18
Center for Photosynthesis Research Towards BioSolar Cells May 2008 Wageningen University and Research Centre Leiden University VU University Amsterdam University of Groningen

Biosolar Safe

Embed Size (px)

DESCRIPTION

Biosolar

Citation preview

  • Center for Photosynthesis ResearchTowards BioSolar Cells

    May 2008

    Wageningen University and Research CentreLeiden University VU University AmsterdamUniversity of Groningen

  • Towards BioSolar Cells

    Center for Photosynthesis Research

    Towards BioSolar Cells

    May 2008

  • Center for Photosynthesis Research

    Colofon

    Editor: Dr.H.J.M.LfflerGraphicDesign: WageningenURCommunicationServicesPrinting: ProppressB.V.Wageningen

    Prof.dr.H.vanAmerongen: WageningenUniversityProf.dr.R.J.Bino: WageningenURDr.R.Croce: UniversityofGroningenProf.dr.R.vanGrondelle: VUUniversityAmsterdamProf.dr.H.J.M.deGroot: LeidenUniversity

    InformationProf. Dr. R.J. Bino ([email protected])Dr. H.J.M. Lffler ([email protected])Phone: (+3) 037 4800Plant Sciences Group, Wageningen URDroevendaalsesteeg 6708 PB, Wageningen

  • 3Towards BioSolar Cells

    1 Executivesummary

    TheNetherlandsisinanexcellentpositiontoinitiateandtoestablishtheCenterforPhotosynthesisRe-searchwithinitsborders.Suchaneffortwould: Capitalizeonthescientificexcellencepresentin TheNetherlands, Contributetotheexplorationandexploitationof photosynthesisforenergytomeetfutureenergy demands, Contributetohighagriculturalyieldstomeet futurebiomassdemands, Discloseanddevelopscientificfieldsrelatedto photosynthesis, Offereducationforfuturegenerationsofscientists andcapacitybuildingforindustryandsociety, Openbusinessopportunitiesintheenergy-related sectors, PuttheNetherlandsinthedriversseatinphoto synthesisresearchinsocietallyandeconomi callyhighlyrelevantfields.Ajointeffortofthescientificcommunity,companiesandthegovernmentisneededtorealizetheinitiative.Thecenterisavirtualorganizationwithaforeseenlifetimeofthreetimesfiveyears.Forthefirst5-yearphase,afinancingofatleast10Mperyearwillbenecessary.Boththegovernmentandprivatecom-panieswillbeaskedtofinanciallysupportthepro-gramme.Thisunderlyingconceptnotesummarizestheobjectives,strategyandorganizationofthecenter.

    2 Vision

    Theworldfacesarapidlyincreasingdemandforsus-tainableenergy.Thisneedismainlydrivenbyconcernforclimatechangeandenergy-security.Toaddressthisconcern,TheEuropeanUnionformulatedthedirectivetouse20%sustainableenergyby2020,ofwhichhalfisofbiologicalorigin.Inthelongterm,theshareofsustainableenergyneedstoincreasefurthertoreplacefossilfuels,andinallpossiblescenariossolarenergyplaysamajorrole.Thesunisbyfarthebiggestsourceofenergyandweneedtoexploitsolarenergybetter.

    Photosyntheticorganismsevolvedthecapacitytoconvertsolarenergyintobiomass.Thisbiomassisusedforfood,feedstockandincreasinglyforbio-energy.Tofulfilltheseneedsforagrowing(world)populationwithoutirreversibledamagetotheecosy-stemisaformidablechallenge.Themainhurdleisthatoverallorganismsarenotveryefficientinharvestingthefreesourceofsolarenergy.Lessthan1%ofthesolarenergyreachingatypicalcropplantisstoredasbiomass.Therefore,improvingtheenergyharvestingefficiencyoforganismswillhaveanenormouseffectonbiomassproduction,tothebenefitoffood,feed-stockandbio-energysupply.Evenmorechallengingisdesigningsystemsthatallowphotosyntheticenergy-tappingbeforetheenergyisconvertedintobiomass.Athoroughunderstandingofphotosynthesis,itshierar-chicalorganizationanditsunderlyingmechanismsisessentialtocapitalizeontheseapproaches.

    Newinnovativetechnologiesinthefieldofbiotechno-logy,nanotechnologyandgenomics,provideuswithtoolstoimprovephotosyntheticenergyconversion.Thesetoolsenableustostudyandunderstandthefundamentalprocessesofphotosynthesisfromthemolecularbuildingblocksviathethylakoidmembranetotheleafofaplantincludingitsbiologicalandphysi-caldiversity.Thisknowledgeisthekeytoimprovingtheenergyefficiencyofphotosynthesiseitherbydirectenergytappingorbytheproductionofenergy-efficientbiomass.

    Dutchresearchgroupsareworldleadersinphotosyn-thesis.Hereweproposeanewinitiativetocombinetheworkofthesegroupswiththeultimategoalofre-vealinganddevelopingthepotentialofphotosynthesisforthebenefitofmankind.ToaccomplishthisgoalweplantoestablishaCenterforPhotosynthesisResearch(CPR)thatwillformthebackboneofanationalphoto-synthesisprogramme.Thisbusinessplansummarizestheobjectives,strategyandorganizationoftheCPR.

  • 4Center for Photosynthesis Research

    3 Objectiveandstrategy

    TheobjectiveoftheCenterforPhotosynthesisRe-searchis

    to explore and exploit photosynthesis to improve the quality of life

    Toreachthisobjective,thecenterwillfocusonthreetopics: 1)Systemsbiologyofphotosyntheticprocesses,2)Re-engineeringorganismsforoptimalphoto- syntheticenergyconversionintobiomass,3)Thedesignofsystemsforenergy-tappingbefore theenergyisconvertedintobiomass.

    Systems biology of photosynthetic processes. Studyingthefundamentalprocessesofphotosynthesisrequiresaconcertedeffortofdifferentscientificareasincluding(photo-)physics,biochemistry,plantphysio-logy,genomicsandnano-technology.Systemsbiologyisthenewscientificareathatenablestheintegrationofthesedifferentareasandhencewilldeliverakey-technologyintheCPR.Thefundamentalresearchwillresultinaversatilequantitativesystemsbiologydescriptionoftheenergyconversionfromphotontocarbohydrate,includingthespatialorganizationoftheconstituents,inthecontextofthephysiologyofcellsandleaves.Thisknowledgewillservetheotherobjec-tives.

    Re-engineering organisms for optimal photosynthetic energy conversion into biomass.Differentorganismslikeplants,algaeandcyanobacteriapossessphotosyntheticsystems.Alargevariationintheefficiencyofvariouscomponentsofthephotosyntheticsystemsexistsacrossorganisms,inparticularregar-dingtheenergyefficiencyofCO2sequestration.Thisvariationcanbeexploitedbyre-designingorganismswithgenomictools.Anincreasedenergy-efficiencyoforganismswillyieldahigherbiomassproduction,thatinturncanbeusedforfood,feed-stockorfuel.

    The design of systems for energy-tapping before the energy is converted into biomass. Muchenergylossinplantsiscausedbytheconversionofthecapturedenergyintobiomass.Therefore,sy-stemsthatallowthetappingofenergyfromintermedia-tesofearlyphotosyntheticprocessesaremoreefficientasenergy-sourcethanbiomass.TheultimategoaloftheCPRistoincreasethequa-lityoflifebyincreasingtheefficiencyofsolarenergyconversionbybiologicalsystemsfromatypical,humble1%toatleast10%.TheultimategoaloftheCPRistoincreasethequalityoflifebyincreasingtheefficiencyofsolarenergyconversionbybiologicalsystemsfromatypical,humble1%toatleast10%.Toaccomplishthisobjective,amassiveresearcheffortwillbeneeded.TheCPRintendstodeliverthesegoalsincooperationwiththebestscientificandindustrialpartners,andthroughitsnetworkintheinternationalscientificcommunity.

    NADPHATP

    CalvinCyclus

    Glucose

    Energy Energy

  • Towards BioSolar Cells

    Research example 1: Solar Cells for Methanol

    Plants convert CO2 into sugars and other energy-rich components by using solar energy (photosyn-thesis). The overall efficiency is typically only 1-2%. Solar cells are much more efficient (15-20%), but have the disadvantage of yielding electricity rather than the fuel that is needed for transport. It is a sci-entific challenge to combine the best of two worlds: develop a solar cell that efficiently produces fuels.

    To develop such cells, photosynthesis is reduced to its simplest core. In this simplified system, CO2 is no longer converted into sugars, but into metha-nol. Methanol can be used as liquid fuel or serve as bulk-chemical for further processing. This sim-plified system consists of a solar cell that convert light energy into chemical energy in the form of NADH. The latter can react with CO2 to form me-thanol in a 3-step enxymatic conversion sequence. The H+ needed for the enzymatic reactions is delivered by NADH.

    All elements needed for this simplified system are present in living organisms. Engineering these ele-ments and integrating them in the correct materials will result in a new type of solar cell: a solar cell that yields fuel instead of electricity. The cells avoid the formation of energy-demanding complex organiccompounds as is the case in natural biomass pro-duction and thus are expected to have a high ef-ficiency.

