inhibiting effect ? (Brons et

al., 1985; Ladd & Butler, 1970)

Effect of humic compounds on the

hydrolysis of lignocellulosic biomass?

Page 35: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

35

How humic acid interfere cellulolytic

activity? (current research)

May Inhibit

Microbial Activity

May Inhibit Enzymatic

Activity

May Inhibit Functional

Gene Expression

May cover substrate to prevent microbial adhesion

Only hydrolysis? or more methanogenic subpopulations??

Page 36: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

36

Turning biomass energy into a

gaseous fuel:

Page 37: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

37

Na+ (CH3COO-)

CH4 HCO3

-

CO2

Na+

CO32-

Long live Henry’s law!!

Autogenerative high pressure digestion

(AHPD): Integrate biogas upgrading with

digestion in a single step

r = % of non-dissolved biogas

n = stoichiometric coefficient

P in bar

R = 8.3145*10-2 L Bar K-1mol-1

4 2( )* * *( )

lr

t l

VP nCH nCO R T

V V

Ralph Lindeboom, PhD thesis, 2014

Page 38: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

38

Pre

ssure

(bar)

4

0

5

10

15

20

25

30

0 20 40 60 80 100 120

hours

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

Pressure pH

Which pressures are needed?

Lindeboom et al, 2012

Production of high pressure CH4 gas:

- Negligible water vapor

- Little CO2 (> 5 bar < 10%)

- Little if any H2S

- Injection in gas grid ? !!

Page 39: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

39

Pre

ssure

(bar)

4

0

5

10

15

20

25

30

0 20 40 60 80 100 120

hours

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

Pressure pH

With active inoculum:

- 30 bars within few days

- Methanogenesis up to 100 bar!

Which pressures are needed?

Lindeboom et al, 2012

Production of high pressure CH4 gas:

- Negligible water vapor

- Little CO2 (> 5 bar < 10%)

- Little if any H2S

- Injection in gas grid ? !!

Page 40: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

40

Pre

ssure

(bar)

4

0

5

10

15

20

25

30

0 20 40 60 80 100 120

hours

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

Pressure pH

With active inoculum:

- 30 bars within few days

- Methanogenesis up to 100 bar!

Which pressures are needed?

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

Time (h)

Pre

ss

ure

(b

ar)

NaAc as feed

Lindeboom et al, 2012

Production of high pressure CH4 gas:

- Negligible water vapor

- Little CO2 (> 5 bar < 10%)

- Little if any H2S

- Injection in gas grid ? !!

Page 41: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

41

Limiting factor: acidification (CO2)…

• Digestion of neutral, non-acidified compounds: pH ↓ • C6H12O6 + 2H2O 2CH3COO- + 2H+ + 4H2 + 2CO2

• VFA production and CO2 accumulation both lowers pH!

‘normal pH range CH4

production: 6-8 !’

pCO2 acidification

VFA acidification

Lindeboom et al, 2012, 2013

Page 42: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

42

pH control using natural minerals

In-situ mineral

weathering

No need for NaOH dosing!

Wollastonite:

CaSiO3

Olivine:

Mg1.8Fe0.16Ni0.04SiO4

Lindeboom et al, 2013

4

5

6

7

8

0 24 48 72 96 120 144

pH

Time (h)

Page 43: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

43

Addition of silicate minerals

88% CH4 + 12% CO2

50% CH4+ 50% CO2

Acetic acid

Glucose

CaSiO3(s)

Ca2+ + SiO2

CaCO3(s)

-H+

-CO2

Lindeboom et al, 2013

Page 44: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

44

- influent feed pomp? - ΔP for membrane processes - ‘free’ injection in gas grid - etc.

Zagt et al., H2O, 2010-4

Pressure as additional energy source?

Page 45: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

45

Conclusions

Maximising BMP requires better understanding hydrolysis

Cellulolytic and methanogenic (?) activity retarded by humic compounds

High pressure digestion technological feasible for biogenic CH4 production

AD technology world wide accepted for biomass energy recovery

Thanks for your attention!!

Page 46: Biomass Energyfiema-2014.augustoandrade.com/2014/arquivos/congresso4.pdf · Methane yield (m3 CH 4 /ton ww) Slaughterhouse waste 0.57 150 OFMSW 0.5-0.6 100-150 Energy crops 0.30-0.50

46

Acknowledgement

Claudia Pabon

Ralph Lindeboom

Tania Fernandes

Grietje Zeeman

Environmental Technology Lettinga Associates

Fondation

The TU Delft Group: