47
Biosafety in the flow cytometry laboratory Phil Hogarth Flow Cytometry Manager PI Vaccine Immunology Team Animal & Plant Health Agency [email protected] ISAC Biosafety Commi�ee member 1 Courtesy of K Holmes,NIAID, NIH

Biosafety in the flow cytometry laboratory in the flow cytometry laboratory Phil Hogarth Flow Cytometry Manager PI Vaccine Immunology Team Animal & Plant Health Agency [email protected]

  • Upload
    lenhu

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

   Biosafety  in  the  flow  cytometry  laboratory  

Phil  Hogarth    Flow  Cytometry  Manager    

PI  Vaccine  Immunology  Team    Animal  &  Plant  Health  Agency  

[email protected]  ISAC  Biosafety  Commi�ee  member  

1  Courtesy  of  K  Holmes,NIAID,  NIH  

Who  am  I?  

  PI  Research  Group    Also  core  facility  manager  (2008)    Doing  Flow  for  17  years    Many  more  experienced  in  Flow  –  Audience    But,  been  working  with  TB  &  CL3  14  years  –  Responsible  for  Risk  Assessment  &  Biosafety  of  group  –  Including  core  facility  &  TB  mouse  house  

  Co-­‐opted    ISAC  Biosafety  Commi�ee  2011  

2  Courtesy  of  K  Holmes,NIAID,  NIH  

Outline  

  Why    Biosafety  background    Biosafety  &  cell  sor�ng    What  do  you  need  to  do?    Risk  Assessment      Sorters  in  BSC’s    Training/  Containment  Tes�ng  

3  Courtesy  of  K  Holmes,NIAID,  NIH  

Why?  2000-­‐2014  

>60  Laboratory  Acquired  Infec�ons  (www.biosafety.be/CU/LAI/Recent_LAI.html)  

Include:  Plague  (a�enuated!):  USA  2009,  Fatal  

Ebola:  Russia  2004  Fatal,2005;  Germany  2009,2011  Tularemia:  USA  2002,  2009,  2012  

TB,  E.  coli,  MRSA,  Meningi�s,  Brucella,  &  many  more  (if  you  can  think  of  it,  someone  has  caught  it  –  in  a  lab)  

Biosafety  must  be  an  integral  part  of  ANY  research!  

4  Courtesy  of  K  Holmes,NIAID,  NIH  

Laboratory  Acquired  Infec�ons  

From  Safe  Sor�ng:  Principles  and  Prac�ces,  Kevin  a.  Holmes,  Ph.D.,  NIAID,  NIH  

Laboratory  Procedure  hazards  and  LAI’s  5  routes  of  laboratory  transmission:  

1.  Self  inocula�ons:  syringe  needles/sharps  2.  Spills/splashes  on  skin  /  mucous  membranes  3.  Mouth  pipe�ng  4.  Animal  bites  &  scratches  5.  Inhala�on  exposure  to  infec�ous  aerosols  

  1-­‐4  account  for  <20%  of  LAI’s    The  cause  of  82%  of  LAI’s  are  unknown,    but  are  presumed  to  be  aerosols  

5  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  1  

  Biological  Agents,  HSE  defini�on:  ‘a  micro-­‐organism,  cell  culture,  or  …endoparasite,  whether  or  not  GM,  which  may  cause  infec�on…or  otherwise  create  a  hazard  to  human  health.’  

  Microbiological  agents  classified  into  Risk  Groups    Ability  to  infect  and  cause  disease    Virulence  (severity  of  disease)    Availability  of  preventa�ve  measures  and  effec�ve  treatments  

  UK  -­‐  Hazard  Groups  1-­‐4;  WHO,  USA,  Risk  groups  1-­‐4    HSE:  www.hse.gov.uk/biosafety/biologagents.pdf    CDC:  www.cdc.gov/od/ohs/bios�y/bmbl5/bmbl5toc.htm    WHO:  www.who.int/csr/resources/publica�ons/biosafety/Biosafety7.pdf?ua=1  

6  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  2  All  biological  agents  must  be  classified  

 in  1  of  4  Hazard  Groups    

Increasing  hazard  to  human  health  

Hazard  Group  1  

Hazard  Group  2  

Hazard  Group  3  

Hazard  Group  4  

Lab  containment  Level  1  

Lab  containment    Level  2  

Lab  containment    Level  3  

Lab  containment    Level  4  

7  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  3  So  how  do  we  deal  with  Microbiological  Agents?  Health  and  Safety  Legisla�on  –  HSE  &  COSHH1  