    4 Introductionintophotosynthesis

    Throughphotosynthesis,aerobicgreenplants,algae,cyanobacteria,andanumberofclassesofanaerobicbacteriaareabletotransformsolarenergyintochemi-calenergy.Thefirstphotosyntheticreactionsaretheabsorptionoflightbyanantennaorlight-harvestingcomplex,therapidtransferoftheenergyoftheabsor-bedenergythroughantennasuntilitreachesaspecialchlorophyllmoleculeinareactioncentre,thetransferofanelectronfromthisreactioncentrechlorophylltoanadjacentacceptormolecule,andthestabilizationofthischargeseparatedstatebyrapidsecondaryproton-coupledelectrontransferprocessesandproteindynamics.Subsequentelectronandprotontransferreactionsusetheavailableenergytoextractelectronsfromwaterwhileproducingoxygenandtosynthesizeavarietyofenergy-richmoleculesthatcanbeusedbymetabolism,forinstancelight-drivenCO2reductiontoproducestarch(H2CO)withhighefficiency.ThistaskisperformedbytheCalvincyclethatrunsinthechlo-roplastorganelle.Alongtheway,aseriesofphotop-hysical,photochemicalandelectrochemicalreactionsthatprocesstheenergyfromthesolarphotonsconvertpartofthefreeenergyoftheseharvestedphotonsintochemicalfreeenergyinametabolicallyuseableform(typicallyasATP,NADPH).Inplantsandeukaryoticalgae,thesereactionsarelocatedinandaroundthethylakoidmembranesofthechloroplasts,andinvolvebothphotosystemIandII,thethylakoidelectrontrans-portchainandthethylakoidATPsynthase.Inthecaseoftheprokaryotes(cyanobacteriaandotherphotosyn-theticbacteria)theorganizationandfunctioningofthephotosyntheticprocessdifferfromthatoftheeuka-ryotesbutnonethelesssharethesameoperationalprinciples.

    Controlovertheenergyflowsatthelevelofthephoto-syntheticmembraneandoptimizationoftheunderlyingenergyconversionprocessesbyartificialmeanswillal-lowforthegenericimprovementofbiomassconversi-onefficiency.Forinstance,asecondary,butimportant,functionofantennasystemsistopreventphotoda-magebythereactiveproductsformedbytheabsorp-

    Solarenergy

    NewsolarcellSolarenergy

    Electricalenergy(H2O H

    + + O2+e-)

    ChemicalenergyNAD+ + H+NADH

    NADHNADHNADH

    CO2HCOOHH2COCH3OH

    Generationofmethanol(CH3OH)fromCO2

  • 6Center for Photosynthesis Research

    Research example 2: The introduction of C4 photosynthetic machinery into C3 plants

    Plants are evolutionary well adapted to their environment. The environment, however, may change more rapidly that evolution can respond. Therefore, sub-optimal systems can occur. One known example of sub-optimal performance is the Rubisco-enzyme. This enzyme is responsible for the binding of CO2 during photosynthesis, but is only efficient at the high CO2 concentrations which occurred in the early days of our planet. Rubisco is much less efficient at the relatively low CO2 concentrations of the last million years. Nature responded to this low efficiency by developing the so-called C4 plants. These plants possess extra features that lead to a higher concentration of CO2 at the surface of the Rubisco-enzyme.

    The C4-system is not very common: the original (C3) system is far more abundant. A thorough knowledge of the C4-system enables us to transfer this system to important C3-crops, enhancing the photosynthetic efficiency of these crops and in that way enhance their potential yield.

    tionoflight.Ifdamagecouldbeavoidedbymakingthephotochemicalsystemmorerobust,thiswouldelimi-natelosses.Subsequenttotheprimaryphotochemicalreactionaseriesofelectrochemicalreactionsconvertpartofthefreeenergyconservedbyphotochemistryintometabolicallyuseableforms,forexampleATP.Theexactnatureoftheseprocessesdifferssubstantiallybetweendifferentorganismsandtheefficiencyofthisconversiondependsoncellularandenvironmentalfactors(i.e.light,temperature,water).Inallorganisms,therateofthischemicalconversionistightlycontrolledbecauseofthereactivenatureofchemicalintermedia-testhatareformed.Theregulationofthesesecondaryenergyconversionprocessesisnormallycoupledtothedamageavoidanceprocessesofthelight-harves-tingandantennacomplexesandreactioncentres.Althoughthesemechanismsarenecessaryinordertoprotecttheorganismsagainstphotodamage,unneces-sarylossestakeplace,especiallyundermorepermis-siveconditions.

    PhotosyntheticorganismsproduceATPandNADPH,whichareenergy-richmoleculesthatconvertcarbondioxidetocarbohydratesinthelight-independentCal-vincycle.TheCO2isconvertedbyrubisco,whichisthemostabundantproteinonearth.ThesimplesugarphosphatesformedbytheCalvincyclearefurtherprocessedintomorecomplexcarbohydratesorlipids.TheefficiencyoftheCalvincycledependsonmanycellularandenvironmentalfactorsthatdifferbetweenthevariousorganisms.Forinstance,inplantstherateofcarbondioxidefixationispartlycontrolledthroughpores(stomata)intheleaves.Hotordryweathercauseplantstoclosetheirstomatatoconservewaterwhichlimitstheexchangeofgasses,andconsequentlyreducestherateofcarbonfixation.Incontrast,micro-organismscangrowathighdensityinwaterandcanproducemorethanfifteentimestheamountofbio-masswhilereducingwaterdemand.Bydevelopingnewconceptsfortheefficientconversionofenergystoredatthephotosyntheticmembraneintofuels(hydrogen,methanol,ethanol),aleapinagriculturalproductioncanberealized.

    Sugarcane: a C4 crop.

