26
Drug Authentication & Preformulation Study

biopharmaceutical optimization of some bcs class-ii drugs

Embed Size (px)

Citation preview

Page 1: biopharmaceutical optimization of some bcs class-ii drugs

Drug Authentication &

Preformulation Study

Page 2: biopharmaceutical optimization of some bcs class-ii drugs
Page 3: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 86

5.1.Drug Authentication:

5.1.1.Certificate of Analysis :

Page 4: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 87

Page 5: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 88

Page 6: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 89

Page 7: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 90

5.1.2. Identification and authentication of Macrolide antibiotics:

5.1.2.1. Differential scanning calorimetric studies:

Differential scanning calorimetric (DSC) analyses of the samples were carried out by using

differential scanning calorimeter equipped with computer analyzer (Shimadzu TA –60

differential scanning calorimeter, Shimadzu Corporation, Kyoto, Japan). Samples (of 3-7 mg)

were heated under nitrogen atmosphere on an aluminum pan at a heating rate of 10 °C/min

over the temperature range of 20-350 oC.

Azithromycin

Figure:5.1.DSC spectra of Azithromycin.

Clarithromycin:

Figure:5.2.DSC spectra of Clarithromycin.

Page 8: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 91

Roxithromycin:

Figure:5.3.DSC spectra of Roxithromycin.

Erythromycin:

Figure:5.4.DSC spectra of Erythromycin.

Page 9: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 92

5.1.2.2. FTIR Spectra of macrolide antibiotics:

FTIR spectra of the macrolide antibiotics were recorded on Shimadzu FT IR – 8400

spectrophotometer. Potassium bromide pellet method was employed and background

spectrum was recorded under identical situation. Each spectrum was derived from single

average scans collected in the region 400 – 4000 cm-1

at spectral resolution of 2 cm-2

and

ratioed against background interferogram. Spectra were analyzed by software supplied by

Shimadzu.

Azithromycin:

40060080010001200140016001800200024002800320036004000

1/cm

10

20

30

40

50

60

70

80

90

100

%T

3564

.57

3522

.13

3495

.13

3473

.91

3282

.95

3257

.88

3227

.02

3211

.59

3174

.94

3163

.36

3140

.22

3126

.71

3107

.43

3090

.07

3066

.92

2968

.55

2937

.68

2897

.18

2875

.96

2829

.67

2783

.37

2739

.01

2625

.21

2573

.13

2557

.69

2548

.05

2528

.76

2488

.26

2449

.68

2359

.02

2341

.66

2278

.01 21

79.6

321

31.4

120

77.4

020

40.7

620

17.6

119

90.6

019

57.8

119

40.4

5

1907

.66

1770

.71

1726

.35

1647

.26

1516

.10

1456

.30

1435

.09

1377

.22

1346

.36

1332

.86

1315

.50

1273

.06

1255

.70

1182

.40

1165

.04

1091

.75

1053

.17

1033

.88

995.

3098

1.80 95

8.65

900.

79

856.

4283

5.21

794.

7077

1.55

761.

9172

5.26

700.

1864

8.10

636.

5361

7.24

570.

95 540.

0952

4.66

509.

2249

1.86

476.

4343

4.00

420.

50

Azi 8-Azi Figure:5.5.FTIR spectra of Azithromycin.

Clarithromycin:

40060080010001200140016001800200024002800320036004000

1/cm

0

10

20

30

40

50

60

70

80

90

100

%T

3225

.09

3147

.93

2978

.19

2966

.62

2939

.61

2922

.25

2906

.82

2895

.25

2875

.96

2833

.52

2794

.95

2779

.52

2359

.02

2341

.66

1732

.13

1724

.42

1689

.70

1458

.23

1421

.58

1400

.37

1377

.22

1354

.07

1319

.35

1278

.85

1255

.70 12

44.1

3

1172

.76

1107

.18

1085

.96

1068

.60

1051

.24

1033

.88

1010

.73

1001

.09

977.

9496

2.51

933.

58

893.

0784

2.92

632.

6761

7.24

582.

52 557.

45

491.

86

461.

00

Clari Figure:5.6.FTIR spectra of Clarithromycin.

Page 10: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 93

Roxithromycin:

40060080010001200140016001800200024002800320036004000

1/cm

0

10

20

30

40

50

60

70

80

90

100

%T

3954

.20

3936

.84

3909

.84

3890

.55

3851

.97

3830

.76

3794

.11

3743

.96

3715

.02

3688

.02

3668

.73

3655

.23

3645

.58

3612

.79

3556

.85

3398

.69

3356

.25

3335

.03

3221

.23

3207

.73

3153

.72

2980

.12

2968

.55

2949

.26

2879

.82

2829

.67

2359

.02

2341

.66

2195

.07

1726

.35

1450

.52 13

86.8

613

69.5

0

1344

.43

1329

.00

1174

.69

1145

.75

1128

.39

1112

.96

1074

.39

1051

.24

1012

.66

983.