1  Control  of  Substances  Hazardous  to  Health  Regula�ons  2002  Source:  HSE  

Containment  &  Risk  Assessment:  central  components  of  legisla�on  

8  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  4  Dealing  with  Microbiological  Agents  

e.g.  Containment  Lab  AMS,  BSC  

Hierarchy  of  Control  

e.g.  Risk  Assessment  SOP  

Most  desirable  

Least  desirable  9  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  5  Engineering  control:  Containment  Laboratories  

10  Courtesy  of  K  Holmes,NIAID,  NIH  

Engineering    Instrument  design  (sort  chamber)    Aerosol  Management  (AMS)    Biological  Safety  Cabinet  (BSC)  

Biosafety  Background  6  Engineering  &  other  controls  

Contain    at  source  

PPE    Gloves,  Labcoat,  etc.    Respirator  (HSE  much  prefer  containment  at  source)  

11  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  7  Administra�ve  Controls  

 Risk  Assessment!    Standard  Opera�ng  Procedure  –  Instrument  specific  – Step  by  step,  describing:  

  Setup    Opera�on    Failure  (e.g.  Nozzle  clog)    Decontamina�on    Shutdown   12  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Background  9  Risk  Assessment  

5  Easy  steps  (slightly  different  in  UK  from  ISAC  standards)  

5.  Record,  REVIEW  &  Agree  Assessment  (with  Biosafety  unit)  

1.  Iden�fy  the  HAZARD  

2.  Iden�fy  the  Laboratory  PROCEDURES  

3.  Iden�fy  the  RISKS  

4.  Consider  appropriate  CONTROLS  

 What  is  going  to  Harm  you?  

is  going  to  harm  

 Likelihood  &  Severity  of  Harm  

is  going  to  harm    e.g.  CL  level,  BSC,  SOP,  Training,  Competence  going  to  harm  

13  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  &  Cell  Sor�ng  (finally!)  

OK,  I  can  hear  you:    What’s  this  got  to  do  with  sor�ng?    What’s  this  got  to  do  with  me?  

 

Sorters  produce  aerosols!  it’s  how  they  work  (you  know  that)  

14  Courtesy  of  K  Holmes,NIAID,  NIH  

Aerosol  Produc�on  by  Cell  Sorters  

  Cell  sorters  produce  aerosols  – ~50-­‐300  µm  drops  &  smaller  satellite  droplets  

  Depends  upon  nozzle  diameter,  pressure  &  DDF    Captured  by  collec�on  tubes  and  waste  drawer  

–  ‘…secondary  aerosols  of  various  and  undefined  droplet  sizes’  produced  during  failures  (clogs)    (ISAC  2007,  2014  Biosafety  standards)  

Satellite  droplets  

15  Courtesy  of  K  Holmes,NIAID,  NIH  

Characteriza�on  of  aerosols  by  Cell  Sorters:    Fail  Mode  

  Kevin  Holmes  at  NIH  (NIAID)  simulated  fail  mode  on  BD  FACSAria  (block  waste  collector)  

 

  Used  TSI  UV  Aerodynamic  Par�cle  Sizer  to  measure  aerosol  produc�on  

  Holmes,  K.L.  Cytometry  Part  A  2011:  79A,  p.  1000-­‐1008  

16  Courtesy  of  K  Holmes,NIAID,  NIH  

Characteriza�on  of  aerosols  by  Cell  Sorters:    Fail  Mode  

0.01  

0.1  

1  

10  

100  

1000  

0.5   5  

70  psi   35  psi   20  psi  

Aerodynamic  Diameter  (µµm)  

Concentra�on  (#/cm3)  

 

9.8x103/cm3  mean:  2.0  µm  

1.9x103/cm3    mean:  2.4  µm  

90/cm3    mean:  2.65  µm          

Range  of  alveolar  deposi�on  and  infec�vity  

From  Safe  Sor�ng:  Principles  and  Prac�ces,  Kevin  a.  Holmes,  Ph.D.,  NIAID,  NIH  17  Courtesy  of  K  Holmes,NIAID,  NIH  

Aerosols  and  Cell  Sorters:  Summary  

  Sorters  can  produce  high  concentra�ons  of  aerosols  –   70psi,  18000/cm3  aerosols  can  be  produced  in  fail  condi�on.  