    Potato: a C3 crop.

  • 7Towards BioSolar Cells

    Research example 3: Photosystem III

    A photosystem is a system that captures solar energy during photosynthesis. Plants have two of those systems: photosystem I and photosystem II. These systems interact in a synergetic way, incre-asing the efficiency of energy capture. Due to their somewhat different color sensitivity, both systems only partly compete for the available light.

    Purple bacteria possess a photosystem which ab-sorbs light in the near infrared where plants, algae and cyanobacteria are totally inactive. Successfully combining such a system with the two systems already present in plants will further increase the efficiency of photosynthesis. This combination is a scientific challenge, that needs to be based on a thorough knowledge of the mechanisms and the genetic background of the photosystems. Advan-ced genomics technologies are already available to transfer the responsible properties involved from one organism to another. This will result in plants with a higher energy efficiency.

    Ourunderstandingofphotosynthesisisprimarilybasedontheworkthathasbeendonewithplants.Photosynthesisinalgaeandphotosyntheticbacteriaismorediverseandflexible,withthecapacitytoproduceinterestingandvaluableproducts,suchashydrocar-bonsinsomealgae.Weneedtoknowmuchmoreaboutthebiodiversityofphotosyntheticmetabolismintheseorganismsandhowsuchdiversitycanbefurtherexploited.

    5 Research

    CPRwillfocusontheunderstandingofthefundamen-talprocessesofphotosynthesisanditsbiologicalandphysicaldiversity.Thisknowledgewillbeexploitedfortheimprovementofenergyproductionbothinnaturalandinartificialsystems.Understandingphotosynthesisrequiresamultidisciplinaryapproach.ThereforetheCPRwillworkonphysical,biochemical,physiologicalandgeneticaspectsofphotosynthesisingreenplants,algaeandcyanobacteriainanintegratedmanner.TheCPRwillmakeuseofavailableexpertiseandtechno-logiesinthefieldofbiotechnology,nanotechnology,genomicsandsystemsbiologyandwillcontributetoafurtherdevelopmentofthesescientificareas.

    Firstgoal: Thephotosystemscontainlargenumbersoforganiccomponents.Thesecomponentsinteractinacomplexanddiversifiedway.Elucidatingthedivesityandflexibi-lityofthevariouscomponentsandtheirinteractionswillshowwhatinteractionslimittheoverallenergycon-versionandhowthecomplexsystemthatistheresultoftheseinteractionscanbeharnessed.Solvingthemechanismsofhowthevariouscomponentsinteractrequiresbiochemicalandbiophysicalexpertiseandtheuseofvarioustypesofadvancedspectroscopy,imagingandhighthroughputscreeningtechniques.Theessentialelectron-andenergytransferprocessesinlight-harves-tingandphotochemistrystartinthefemtosecondtona-nosecondtime-rangeandcoupleintoprocessesatmuchlongertimescales,oftheorderofdays.Theanalysisbyadvancedultrafastlaserspectroscopictechniquesopensupnewmarkersthatprovideaviewonthecomplex

  • 8Center for Photosynthesis Research

    Photosynthesis@School: outreaching to Dutch high-school students

    .. Life on earth depends fully on solar energy. Photosynthesis captures this energy. Even fossil fuels are based on photosynthetical processes in the far past. Wageningen UR runs mobile edu-cation programs for high-school students, enabling students to get in touch with the fascinating world of photosynthesis. The students are challenged to address scientific questions by using advanced equipment. Each year, over 65 schools and over 2500 students participate in the program. The program serves to raise interest for technology, to educate a future generation of experts and to initiate and stimulate the debate on energy and future energy options.

    processesatthemembraneandcelllevel,andcom-plementotherimagingtechniquesandmetabolomicsanalyses.Thesubsequentelectronandprotontransportreactionsthattransformthechemicalenergytrappedbythereactioncentreintometabolicallyusefulformsasksfortechnicallyinnovativeapproachestospectroscopyandotherbiochemicalanalyses.Wewillunravelthesemechanismsbycreatingacomprehensivemodelofpho-tosynthesisthatwillbetestedatvariousphysiologicalconditionsandinanumberoforganisms.

    Secondgoal: Thebasisofallphotosyntheticreactionslieswithinthegeneticcodeoftheorganisms.ThesecondgoaloftheCPRistousegenomicstoolstoanalyzethegenesthatcontrolthephotosyntheticreactionsandtochangethiscode.Usinggenomics,metabolomicsandproteo-mics,incombinationwithstate-of-the-artbiotechnologyandsystemsbiologymodeling,theCPRwillcharacte-rize,isolateandmodifygenesandgeneproducts(i.e.RNAs,proteinsandmetabolites)ofthephotosyntheticbuildingblocks.Wewillusethesegenesandproductstoenablethere-engineeringofgenomesandorga-nismswithahigheroverallenergy-efficiency.Inadditi-on,wewilladdgenesfromotherorganismstoproduceavarietyofcompoundswithdesiredproperties.