7395

8.65

914.

29

891.

14

ROX Figure:5.7.FTIR spectra of Roxithromycin.

Erythromycin:

40060080010001200140016001800200024002800320036004000

1/cm

20

30

40

50

60

70

80

90

100

%T

3524

.06

2972

.40

2941

.54

2918

.40

2879

.82

2827

.74

2359

.02

2341

.66

1714

.77

1705

.13

1456

.30

1375

.29

1348

.29

1329

.00 13

17.4

312

82.7

112

69.2

012

59.5

6 1238

.34

1192

.05

1170

.83

1163

.11

1141

.90

1109

.11

1085

.96

1062

.81

1051

.24

1031

.95

1008

.80

997.

2398

1.80

960.

5893

5.51

902.

72 889.

21

831.

35

698.

2568

0.89

648.

10

472.

58

459.

0741

8.57

Ery 8- ERY Figure:5.8.FTIR spectra of Erythromycin.

Page 11: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 94

5.1.2.3. Powder X-ray diffraction patterns of macrolide antibiotics:

Powder X-ray diffraction (PXRD) patterns were traced employing X-ray diffractometer

(Philips PW 1729, Analytical XRD, Holland) for the samples using Ni filtered CuK(α)

radiation (intensity ratio(α1/ α2): 0.500), a voltage of 40 KV, a current of 30 mA and

receiving slit of 0.2 inches. The samples were analyzed over 2 range of 5.010-39.990o with

scanning step size of 0.020 o (2 ) and scan step time of one second.

Azithromycin:

Figure:5.9. Powder X-ray diffraction (PXRD) patterns of Azithromycin.

Clarithromycin:

Figure:5.10. Powder X-ray diffraction (PXRD) patterns of Clarithromycin.

Page 12: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 95

Roxithromycin:

Figure:5.11. Powder X-ray diffraction (PXRD) patterns of Roxithromycin.

Erythromycin:

Figure:5.12. Powder X-ray diffraction (PXRD) patterns of Erythromycin.

Page 13: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 96

5.1.2.4. Particle shape of macrolide antibiotics by Scanning electron microscopy:

The surface topography and type of crystals of macrolide antibiotics were analyzed by using

a scanning electron microscopy.

Figure: 5.13. SEM of raw crystals of macrolide antibiotics.

5.1.3. Discussion:

Figure: 5.1, 5.2, 5.3 and 5.4 represent the DSC curve of Azithromycin, Clarithromycin,

Roxithromycin and Erythromycin respectively. The obtained DSC curve shows sharp

endothermic peak at 108.250C, 228.11

0C, 130.41°C and 196.30°C indicating its melting

points which was similar as mentioned in literature.

Figure 5.5, 5.6, 5.7 and 5.8 represent the FTIR spectra of Azithromycin, Clarithromycin,

Roxithromycin and Erythromycin respectively. The principal or characteristic FTIR peak of

Azithromycin (1721, 1188, 1052cm-1

.), Clarithromycin (1734, 1692, 1108, 1170, 1052cm-1

.),

Roxithromycin (2968 cm−1, 1726 cm−1) and Erythromycin (1715cm−1, 2968) have been

observed in their respective FTIR spectra indicating their chemistry and identification of

macrolide antibiotics.

Figure 5.9, 5.10, 5.11 and 5.12 represent the XRPD spectra of Azithromycin, Clarithromycin,

Roxithromycin and Erythromycin respectively.

Page 14: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 97

The observed XRPD spectra of macrolide antibiotics show the crystalline behavior of

macrolide antibiotics with intense and large number of peaks. According to the

characterization study of taken macrolide antibiotic it can be concluded that they shows

similar melting point, FTIR spectra and XRD peaks indicating their authentication and hence

use in present research work.

Figure: 5.13 represent the crystal shape of the used macrolide antibiotics in the present

research work. According to the SEM observation of macrolide antibiotics the obtained

shape of all macrolide antibiotics were irregular stone shaped.

Page 15: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 98

5.2. Preformulation study:

Preformulation studies are the first step in the rational development of dosage form of a drug

substance. The objective of preformulation studies is to develop a portfolio of information

about the drug substance, so that this information can be used to develop formulation.

Preformulation can be defined as investigation of physical and chemical properties of drug

substance alone and when combined with excipient.Preformulation investigations are

designed to identify those physicochemical properties of drug substances and excipients that

may influence the formulation design, method of manufacture, and pharmacokinetic-

biopharmaceutical properties of the resulting product(1).

Preformulation studies are multistep processes, which are essential to develop a safe and

effective drug product. Preformulation studies are designed to deliver the physicochemical

data of drug substances, excipients and packaging material either alone or in combinations1.