–  These  aerosols  are  between  1-­‐3µm  aerodynamic  diameter    Higher  sheath  pressure  increases  concentra�on  and  decreases  size  

  Aerosols  in  this  size  range,  i.e.  1-­‐3µµm:  – May  remain  airborne  almost  indefinitely  – More  likely  to  deposit  in  lung  alveoli  –  Have  been  shown  to  be  associated  with  increased  infec�vity  of  some  organisms  

18  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  in  the  Cell  Sorter  Lab  What  do  I  need  to  do?  

  Follow  established  biosafety  principles    Develop  an  SOP  for  cell  sorter  opera�on    Use  resources:  – Biosafety  professionals  in  your  Ins�tu�on  – Published  Standards  

SSOORRTTEERR

19  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Principles  1  

  Two  basic  principles  of  biosafety  are  Containment  and  Risk  Assessment  

1.  Containment    Reduce  or  eliminate  exposure  of  lab  workers  and  outside  environment  to  poten�ally  hazardous  agents  

  Examples:  Biological  Safety  Cabinet,  centrifuge  cups,  Aerosol  Management  Systems  on  cell  sorters    Includes  standard  microbiological  prac�ces  and  procedures  

20  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  Principles  2  

2.  Risk  Assessment:    –  ‘an  ac�on  or  series  of  ac�ons  taken  to  recognize  or  iden�fy  hazards  and  to  measure  the  risk  or  probability  that  something  will  happen  because  of  that  hazard.’  

–  Responsibility  of  PI  together  with  biosafety  professionals  and  Ins�tu�on  Biosafety  Commi�ee  

  Requires  careful  judgment    Adverse  consequences  if  risks  are  underes�mated    Excessive  safeguards  –  Addi�onal  expense/procedure  with  li�le  safety  enhancement  – May  result  in  circumven�on  

21  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  

5  Easy  steps  (slightly  different  in  UK  from  ISAC  standards)  

5.  Record,  REVIEW  &  Agree  Assessment  (with  Biosafety  unit)  

1.  Iden�fy  the  HAZARD  

2.  Iden�fy  the  Laboratory  PROCEDURES  

3.  Iden�fy  the  RISKS  

4.  Consider  appropriate  CONTROLS  

22  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  1:    Iden�fy  Agent  Hazards:-­‐1.  

  What  is  the  Hazard  Group  of  the  biological  agent?    Agent  may  be  unknown  –  Source  of  sample?  –  Human,  mouse,  NHP  etc.  All  Human  samples  CL2  (minimum)!  –  Country  of  origin  

  Does  agent  have  previous  history  of  LAI’s?  –  BMBL  agent  summary  statements  

  Mode  of  transmission  –  Aerosol?  

  Lab  Personnel  –  Risk  factors  (pregnant,  immunocompromised,  etc.)  

23  Courtesy  of  K  Holmes,NIAID,  NIH  

  “Do  we  really  need  to  treat  the  sor�ng  of  human  cell  lines  like  293T,  Hela,  etc…as  human  primary  samples?”  

  Lymphocy�c  Choriomeningi�s  Outbreak  Associated  With  Nude  Mice  in  a  Research  Ins�tute.  JAMA:  1992:  267,  1349.:  –  Cell  lines  contaminated  with  LCMV  

  ATCC:  “strongly  recommend…all  human/primate  cell  lines  be  handled  …as  a  cell  line  known  to  carry  HIV  or  hepa��s  virus”  

  NIH  Biosafety  Policy  for  Cell  Sorters:  ‘Treat  human  lines  as  infec�ous  ..NIH    ‘clean’  cell  line  was  infected  with  HIV’    

All  human  derived  cells  CL2  or  above!  