    Thirdgoal: ThethirdgoaloftheCPRistointegratetheacquiredknowledgetotapenergyfromintermediatephoto-syntheticprocesses.Understandingphotosyntheticcomplexesiskeyfordesigningthesebiologicalorganicenergy-conversingdevices.Researchinthisdirectionisrapidlygainingglobalinterest,andtheDutchscienti-ficcommunityplaysafront-runningroleinthisscientificfield.TheCPRwillintegrateartificialcomponentsintobiologicalsystemsbymakinguseofnanotechnology.

  • Towards BioSolar Cells

    6 Education

    TheCPRwillpayspecificattentiontoeducation.TheexcellentpositionofDutchresearchgroupsneedtobesafe-guardedforthefuture.Inaddition,theindustryisinlargeneedofwell-educatedpersonnelthathelpstofulfillthepromisesoftheCPR.Themaingoalistodevelopeducationalprogrammesasawaytoimprovetheattractivenessofthephotosyntheticsciencestoscholarsandstudents,leadingtoanincreaseinthelabourforceconcerned.TheCPRwilldevelopanedu-cationandtrainingprogrammeinclosecontactwithhighereducationestablishmentsanduniversitiesintheNetherlandsandindirectcollaborationwithcurrentna-tionaleducationalprogrammes.Participationofindu-stryineducationalprogrammes,asinstitutedthroughtheCPRframework,willgenerateextraopportunitiestosetupanattractiveeducationandtrainingagenda.

    TheCPRwill: Createascientificenvironmentforgraduateand undergraduatestudents; Acquireresourcestofinanceextraordinary professorshipsinthebasicdisciplines; Arrangeascientifichotelfunctionatuniversitiesfor industrialresearcherstostimulateaflowofideas fromscience(students)toindustryandviceversa (comparetheCasimirprogramme); Invitestudentsandyoungscientiststoworkina companyenvironmentaspartoftheirprofessional training; Commitscientistsfromindustrytoparticipate activelyineducationalprogrammes; Offersupportforuniversitiesintheirattemptstoat tractstudents; Offerstudentsfinancialsupportfortheireducational programmeintheplantandotherphotosynthesis- relatedsciences; Organizemasterclassesinscientificareasrelated tophotosynthesis,andemergingnewrelated technologies.

  • 0

    Center for Photosynthesis Research

    7 Researchonphotosynthesisistimely

    Onlyplants,algaeandsomebacteriaareabletoconvertsolarenergyintoenergyrichbiomassandbyharnessingthephotosyntheticprocessesoftheseorganismswecandevelopasustainablewaytocopewiththeincreasingdemandforbiomassforenergy,foodandfeedstock.Scientistsallovertheworldworkontheexploitationofphotosynthesis(formoreinfor-mationsee:www.photosynthesisresearch.org).Se-veralrecentbreakthroughshavebroughtresearchonphotosynthesistoastagewheresignificantprogressisexpected.AtleasttenpapershaveappearedwithinthelastthreeyearsinleadingjournalslikeNatureandSci-enceonphotosynthesisandmanyofthemwerefromEuropeanandespeciallyDutchlaboratories(includingournetwork),stressingthetimeliness

    oftheresearchtopic.Manygenomeshavenowbeensequenced,includingthoseofgreenplants,algaeandcyanobacteria.Newmethodsofknock-outmutantsinspecificgeneshavebeendeveloped,aswellastech-nologiesforperformingproteomicsandmetabolomics,refoldingofpigment-proteincomplexes,severaltypesofadvancedopticalandmagneticresonancespectros-copyandvariousmicroscopictechniqueslikecryo-electrontomography,atomicforcemicroscopyandsingle-moleculefluorescencemicroscopy.Structuresofallmajorphotosyntheticcomplexesarenowknownatintermediateorhighresolution.GoaloftheCPRistocombineandintegratealltheavailableexpertiseandtechnologiesofthebestDutchscientistsandtomakeanextstepintheharnessingofsolarenergyviaphotosynthesis.

  • Towards BioSolar Cells

    8 PositionofCPR

    Toachieveitsobjectives,theCPRwillcombinetheworkofthebestscientistsofDutchuniversitiesandinstitutes,andwillstrengthenlinkswiththerelevantin-ternationalcommunity.FoundingmembersoftheCPRaretheuniversitiesofWageningen(WUR),Amsterdam(VU)andLeiden(RUL).ThespecificexpertiseofeachresearchgroupoftheseuniversitiesiscomplementaryandisrequiredtoreachtheCPRresearchgoals.TheCPRisledbythefoundingmembersandisinitiatedbyWageningenUniversityandResearchCentre(WUR).OtherDutchuniversities,institutesandindustrieswillbeinvitedtoparticipateonaprojectbase.