The ideal preformulation program gives a clue to the formulation scientist to select proper

excipients and facilitates for rapid development of a formulation. According to the Product

Quality Research Division (PQRD) of the US Food and Drug Administration (FDA), the goal

of preformulation is to “investigate critical physicochemical factors which assure identity,

purity of drug substances, formulatability, product performance and quality. Preformulation

commences when newly synthesized drug shows sufficient pharmacological activity in

animal models to warrant evaluation in man. Prior to starting preformulation studies, the

preformulation scientist should meet the principle investigator of drug development to obtain

known properties of the compound (2).

Steps involved in preformulation studies (3)

I. Physicochemical properties of the drug substance

• Solubility studies

• Salt screening

• pKa determination

• Partition coefficient, hydrophilicity and lipophilicity

• Crystallization studies (impact on amorphous state, particle shape, size and brittleness)

• Polymorphism studies – identification, screening, relative stability (enantiotropy/

monotropy), process design and scale-up to ensure robustness of the obtained polymorphic

form, dosage and method of mixture

II. Stability data

• Chemical stability (accelerated and stress studies)

• Thermal properties

• Hygroscopicity (storage conditions)

• Excipients and packaging compatibility studies

III. Early stage formulation

• Design composition and form according to specifications, dose and bioavailability

Page 16: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 99

5.2.1. Solubility study:

An excess amount of macrolide antibiotics (≈100mg) like Azithromycin, Clarithromycin,

Erythromycin and Roxithromycin was added separately in screw capped four test tubes with

fixed volume (20 ml) of distilled water. The resulting suspension was treated at room

temperature with 100 rpm in incubator shaker. Samples were with drawn after 48 hrs and

filtered through 0.2 filters. 5 ml of filtrate from dispersion of above macrolide antibiotics in

water after 48 hr was diluted to 60ml with 0.1N HCl, adjusted the pH 6 to 7 by adding 0.4M

NaOH solution and made up the volume up to 100ml with distilled water. Take 1ml form the

above solution diluted to 7 ml with the distilled water in 10 ml volumetric flask to it add

Eosin Y solution (4 X 10-3

M) For Azithromycin-0.5ml,Clarithromycin-

1.2ml,Roxithromycin-0.7ml and Erythromycin-0.7ml, mix then well to it added 1 ml 0.4M

acetate buffer (pH 3) adjust the volume up to 10ml with distilled water. The absorbance was

measured spectrophotometrically at 544.5nm, 542.5nm, 545nm, 547nm for Erythromycin,

Roxithromycin, Clarithromycin and Azithromycin respectively against an appropriate blank

prepared simultaneously. Solubility of azithromycin in different solvents was determined

either from the calibration graph or using the corresponding regression equation.

5.2.2. Density and Flowability:

The loose bulk density (LBD) and tapped bulk densities (TBD) were determined by using

Density apparatus (Serwell, Bangalore, India). The Carr’s index (%) and the Hausner’s ratio

were then calculated by using LBD and TBD. The angles of repose of drug powder were

assessed by fixed funnel method. The Carr index reflects the compressibility of the

agglomerates, and there is a correlation between the compressibility index and the flowability

of the spherical agglomerates. The angle of repose was measured by a fixed funnel method.

The results presented are mean value of three determinations (5).

5.2.3. Particle size distribution:

Size of the particle and their distributions was determined by simply sieve analysis. Now

with the help of Ro-Tap sieve shaker particle size analysis can be determined. In advance

technology image-analyzer is used to determined size and volume of the particle (6).

Procedure:

Sieve no. 22, 30, 60, 80,120 and 150 were used for paricle size distribution study. 10gm of

sample powder was placed on the top of upper sieve and shaker (Erweka vibration sieve

Erweka Apparatebau, Heusenstamm, Germany) was allowed to vibrate was 200 strokes/min

and the sieving time was 10 min. Fraction retained on each sieve was weighed and expressed

in mass percentages.

5.2.4. Drug-Excipients Compatibility Studies

Conventional pharmaceutical excipients at typical levels were selected for the manufacture of

recrystallized agglomerates and their tablet dosage form. Drug- Excipient compatibility

studies were performed using macrolide antibiotics and individual excipients. This study was

conducted to determine the possible interaction between the API and excipients in 1:5 ratio

(For Diluents) and 5: 1 ratio (for other excipients).Prepare the drug:excipient blends in the

mentioned ratio. The blends were stored at 40°C/75% RH and 60°C in glass vial. Samples

were analyzed for Description, drug content and water after 2 and 4 week time interval for

60°C and 40°C/75%RH. The results are summarized in the table: 5.2-5.9 (7).

Page 17: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 100

Table: 5.1. Physicochemical properties in preformulation study of Macrolide

antibiotics.