Risk  Assessment  Step  1:    Iden�fy  Agent  Hazards:-­‐2  

24  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  1:    Iden�fy  Agent  Hazards:-­‐3  

 recombinant  and  viral  vectors    Gene�cally  modified  agent  hazards  

  Samples  with  r.DNA,  viruses,  bacteria,  yeast  etc.  &  Viral  vectors:  len�virus,  adenovirus  or  retrovirus  etc.    Not  classified  in  NIH/CDC’s  BMBL  or  WHO  Laboratory  Safety  Manual    UK  see:  www.hse.gov.uk/biosafety/gmo/acgm/acgmcomp/  

  NIH  Recombinant  DNA  Advisory  Commi�ee    NIH  Guidelines  For  Research  Involving  Recombinant  DNA  Molecules:  

BSL2  or  BSL2+  ,  dependent  upon  risk  factors  

Modified  From  Safe  Sor�ng:  Principles  and  Prac�ces,  Kevin  a.  Holmes,  Ph.D.,  NIAID,  NIH  25  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  2:    Iden�fy  Lab  Procedure  

  What  happens  to  the  sample  in  the  Lab?    Do  you  filter?  Aerosol  risk    Are  there  any  sharps?    Physical  hazards?  e.g.  Lasers    Produc�on  of  sorter  generated  aerosols  – Cell  Sor�ng  is  a  Procedural  Hazard  – “General  agreement  among  biosafety  professionals…    aerosol  genera�on  by  procedures  and  opera�ons…is  the  probable  source  of  many  LAI’s”    

26  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  3:    Iden�fy  Risk  

  How  likely  are  you  to  come  to  harm?    Do  you  have  right  controls  for  the  hazard?    Does  an  aerosol  pose  added  risk?    LAI  may  occur  even  if  infec�on  not  via  aerosol  in  nature:  higher  concentra�ons  &  aerosol  genera�ng  procedures  

  Example:  1st  documented  case  of  aerosol  infec�on  of  Scrub  Typhus  (Orien�a  Tsutsugamushi)  (Infec�on,  2001,  29:54)  

–  Usually  transmi�ed  via  insect  vector  –  lab  worker  disrupted  cells  on  open  bench  

  Decide  on  the  Containment  Level  required  27  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  3:    Determina�on  of  Containment  Level  

CL   Agents   Prac�ces   Barriers  &  safety  equipment  

1   No  disease  in  humans   Standard  microbiological   None  2   Human  disease;  not  

aerosol  transmi�ed  CL1  &  limited  access,  signage,  medical  surveillance  

BSC  Class  I  or  II,  lab  coat,  gloves  

3   Aerosol  transmission  possible  with  serious  or  lethal  consequences  

CL2  &  controlled  access,  decontamina�on  of  waste,  lab  clothes,  baseline  serum  

BSC  Class  I  or  II,  protec�ve  lab  clothing,  respiratory  protec�on  

4   Dangerous/exo�c  high  risk  life  threatening  disease,  aerosol  transmission  likely  

CL3  &  clothing  change,  exit  shower,  all  material  decontamina�ng  upon  exit  

BSC  Class  III  or  Class  II  with  full-­‐body  suit  

Modified  from  BMBL,  5th  Ed.  Modified  From  Safe  Sor�ng:  Principles  and  Prac�ces,  Kevin  a.  Holmes,  Ph.D.,  NIAID,  NIH  

Hazard  Groups    correlate  with  but  do  not  =  containment  level  

28  Courtesy  of  K  Holmes,NIAID,  NIH  

CL2  With  Enhanced  Precau�ons  

  Previously  referred  to  as  CL2  w/CL3  prac�ces  – Not  a  containment  level  – CL3  may  include  prac�ces/facili�es  not  applicable  to  CL2  lab,  i.e.  autoclave  in  lab,  HEPA  filtered  air,  etc.  

–   so  ‘enhanced  precau�ons’  are  defined,  i.e.  containment  tes�ng  before  sort,  defined  disinfec�on,  etc.  

Modified  From  Biosafety  Standards  and  Risk  Assessment  for  Sor�ng  Unfixed  Cells,  CYTO  2011,  Perfe�o  and  Holmes  29  Courtesy  of  K  Holmes,NIAID,  NIH  

Biosafety  levels  for  cell  sor�ng  by  Agent  (examples)  

Agent   Recommended  Biosafety  Level  

Restric�ons  or  Comments    

Hepatitis C   BSL2/3  Influenza A (strain PR8)   BSL2/3   Influenza (seasonal) vaccine required  Klebsiella pneumonia   BSL2/3  LaCrosse virus   BSL2/3  

LCMV   BSL2/3  or BSL3  BSL  dependent  upon  strain;  pregnant  women  excluded  from  lab  during  sor�ng  