    Descriptionoffoundingmembers:WageningenUniversityandResearchCentre (WageningenUR):ChairsofvariousWageningenURdepartmentsworkonmolecular,physiologicalandcel-lularbiophysicalaspectsofphotosynthesis,withspecialemphasisonultrafastfluorescence,microspectroscopyandgenomicsofphotosynthesis.Keywordsare:Mode-ling,MolecularBiophysics,BiologicalSpectroscopy,BiophysicalImaging,Genomics,Metabolomics,Proteo-mics,PhysiologyandSensortechnology.WageningenURparticipatesinthegraduateresearchschoolExpe-rimentalPlantSciences,andvariousrelatedinitiativessuchastheCentreofBiosystemsGenomics,theTech-nologicalTopInstituteGreenGenetics,theNetherlandsMetabolomicsCentreandtheNetherlandsProteomicsCentre.Photosyntheticplatformtechnologies,includingsystemsbiology,areavailableforplantsandalgae. VUUniversityAmsterdam:TheVUinAmsterdamaccomodatesoneoftheworldleadingresearchgroupsontheprimaryeventsinphotosynthesis.StateoftheartultrafastandCW-laserspectroscopictoolshavebeenimplementedasanimportantpartoftheVU-la-sercentre(LCVU),aEuropeanaccessfacility.Usingavarietyofinfrared-andsingle-molecule-spectroscopictechniquesthedynamicsofthephotosystemscanbefollowedovermanyordersofmagnitudeintime.Bothmolecularmodeling,multi-scaleandsystemsbiologymodelingtechniquesareemployedwithgreatsuc-

    Vol436|7July2005|doi:10.1038/nature03795Molecularbasisofphotoprotectionandcontrolofphotosyn-theticlight-harvestingAndrewA.Pascal,ZhenfengLiu,KoenBroess,BartvanOort,HerbertvanAmerongen,ChaoWang,PeterHorton,BrunoRobert,WenruiChang&AlexanderRuban

    Vol450|22November2007|doi:10.1038/nature06262Identification of a mechanism of photoprotective energy dissipationinhigherplantsAlexanderV.Ruban,RudiBerera,CristianIlioaia,IvoH.M.vanStokkum,JohnT.M.Kennis,AndrewA.Pascal,HerbertvanAmerongen,BrunoRobert,PeterHorton&RienkvanGrondelle

    NATURE|VOL421|6FEBRUARY2003|www.nature.com/nature

    PlantslackingthemainlightharvestingcomplexretainphotosystemIImacro-organizationA.V.Ruban,M.Wentworth,A.E.Yakushevska,J.Andersson,P.J.Lee,W.Keegstra,J.P.Dekkerk,E.J.Boekema,S.Jansson&P.Horton

    NATURE|VOL430|26AUGUST2004|www.nature.com/natureThenativearchitectureofaphotosyntheticmembraneSvetlanaBahatyrova,RaoulN.Frese,C.AlistairSiebert,JohnD.Olsen,KeesO.vanderWerf,RienkvanGrondelle,RobertA.Niederman,PerA.Bullough,CeesOtto &C.NeilHunter

    NATURE|VOL412|16AUGUST2001|www.nature.com

    A giant chlorophyll-protein complex induced by iron deficiencyincyanobacteriaE.J.Boekema,A.Hifney,A.E.Yakushevska,M.Piotrowski,W.Keegstra,S.Berry,K.P.Michel,E.K.Pistorius&J.Kruip

  • Center for Photosynthesis Research

    cesstobridgetherelevantlengthscales(nm-mm)andtimescales(fs-min).Keywordsare:Physicsofphoto-synthesis,ultrafastlaserspectroscopy,singlemoleculebiophysics,membraneorganization,photoprotection,multi-scalemodeling,systemsbiology.

    LeidenUniversity:LeidenResearchgroupsworkonPhotosynthesisandartificialphotosynthesiswithemp-hasisonmagneticresonance,atomicforcemicros-cope,singlemoleculeandquantumchemicalmodelingforin-silicodesignofartificialcomponents.Thereiscrossfertilizationwithgroupsinvolvedingenomics,metabolomics,softcondensedmatter,catalysisandelectrochemistryofbiomoleculesonsurfacesandinterfaces.Keywordsare:Biophysicalchemistry,SolidStateNuclearmagneticresonance,Imaging,atomicforcemicroscope,ElectronParamagneticResonance,DensityFunctionalTheory,SoftCondensedMatter,Biosensors,Electrochemistry,BioinorganicChemis-try,Catalysis,Photosynthesis,ArtificialPhotosynthe-sis,MolecularPlantSciences,Ecology,Biodiversity.LeidenaccommodatesthecentreforenvironmentalstudiesInstituteofEnvironmentalSciencesandparti-cipatesinseveralNetherlandsGenomicInitiativecen-ters,formetabolomics,systemsbiologyandindustrialfermentation.ItalsoparticipatesintheCyttroncellimagingobservatory.BiodiversityisacoreactivityfortheNationaalHerbariumandNaturalis.