Sr.No Parameters Observation

ATM CTM RTM ETM

1 Solubility (mg/ml) 1.45 0.005 0.273 0.925

2 Bulk density (gm/ml) 0.518 0.585 0.565 0.555

3 Tapped density (gm/ml) 0.688 0.755 0.715 0.735

4 Granular density (gm/ml) 0.676 0.735 0.785 0.715

5 True density (gm/ml) 0.785 0.856 0.887 0.846

6 Angle of Repose 40 39 40 40

7 Compressibility Index 24.7 22.5 22.1 24.5

8 Hausner’s Ratio 1.328 1.291 1.283 1.324

9 Water content 4.28 0.80 2.85 1.9

10 Melting Point: 113-115 217-220 115-125 190-192

11 Specific rotation(0) -46.5 -97.5 -95.5 -75.8

12 pH of the solution in water 9.7 8.5 8.7 8.8

13 LOD (%w/w) 2.5 2.8 2.7 2.5

11 Particle size distribution % Commulative Retained on sieve

#22 00 00 0 00

#30 00 00 0 00

#60 0.6 03 31.1 7.1

#80 8.6 16.75 50.3 20.6

#120 48.6 53 66.6 54.9

#150 73.6 68.5 96.0 67.7

Below #150 26.4 31.5 4.0 32.3

Page 18: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 101

Table: 5.2. Drug excipients compatibility study in glass vials at 600C. (Azithromycin)

Sr.No Drug + Excipient Ratio

Glass vials (600C ± 2

0C)

Initial 2 Weeks 4 Weeks

Assay W C Assay WC Assay W C

1. Azithromycin ---- 98 4.28 97 4.20 98 4.0.5

2. Azithromycin + Lactose 1: 5 97 4.38 97 4.35 95 4.15

3. Azithromycin + DCP 1: 5 98 3.60 97 3.65 98 3.55

4. Azithromycin + PGS 1 : 5 96 6.20 96 6.54 96 6.89

5. Azithromycin + MCC 1 : 5 97 4.75 97 4.65 97 4.72

6. Azithromycin + CCS 5:1 98 3.92 97 4.10 97 4.17

7. Azithromycin + Mg.St 5 : 1 98 3.90 99 4.10 98 4.19

8. Azithromycin + SLS 5 : 1 96 3.30 96 3.68 96 3.90

9. Azithromycin + TiO2 5 : 1 98 4.50 98 4.35 97 4.45

10 Azithromycin + HPC 5 : 1 97 5.24 96 5.65 97 6.15

11 Azithromycin + PVP 5 : 1 96 5.63 95 5.95 96 6.35

12 Azithromycin + PEG 5 : 1 97 5.24 97 6.25 97 6.75

13 Azithromycin + Aerosil 5 : 1 98 4.85 98 4.66 98 4.57

14 Azithromycin + Stearic acid 5 : 1 97 4.21 97 4.60 97 4.15

15 Azithromycin Talc 5 : 1 95 4.30 95 4.25 95 4.15

16 Azithromycin + Carbopol 5 : 1 96 4.37 96 4.50 97 4.70

17 Azithromycin + GM 5 : 1 97 3.90 97 3.85 97 3.90

18 Azithromycin + Silica 5: 1 96 5.65 96 5.75 96 5.78

19 Azithromycin + EC 5 : 1 95 4.40 95 4.75 95 4.44

20 Azithromycin + HPMC 5 : 1 96 4.85 96 4.65 98 4.56

21 Azithromycin + Eudragit 5 : 1 97 4.37 96 4.40 97 4.25

Page 19: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 102

Table: 5.3. Drug excipients compatibility study in glass vials at 400C + 75% RH.

(Azithromycin)

Sr.No Drug + Excipient Ratio

Glass vial (400C Temp + 75% RH)

Initial 2 Weeks 4 Weeks

Assay W C Assay WC Assay W C

1. Azithromycin ---- 98 4.28 96 4.40 96 4.65

2. Azithromycin + Lactose 1: 5 97 4.38 97 4.55 95 4.85

3. Azithromycin + DCP 1: 5 98 3.60 96 3.70 96 3.88

4. Azithromycin + PGS 1 : 5 96 6.20 96 6.85 96 7.15

5. Azithromycin + MCC 1 : 5 97 4.75 97 4.95 97 5.20

6. Azithromycin + CCS 5:1 98 3.92 97 4.25 97 4.35

7. Azithromycin + Mg.St 5 : 1 98 3.90 96 4.20 96 4.35

8. Azithromycin + SLS 5 : 1 96 3.30 96 3.68 96 4.15

9. Azithromycin + TiO2 5 : 1 98 4.50 97 4.65 97 4.80

10 Azithromycin + HPC 5 : 1 97 5.24 97 5.85 96 6.10

11 Azithromycin + PVP 5 : 1 96 5.63 97 6.25 97 6.65

12 Azithromycin + PEG 5 : 1 97 5.24 97 5.68 97 7.25

13 Azithromycin + Aerosil 5 : 1 98 4.85 98 4.90 97 4.85

14 Azithromycin + Stearic acid 5 : 1 97 4.21 97 4.35 97 4.50

15 Azithromycin Talc 5 : 1 95 4.30 95 4.45 95 4.65

16 Azithromycin + Carbopol 5 : 1 96 4.37 95 4.55 95 4.96

17 Azithromycin + GM 5 : 0.5 97 3.90 97 4.15 96 4.25

18 Azithromycin + Silica 5: 0.5 96 5.65 96 6.10 96 6.50

19 Azithromycin + EC 5 : 1 95 4.40 95 4.85 95 4.95

20 Azithromycin + HPMC 5 : 1 96 4.85 96 5.25 95 6.55

21 Azithromycin + Eudragit 5 : 1 97 4.37 97 4.60 97 4.75

Page 20: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 103

Table: 5.4. Drug excipients compatibility study in glass vials at 600C: (Clarithromycin)