Leishmania   BSL2/3*  Malaria   BSL2/3*  Respiratory Syncytial Virus   BSL2/3  

Toxoplasma gondii   BSL2/3*  pregnant women excluded from lab during sorting  

Vaccinia   BSL2/3   vaccine required  Avian influenza   BSL3   Influenza (seasonal) vaccine required  H1N1   BSL3   H1N1 vaccine required  HIV   BSL2/3 or BSL3  Monkeypox   BSL3   vaccinia vaccine required, every 3 years  TB, Mycobacterium tuberculosis   BSL3  

*respirator  PPE  op�onal  (mucous  membrane  protec�on  required)  for  this  agent  except  where  the  sample  also  contains  human/NHP  blood  cells  or  fluids.    

30  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  4:    Iden�fy  Controls  

Engineering    Containment  laboratory  (usually  CL2  minimum)  

  Sort  chamber  design    AMS    BSC  PPE    Gloves,  Labcoat,  etc.    Respirator  (HSE  much  prefer  containment  at  source)  31  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  4:    Iden�fy  Controls  

Procedural    Develop  Standard  Opera�ng  Procedure  –  Instrument  specific  – Step  by  step,  describing:  

  Setup    Sor�ng    Sort  failure  (e.g.  Nozzle  clog)    Decontamina�on  (sort  chamber,  fluidics,  BSC)    Shutdown  

32  

Risk  Assessment  Step  4:    Iden�fy  Controls  

Procedural    Proper  training  and/or  cer�fica�on  of  personnel  is  essen�al      Equipment  must  be  available  and  func�onal  (Tested)  

33  Courtesy  of  K  Holmes,NIAID,  NIH  

Risk  Assessment  Step  5:    Review  

  Review/agree  RA  with  Ins�tute  Biosafety  professionals    Agree  final  containment  level    RECORD  &  review  regularly    Cell  sor�ng  not  specifically  covered  by  HSE,  but  do  state  …’procedures  genera�ng  aerosols  at  CL2  or  higher  MUST  be  conducted  in  BSC  at  appropriate  CL’  www.hse.gov.uk/biosafety/biologagents.pdf  

34  

Use  Published  Resources    www.hse.gov.uk/biosafety/biologagents.pdf    GMO:  www.hse.gov.uk/biosafety/gmo/acgm/acgmcomp/    The  Approved  List  of  Biological  Agents  h�p://www.hse.gov.uk/pubns/misc208.pdf    

  2014  ISAC  Cell  Sorter  Biosafety  Standards    (Cytometry  Part  A,  85A:  434-­‐453,  2014)  www.isac-­‐net.org/Resources-­‐for-­‐Cytometrists/Biosafety.aspx  

  CYTO  U  Course:  Biosafety  www.cytou.peachnewmedia.com/store/provider/provider09.php    

  CYTO  ‘14  Tutorials:  www.isac-­‐net.org/Educa�on-­‐Resources/Educa�on-­‐Materials/  

 35  

Operator  training  &  SOP  Review  

  Staff  proficiency  in  sorter  opera�on  &  biosafety  procedures  – Training  essen�al  for  cell  sorter  lab  opera�on  – Amount  of  training  �ed  to  risk  assessment    The  higher  the  risk,  the  more  training  required    Inexperienced  operator  more  likely  to  circumvent  safety  procedures  

  Review  of  SOP  at  regular  intervals    Review/prac�ce  procedures  for  nozzle  clog  

36  Courtesy  of  K  Holmes,NIAID,  NIH  

Cell  Sorters  in  BSC’s    Need  for  a  BSC  is  dependent  upon  risk  assessment    Sorters  cannot  just  be  placed  in  a  BSC:  must  be  cer�fied  –  2014  Standards:  “must  be  manufactured  to  meet  …CSN  EN  12469  (Europe).”  

   Can  abrogate  requirements  for  separate  room  for  sorter  and  PPE  (respirators)  for  occupants  of  shared  lab   Does  not  eliminate  need  for  AMS    

37  Courtesy  of  K  Holmes,NIAID,  NIH  

Why  you  need  an  AMS  inside  a  BSC  

32/cm3  

6.8/cm3  Escaping  BSC  containment  

Data  from  I-­‐Cyt  Reflec�on,  Poster,  J.  Lannigan  &  K.  Holmes,  ISAC  2011  

Condi�ons:  BSC:  On  Sorter  in  Fail  mode  No  AMS  loca�ons  as  shown:  Aerosols  measured  using  UV-­‐APS  par�cle  sizer  

657/cm3  

It’s  about  containment  at  the  source!  