    UniversityofGroningen:WithintheGroningenBio-molecularSciences&BiotechnologyInstitute(GBB)thereisastrongemphasisonstructuralbiologybyelectronmicroscopy,biochemistryandspectroscopyofphotosynthesis.StateofthearttransmissionelectronmicroscopeshavebeenimplementedasanimportantpartoftheGBBresearchschool.Usingavarietyoftechniques,membraneproteinstructure,functionsandinteractionsarestudied,eitherafterpurificationorinthenativecell.Keywordsare:Structureofphotosyn-thesis,cryo-electronmicroscopy,singlemoleculeaver-aging,membraneorganization,electrontomography,proteomics,biochemistryofphotosynthesis,molecularbiologyofphotosynthesis,light-harvesting,photopro-tectionand,biologicalspectroscopy.

  • 3

    Towards BioSolar Cells

    Research example 4: Green Microbial Fuel cells

    Plants produce simple sugars via photosynthesis. These simple sugars are biochemically conver-ted into complex compounds that are needed for growth and maintenance of plants. The second generation of bio-fuels focuses on converting these complex compounds again into simple sugars that are suitable for the easy production of biofuels. Evidently, it is smarter to avoid the formation of the complex compounds and tap the simple sugars directly before they are converted.

    In nature, plants exude part of the simples sugars via the roots to the soil. These sugars are used by soil-organisms like fungi and bacteria. Alternatively, mankind can harvest the exudates for the produc-tion of energy. In a next step, the recently discover-ed electrogenic bacteria are par excellence suited for converting the sugars into electricity or pure hydrogen. Economically this new technology is only interesting if the exudation is enhanced to a large extent. Technical options to do so are within reach. A higher exudation will result in a poor growth of the plants, but that is no problem since these plants function as sugar-factories rather than as biomass producer.

    The new technology fits perfectly with advanced cultivation technologies like energy-yielding green-houses. By combining various technologies, new systems can be developed that are flexible, ef-ficient and are specifically suited to deliver various forms of energy on a small-scale.

    9Deliverables

    OurgoalistoadvancetheDutchindustrialandtech-nologicalpositioninphotosynthesisbyacontinuousflowofinnovations.Operationaleffectsarebaseduponthequalityoftheprogramme,achievementofinnova-tion,qualityofresearch,andeffectsoneducation.Thequalityoftheprogrammewillbereviewedbyinternalandexternalpanelsaccordingtoafixedsetofparame-ters.Wewillaskanexternalorganizationtomeasurethelevelofsatisfactionfromthethreestakeholders:industrial,researchandgovernmentalpartners.Ourambitionistoscoreexcellentatalllevels.Innovationdeliverableswillbebaseduponreturnoninvestment.WeexpectthatCPRwillleadtoactiveparticipationofcompaniesandtomajorcontributionstotheR&Doftheparticipatingcompanies,leadingtoagreaterandbroaderworldwidemarketpenetration.Thedirectfinancialeffectwillbemonitoredbytheeco-nomicpositionoftheparticipatingcompaniesannually.Theexternalsatisfactioninterviewwillbetargetedtothisparameter.Anotherinnovationdeliverableisthenumberofpatents.Weexpecttogeneratefourpatentapplicationsannually.Alsothenumberofspin-offswillbemeasuredandconsideredasaninnovationde-liverable.

    Researchdeliverablesinthecomingfiveyearswillbethenumberofscientificpapers(target:about100publicationsinjournalswithanimpactfactorhigherthan3.00),thenumberofpresentationsatinternationalconferences(target:150),thenumberofPhDtheses(target:50)andthenumberofgrantedprojects(i.e.NWO,STW,EU,EZOmnibus,IOP)thatareadditionaltotheprogramme.

    Educationdeliverableswillbebaseduponthecontri-butiontoexistingstudyprogrammesandthenumberofnewstudyprogrammeswithinthescientificgroupscollaboratinginCPR,thenumberofmasterstudentsactiveinCPRprojects(target:50),thenumberandqualityofmasterclasses(target:four)andincreasedinteractionwithPolytechnicInstitutes(HBO/MBO).

  • 4

    Center for Photosynthesis Research

    Tostimulatethetransferofknowledge,adirectinvol-vementofindustrialpartnerswillbeorganizedandinteractiveprojectsbetweenuniversities,institutesandindustrieswillbefaciliated.Afterhavingprotectedtheintellectualpropertyrights(IPR)andafterhavingtransferredtheknowledgetoparticipatingcompanies,theresearchgroupswillpublishalltheresultsoftheresearchinhigh-ratedscientificjournals,inthesesorinthepopularpress.

    CPRwilltakeactionforthetimelyandadequateprotectionofresearchresults,interaliaviaIPRpro-tection.TheprotectionandvalorizationofIPRwillbeinlinewiththeEuropeanCommunityFrameworkforStateAidforResearchandDevelopment,thenewEUregulationsonStateAidforInnovationandtheRegu-lationsconcerningIPRlaiddownbytheDutchMinistryofEconomicAffairs.ThearrangementsforIPRprotec-tionandknowledgetransferwillbefullydefinedanddescribedbeforethestartofCPR.

    12Organization

    Theorganizationproposedintheseparagraphswillserveasaguide-lineforthefinalorganization,andwillbesubjectofdiscussionwiththeultimatepartnersandfinancingagencies.