Sr.No Drug + Excipient Ratio

Glass vials (600C ± 2

0C)

Initial 2 Weeks 4 Weeks

Assay W C Assay WC Assay W C

1. Clarithromycin ---- 97.0 0.80 96.0 0.75 96.0 0.72

2. Clarithromycin + Lactose 1: 5 96.0 4.18 95.0 4.10 95.0 4.15

3. Clarithromycin + DCP 1: 5 96.0 3.45 94.0 3.40 95.0 3.30

4. Clarithromycin + PGS 1 : 5 95.0 5.90 95.0 6.10 95.0 6.25

5 Clarithromycin + MCC 1 : 5 97.0 4.25 95.0 4.20 94.0 4.15

6. Clarithromycin + CCS 1 : 5 95.0 1.35 94.0 1.20 94.0 1.15

7. Clarithromycin + Mg.St 5 : 1 98.0 1.15 96.0 1.10 95.0 1.05

8. Clarithromycin + SLS 5 : 1 97.0 1.45 96.0 1.34 96.0 1.30

9. Clarithromycin + TiO2 5 : 1 96.0 1.10 95.0 1.15 94.0 1.00

10 Clarithromycin + HPC 5 : 1 96.0 1.98 96.0 3.45 94.0 2.40

11 Clarithromycin + PVP 5 : 1 95.0 2.15 95.0 2.25 94.0 2.35

12 Clarithromycin + PEG 5 : 1 97.0 1.50 95.0 1.34 95.0 1.15

13 Clarithromycin + Aerosil 5 : 1 97.0 1.45 96.0 1.40 95.0 1.25

14 Clarithromycin + Stearic

acid 5 : 1 96.0 0.95 95.0 1.15 95.0 1.25

15 Clarithromycin Talc 5 : 1 98.0 1.50 96.0 1.45 95.0 1.15

16 Clarithromycin + Carbopol 5 : 1 96.0 1.37 95.0 1.45 95.0 1.55

17 Clarithromycin + GM 5 : 1 97.0 1.22 96.0 1.32 95.0 1.40

18 Clarithromycin + Silica 5:1 98.0 2.85 96.0 2.65 96.0 2.60

19 Clarithromycin + EC 5 : 1 96.0 1.30 96.0 1.25 94.0 1.15

20 Clarithromycin + HPMC 5 : 1 95.0 1.15 95.0 1.05 95.0 1.35

21 Clarithromycin + Eudragit 5 : 1 97.0 1.80 96.0 1.85 95.0 1.90

Page 21: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 104

Table: 5.5. Drug excipients compatibility study in glass vials at 400C + 75% RH

(Clarithromycin)

Sr.No Drug + Excipient Ratio

Glass vial (400C Temp + 75% RH)