38  Courtesy  of  K  Holmes,NIAID,  NIH  

Cell  Sorters  in  BSC’s  

  Decontamina�on  of  BSC  cri�cal      What  to  use?  – Formaldehyde,  corrosive,  can  leave  ‘film’,  dangerous  – H2O2,  less  corrosive,  safer  

  Needs  valida�on  against  biological  agent,  H2O2  kills  (all)  bacteria  &  virus  – spore  strips  preferred  

39  

Containment  tes�ng:  why?  

  Any  system  can  fail    Instrument  manufacturers  generally  make  no  claims  about  efficacy  of  the  AMS    Visual  tests  like  smoke  tests  are  unreliable  for  aerosols  in  this  size  range  

 

40  Courtesy  of  K  Holmes,NIAID,  NIH  

Containment  tes�ng:  When  

1.  Based  upon  Risk  Assessment,  but  must  be:  2.  Following  service  or  any  maintenance  of  sort  

chamber  and/or  AMS.  3.  Following  ini�al  installa�on  or  reloca�on.  4.  Following  change  of  the  AMS  filter.  5.  For  BSL3/4  labs:  –  Prior  to  every  sort  if  the  frequency  of  sor�ng  is  once/week  or  less  

– Weekly,  if  the  frequency  of  sor�ng  is  mul�ple  sorts/week  

41  Courtesy  of  K  Holmes,NIAID,  NIH  

Containment  tes�ng:  How  

  GloGerm  assay  –  Published  standard    Cyclex  d  assay  using  beads  being  validated    Other  methods  in  development  

42  Courtesy  of  K  Holmes,NIAID,  NIH  

Food  for  thought:  ISAC  Biosafety  Commi�ee  Survey  

  Survey  sent  to  ISAC  members-­‐  April  2010    59  ques�ons:  –  Infec�ous  Sor�ng  performed?  – Aerosol  evacua�on  systems?  – Containment  tes�ng?  – Types  of  samples  sorted?  – PPE  worn  (respirators,  etc.)?  

From  Biosafety  Standards  and  Risk  Assessment  for  Sor�ng  Unfixed  Cells,  CYTO  2011,  Perfe�o  and  Holmes   43  Courtesy  of  K  Holmes,NIAID,  NIH  

Food  for  thought:    Survey  Results:  No  Aerosol  Evacua�on  

  No  Containment  with  poten�ally  infec�ous  samples:  7  responses  –  Either  NHP,  human  blood  or  human  cell  lines  – No  aerosol  management  system  or  containment  tes�ng  

– No  respiratory  protec�on  – Of  these  7  labs,  4  were  in  shared  laboratory  space  

  ISAC  Standards:  NHP,  Human  samples  and  cell  lines  are  BSL2  with  enhanced  precau�ons  

From  Biosafety  Standards  and  Risk  Assessment  for  Sor�ng  Unfixed  Cells,  CYTO  2011,  Perfe�o  and  Holmes   44  Courtesy  of  K  Holmes,NIAID,  NIH  

Finally  

What  about  Analysis?    Fix  samples      (nearly  all  assays  can  be  fixed  now)    Or,  treat  as  sort      (loading/removing  samples=  aerosol)    ABOVE  ALL  

Do  Risk  Assessment  45  

Acknowledgments  ISAC  Biosafety  Commi�ee  –  Current:  Kevin  Holmes  &    Steve  Perfe�o  (co-­‐chairs),  Ben  Fontes  Phil  Hogarth,  Rich  Konz,  Simon  Monard,  Hank  Pletcher,  Ingrid  Schmid,  Rob  Wadley.  Special  thanks  to  Kevin  Holmes,  NIAID,  NIH;  for  many  slides  

ISAC  Biosafety  Commi�ee  –  Past  members    NIH  Biosafety  Task  Force    London  Cytometry  Club    

46  

   

Then  (c.2002)  

Courtesy:  Simon  Monard  School  of  Bioengineering  

Biosafety  does  move  forward!  

BD  FACSAria™  Fusion    

BC  MoFlo  Astrios    

Thanks  For  Listening  Ques�ons?    

Now  

47  Courtesy  of  K  Holmes,NIAID,  NIH