    CPRisavirtualinstituteaimedatscientificcollabora-tionbetweenresearchorganizationsandcompaniesthatareinterestedinresearchandtheexploitationofphotosynthesis.CPRwillusetheexistinginfrastructureoftheresearchpartners.A(small)organizationwillbeformedthatisresponsibleforacquiringandmanagingresearchandeducationalprojects.Thetotalorgani-zationandofficecostsarebudgetedatamaximumof5%ofthetotalbudget.ThelegalformofCPRwillbeanot-for-profitfoundationaccordingtoDutchlaw.

    ASupervisoryBoardisresponsibleforthevisionandstrategyoftheCPR.Itconsistsofrepresentativesoftheresearchorganizations,companiesinvolvedand

    10Thesocio-economicenvironment

    Resultsofsciencewillbeimplementediftheyfitinthepropercontext.Thiswillonlyhappenwhentheresultsopenwaystoapplicationsthataresocially,economi-callyandecologicallysustainable.ThiscontextwillbeleadingforallactivitiesoftheCPR.Socialsustainabi-lityrequiresanopeneyefortheimpactoftheresearchonsocietyatlarge.Forexample,duetotheenormousvolumeofanysustainableenergysource,land-co-verageisanissuethatneedstobeaddressed.Forecologicallysustainability,theimpactonbiodiversityandgreenhousegasemissionsneedtobeaddressed.Theeconomicsustainabilityrequiresthatanysolutionhasthepotentialtobecomefinanciallyattainable.

    11KnowledgetransferandIPRprotection

    ThemainobjectiveofCPRistodevelopandconvertknowledgeintovaluefortheDutcheconomyintheenergyarea.Therefore,theparticipatingcompaniesandresearchorganizationswillimplementtheresultsofresearchintoproductinnovations.Forthispur-pose,thetransferofknowledgebetweenpartnersandawarenessofthevalueofsuchknowledgeisoneofthemajorpriorities.Thevalorizationandtransferofknowledge,technologyandmaterialwillbetherespon-sibilityofallCPRpartners.

    Courtesy of A. van Aelst and P. Lamers

  • Towards BioSolar Cells

    carriedoutbyProjectReviewCommittees(onecom-mitteeforeachprogramme).These(international)committeesworkundertheresponsibilityoftheMa-nagementTeam.Theexactnatureofthecommitteeswillbedecidedinconsultationwithfinancingagencies.Inreviewingtheproposals,thecommitteestakeintoaccount: confidentialityregardingthecontentsofthepro posalandtheparticipants; scientificqualityoftheproposal; valorizationopportunities; commitmentofthecompaniesandresearchinstitu- tesinvolved,bothinfinancialtermsandintermsof theimplementationofresults.TheProjectReviewCommitteesadvisetheSuper-visoryBoard.Thisboarddecideswhetherornotaprojectisacceptedandunderwhatconditions.

    SelectedprojectswillbeexecutedwithintheResearchProgrammes,eachundertheresponsibilityofaprojectleader.TheprojectleadersreporttotheProgrammeLeader,whointurnreportstotheManagementTeam.

    financingagencies.TheSupervisoryBoardappointstheManagingDirectorandProgrammeLeaders.TheManagingDirectorformsamanagementteamtogetherwiththreeProgrammeLeaders,oneforeachofthethreeprimaryresearchlinesofCPR.TheManagingDirectorisresponsiblefortheinternalorganizationandsupervisesthepersonnel,financialandadministrativeaspectsoftheorganization.Programmeleadersareresponsiblefortheimplementationofscientificprojectswithintheirdomain.

    TheManagementTeamisresponsibleforthescien-tificqualityoftheresearchprogrammeandthedis-seminationofresearchresults.Itisalsoinvolvedinguardingtheprocessesofvalorizationofresearchresultsandtheprotectionofintellectualpropertyrights.TheManagementTeamplaysanimportantroleintheevaluationoftheresearchproposals,togetherwiththeProjectEvaluationCommittees.ThemanagementteamrepresentstheCPRinallexternalrelations.

    Researchgroupswillbeinvitedtosubmitprojectproposals.Theevaluationoftheseproposalswillbe

  • 6

    Center for Photosynthesis Research

    13. Finances

    CPRisavirtualorganizationwithaforeseenlifetimeofthreetimesfiveyears.Forthefirst5-yearphase,afinancingofatleast10Mperyearwillbenecessary.AcknowledgingthecharacterofCPR,bothfundamen-talresearchandtheexploitationofresults,apublicprivatefinancingschemeisforeseen.Boththegovern-mentandprivatecompanieswillbeaskedtofinanciallysupporttheprogramme.

    Toacquirefunding,theCPRwillapproachagenciesthatfinancescientificprogrammes,companiesthatareinvolvedinbiomassproductionandenergyconversionandtheDutchgovernmentforalignmentwiththein-novationagendas.

  • Center for Photosynthesis ResearchTowards BioSolar Cells

    May 2008

    Wageningen University and Research CentreLeiden University VU University AmsterdamUniversity of Groningen