Initial 2 Weeks 4 Weeks

Assay W C Assay Desc Assay W C

1. Clarithromycin ---- 97.0 0.80 95.0 1.10 95.0 1.15

2. Clarithromycin + Lactose 1: 5 96.0 4.18 96.0 4.30 95.0 4.75

3. Clarithromycin + DCP 1: 5 96.0 3.45 95.0 3.65 95.0 3.70

4. Clarithromycin + PGS 1 : 5 95.0 5.90 95.0 6.30 94.0 6.55

5 Clarithromycin + MCC 1 : 5 97.0 4.25 96.0 4.35 96.0 4.50

6. Clarithromycin + CCS 1 : 5 95.0 1.35 95.0 1.40 94.0 1.45

7. Clarithromycin + Mg.St 5 : 1 98.0 1.15 97.0 1.25 95.0 1.30

8. Clarithromycin + SLS 5 : 1 97.0 1.45 95.0 1.54 95.0 1.70

9. Clarithromycin + TiO2 5 : 1 96.0 1.10 95.0 1.25 95.0 1.30

10 Clarithromycin + HPC 5 : 1 96.0 1.98 95.0 2.45 95.0 3.40

11 Clarithromycin + PVP 5 : 1 95.0 2.15 94.0 2.55 94.0 2.75

12 Clarithromycin + PEG 5 : 1 97.0 1.50 96.0 1.74 96.0 2.15

13 Clarithromycin + Aerosil 5 : 1 97.0 1.45 96.0 1.60 96.0 1.75

14 Clarithromycin + Stearic

acid 5 : 1 96.0 0.95 95.0 1.25 95.0 1.45

15 Clarithromycin Talc 5 : 1 98.0 1.50 97.0 1.65 97.0 1.85

16 Clarithromycin + Carbopol 5 : 1 96.0 1.37 96.0 1.55 95.0 1.45

17 Clarithromycin + GM 5 : 1 97.0 1.22 97.0 1.42 96.0 1.70

18 Clarithromycin + Silica 5:1 98.0 2.85 97.0 3.25 95.0 3.35

19 Clarithromycin + EC 5 : 1 96.0 1.30 96.0 1.65 95.0 1.95

20 Clarithromycin + HPMC 5 : 1 95.0 1.15 95.0 1.35 95.0 1.85

21 Clarithromycin + Eudragit 5 : 1 97.0 1.80 96.0 1.95 96.0 2.20

Page 22: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 105

Table: 5.6. Drug excipients compatibility study in glass vials at 600C. (Roxithromycin)

Sr.No Drug + Excipient Ratio

Glass vials (600C ± 2

0C)

Initial 2 Weeks 4 Weeks

Assay W C Assay Desc Assay W C

1. Roxithromycin ---- 98.0 2.85 97 2.72 97 2.65

2. Roxithromycin + Lactose 1: 5 97.0 4.48 97.0 4.35 96.0 4.25

3. Roxithromycin + DCP 1: 5 97.0 4.25 96.0 4.15 95.0 3.90

4. Roxithromycin + PGS 1 : 5 97.0 6.40 96.0 6.25 95.0 6.15

5. Roxithromycin + CCS 1 : 5 98.0 4.85 97.0 4.65 97.0 4.60

10 Roxithromycin + MCC 1 : 5 98.0 4.70 96.0 4.65 95.0 4.50

6. Roxithromycin + Mg.St 5 : 1 97.0 3.25 97.0 3.15 96.0 3.10

7. Roxithromycin + SLS 5 : 1 98.0 3.85 96.0 3.54 97.0 3.20

8. Roxithromycin + TiO2 5 : 1 97.0 2.85 95.0 2.75 95.0 2.60

9. Roxithromycin + HPC 5 : 1 97.0 3.25 95.0 3.15 95.0 3.25

11 Roxithromycin + PVP 5 : 1 98.0 3.45 96.0 3.25 95.0 3.15

12 Roxithromycin + PEG 5 : 1 98.0 3.45 97.0 3.24 97.0 3.15

13 Roxithromycin + Aerosil 5 : 1 97.0 3.25 95.0 3.20 95.0 3.10

14 Roxithromycin + Stearic

acid 5 : 1 97.0 2.95 96.0 2.85 95.0 2.75

15 Roxithromycin Talc 5 : 1 97.0 3.48 96.0 3.25 95.0 3.15

16 Roxithromycin + Carbopol 5 : 1 97.0 3.37 96.0 3.25 95.0 3.15

17 Roxithromycin + GM 5 : 0.5 97.0 2.95 96.0 2.90 96.0 2.70

18 Roxithromycin + Silica 5: 0.5 98.0 2.95 97.0 2.90 97.0 2.85

19 Roxithromycin + EC 5 : 1 96.0 2.80 96.0 2.75 95.0 2.60

20 Roxithromycin + HPMC 5 : 1 97.0 3.15 96.0 3.35 95.0 3.15

21 Roxithromycin + Eudragit 5 : 1 97.0 3.40 96.0 3.35 95.0 2.20

Page 23: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 106

Table: 5.7. Drug excipients compatibility study in glass vials at 400C + 75% RH:

(Roxithromycin)

Sr.No Drug + Excipient Ratio

Glass vial (400C Temp + 75% RH)

Initial 2 Weeks 4 Weeks

Assay W C Assay Desc Assay W C

1. Roxithromycin ---- 98.0 2.85 97 2.72 97 2.65

2. Roxithromycin + Lactose 1: 5 97.0 4.48 97.0 4.55 98.0 4.95

3. Roxithromycin + DCP 1: 5 97.0 4.25 96.0 4.35 95.0 4.70

4. Roxithromycin + PGS 1 : 5 97.0 6.40 96.0 6.65 96.0 6.85

5. Roxithromycin + CCS 1 : 5 98.0 4.85 97.0 5.15 97.0 5.30

10 Roxithromycin + MCC 1 : 5 98.0 4.70 96.0 4.95 96.0 5.15

6. Roxithromycin + Mg.St 5 : 1 97.0 3.25 97.0 3.45 96.0 3.80

7. Roxithromycin + SLS 5 : 1 98.0 3.85 96.0 4.20 97.0 4.35

8. Roxithromycin + TiO2 5 : 1 97.0 2.85 96.0 3.15 95.0 3.45

9. Roxithromycin + HPC 5 : 1 97.0 3.25 96.0 3.45 96.0 3.75

11 Roxithromycin + PVP 5 : 1 98.0 3.45 96.0 3.75 96.0 3.95

12 Roxithromycin + PEG 5 : 1 98.0 3.45 97.0 3.64 96.0 3.85

13 Roxithromycin + Aerosil 5 : 1 97.0 3.25 96.0 3.35 96.0 3.67

14 Roxithromycin + Stearic

acid 5 : 1 97.0 2.95 95.0 3.15 94.0 3.45

15 Roxithromycin Talc 5 : 1 97.0 3.48 96.0 3.65 96.0 3.98

16 Roxithromycin + Carbopol 5 : 1 97.0 3.37 95.0 3.68 95.0 4.10

17 Roxithromycin + GM 5 : 0.5 97.0 2.95 96.0 3.20 95.0 3.45

18 Roxithromycin + Silica 5: 0.5 98.0 2.95 97.0 3.10 97.0 3.35

19 Roxithromycin + EC 5 : 1 96.0 2.80 95.0 2.95 95.0 3.40

20 Roxithromycin + HPMC 5 : 1 97.0 3.15 96.0 3.45 95.0 3.75

21 Roxithromycin + Eudragit 5 : 1 97.0 3.40 95.0 3.65 95.0 2.85

Page 24: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 107

Table: 5.8.Drug excipients compatibility study in glass vials at 600C. (Erythromycin)

Sr.No Drug + Excipient Ratio

Glass vials (600C ± 2

0C)

Initial 2 Weeks 4 Weeks

Assay W C Assay Desc Assay W C

1. Erythromycin ---- 98.0 1.9 97.0 2.0 97 2.1

2. Erythromycin + Lactose 1: 5 97.0 4.28 96.0 4.20 96.0 4.25

3. Erythromycin + DCP 1: 5 96.0 3.65 95.0 3.45 95.0 3.50

4. Erythromycin + PGS 1 : 5 97.0 6.00 96.0 5.80 95.0 5.75

5. Erythromycin + CCS 1 : 5 97.0 4.45 96.0 4.35 96.0 4.40

6. Erythromycin + MCC 1 : 5 98.0 4.40 97.0 4.35 95.0 4.25

7. Erythromycin + Mg.St 5 : 1 97.0 2.25 96.0 2.15 96.0 2.10

8. Erythromycin + SLS 5 : 1 98.0 2.45 97.0 2.54 97.0 2.70

9. Erythromycin + TiO2 5 : 1 97.0 2.10 95.0 2.25 95.0 2.30

10 Erythromycin + HPC 5 : 1 96.0 2.98 95.0 2.45 95.0 2.40

11 Erythromycin + PVP 5 : 1 97.0 2.85 96.0 2.75 94.0 2.60

12 Erythromycin + PEG 5 : 1 98.0 2.90 97.0 2.74 96.0 2.45

13 Erythromycin + Aerosil 5 : 1 97.0 2.75 96.0 2.60 96.0 2.70

14 Erythromycin + Stearic acid 5 : 1 97.0 1.95 95.0 1.85 95.0 1.75

15 Erythromycin Talc 5 : 1 97.0 2.80 96.0 2.65 96.0 2.85

16 Erythromycin + Carbopol 5 : 1 97.0 2.37 96.0 2.55 95.0 2.45

17 Erythromycin + GM 5 : 0.5 97.0 1.95 97.0 1.90 96.0 1.70

18 Erythromycin + Silica 5: 0.5 98.0 2.95 97.0 2.90 97.0 2.85

19 Erythromycin + EC 5 : 1 96.0 2.30 96.0 2.25 95.0 2.20

20 Erythromycin + HPMC 5 : 1 97.0 2.15 96.0 2.35 96.0 2.15

21 Erythromycin + Eudragit 5 : 1 97.0 2.80 96.0 2.65 95.0 2.50

Page 25: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 108

Table: 5.9. Drug excipients compatibility study in glass vials at 400C + 75% RH.

(Erythromycin)

Sr.No Drug + Excipient Ratio

Glass vial (400C Temp + 75% RH)

Initial 2 Weeks 4 Weeks

Assay W C Assay Desc Assay W C

1. Erythromycin ---- 98.0 1.9 97.0 2.0 97 2.1

2. Erythromycin + Lactose 1: 5 97.0 4.28 97.0 4.55 96.0 4.85

3. Erythromycin + DCP 1: 5 96.0 3.65 96.0 3.85 95.0 4.20

4. Erythromycin + PGS 1 : 5 97.0 6.00 95.0 6.80 95.0 6.75

5. Erythromycin + CCS 1 : 5 97.0 4.45 96.0 4.85 95.0 5.25

10 Erythromycin + MCC 1 : 5 98.0 4.40 97.0 4.85 96.0 5.35

6. Erythromycin + Mg.St 5 : 1 97.0 2.25 97.0 2.65 96.0 2.90

7. Erythromycin + SLS 5 : 1 98.0 2.45 98.0 2.64 97.0 2.85

8. Erythromycin + TiO2 5 : 1 97.0 2.10 96.0 2.35 95.0 2.60

9. Erythromycin + HPC 5 : 1 96.0 2.98 95.0 3.40 96.0 3.75

11 Erythromycin + PVP 5 : 1 97.0 2.85 96.0 3.20 95.0 3.45

12 Erythromycin + PEG 5 : 1 98.0 2.90 97.0 3.34 97.0 2.67

13 Erythromycin + Aerosil 5 : 1 97.0 2.75 96.0 3.10 96.0 3.77

14 Erythromycin + Stearic acid 5 : 1 97.0 1.95 95.0 2.35 95.0 2.75

15 Erythromycin Talc 5 : 1 97.0 2.80 97.0 3.25 96.0 3.45

16 Erythromycin + Carbopol 5 : 1 97.0 2.37 96.0 2.55 95.0 2.85

17 Erythromycin + GM 5 : 0.5 97.0 1.95 97.0 2.35 95.0 2.70

18 Erythromycin + Silica 5: 0.5 98.0 2.95 96.0 3.25 97.0 3.50

19 Erythromycin + EC 5 : 1 96.0 2.30 96.0 2.68 95.0 2.90

20 Erythromycin + HPMC 5 : 1 97.0 2.15 97.0 2.85 96.0 3.15

21 Erythromycin + Eudragit 5 : 1 97.0 2.80 97.0 2.65 96.0 2.50

Page 26: biopharmaceutical optimization of some bcs class-ii drugs

Chapter 5: Drug authentication and Preformulation study

Direct tabletting and BA improvements of MA by spherical crystallization tech. 109

5.2.5. Discussion and Conclusion:

5.2.5.1. Physicochemical properties:

Table: 5.1 represent the evaluated physicochemical properties of Macrolide antibiotics. All

macrolide antibiotics show Compressibility Index in between 16-25, hausnar ratio above 1.2

and angle of repose around 40.The observed particle shape of all macrolide antibiotics by

Scanning electron microscopy shows irregular stone shaped crystals. The data obtained

indicate that the macrolide antibiotics used in the study have poor flowability. The saturation

solubility study shows that azithromycin is slightly more soluble in water comparative to

other macrolide antibiotics .The order of solubility of macrolide antibiotics is

ATM>ETM>RTM>CTM.The particle size distribution data revealed that above 60% of all

macrolide antibiotics were retained on sieve no #120. The other evaluation parameters like

water content, melting point, specific rotation, pH of the solution and LOD also complies

with the obtained CoA of respective macrolide antibiotics.

5.2.5.2. Drug excipients compatibility study: Figure: 5.2, 5.3 represent the azithromycin: excipients compatibility data in glass vials at

600C and 40

0C ± 75% RH respectively. Figure: 5.4, 5.5 represent the clarithromycin:

excipients compatibility data in glass vials at 600C and 40

0C ± 75% RH respectively. Figure:

5.6, 5.7 represent the roxithromycin: excipients compatibility data in glass vials at 600C and

400C ± 75% RH respectively. Figure: 5.8, 5.9 represent the erythromycin: excipients

compatibility data in glass vials at 600C and 40

0C ± 75% RH respectively. There was no

significant change observed in the description, water content and drug content in all the

samples at both the conditions. At 40°C/75% RH, higher level of water content was observed

which was also observed in API, indicates that API should be protected from higher

humidity. The observed data indicate that all the macrolide antibiotics used in the study are

compatible with the used inactive ingredients (excipients).

5.3. References: 1. www.pharmquest.com/source/ddg/steps/preclinical/preformulation/index.html.

2. www.chemspeed.com/index.php?path=markets_products/pharmaceuticals_agrochemi

cals/pre_formulation_studies.

3. C. Evelyne (2004) Preformulation and Formulation Development as Tools for a Good

Balance Between Time Constraints and Risks, Business Briefing, Pharma Tech, 2004,

1-4.

4. L. Leon and H.A. Lieberman. (1986) Preformulation In: The theory and practice of

industrial pharmacy, 3rd ed, Lea & Febiger, Philadelphia. p172.

5. VB Yadav, AV Yadav. Polymeric Recrystallized Agglomerates of Cefuroxime Axetil

Prepared by Emulsion Solvent Diffusion Technique, Tr. J. Pharma. Res. August 2009;

8 (4): 361-369.

6. Yadav VB1, Yadav AV, Comparative Tabletting behavior of Carbamazepine granules

with spherical agglomerated crystals prepared by spherical crystallization technique,

Int.J.ChemTech Res. Vol.1, No.3, pp 476-482, July-Sept 2009.

7. M.E.Aulton., Dosage form design and manufacture in Aultons pharmaceutics, the

design and manufacture of medicine, International third edition, Churchill

Livingstone, 2007.p.no-345-346.