73
Biosynthesis – Inspiration for Drug Discovery Biosynthesis of Fatty Acids & Polyketides Alan C. Spivey [email protected] Nov 2008

Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis – Inspiration for Drug Discovery

Biosynthesis of Fatty Acids & Polyketides

Alan C. [email protected]

Nov 2008

Page 2: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Format & Scope of Lectures

• What are fatty acids? – 1° metabolites: fatty acids; 2° metabolites: their derivatives– biosynthesis of the building blocks: acetyl CoA & malonyl CoA

• Fatty acid synthesis by Fatty Acid Synthases (FASs)– the chemistry involved– the FAS protein complex & the dynamics of the iterative synthesis process

• Fatty acid secondary metabolites– eiconasiods: prostaglandins, thromboxanes & leukotrienes

• What are polyketides?– definitions & variety

• Polyketide synthesis by PolyKetide Synthases (PKSs) – the chemistry involved– the PKS protein complexes & the dynamics of the iterative synthesis process

• Polyketide secondary metabolites– Type I modular metabolites: macrolides – e.g. erythromycin– Type I iterative metabolites: e.g. mevinolin (=lovastatin®)– Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin

Page 3: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Fatty Acid Primary Metabolites• Primary metabolites:

– fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives:• constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids• structural role – glycerides & phospholipids are essential constituents of cell membranes• energy storage – glycerides (fats) can also be catabolised into acetate → citric acid cycle• biosynthetic precursors – for elaboration to secondary metabolites

CO2H lauric acid (C12, n = 4)

CO2H

palmitoleic acid (C16, Z -Δ9)

112

1

16

9

SATURATED ACIDS [MeCH2(CH2CH2)nCH2CO2H (n = 2-8)]e.g.

MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g.

POLY-UNSATURATED ACID DERIVATIVES (PUFAs)e.g.

CO2H arachidonic acid (AA)(C20, Z -Δ5, Z -Δ8, Z -Δ11, Z -Δ14)1

CO2H eicosapentaenoic acid (EPA)(C20, Z-Δ5, Z -Δ8, Z-Δ11, Z -Δ14, Z -Δ17)

(in cod liver oil)

1

2020

CO2H caprylic acid (C8, n = 2)18

CO2H capric acid (C8, n = 3)110

CO2H myristic acid (C14, n = 5)114

CO2H palmitic acid (C16, n = 6)116

CO2H stearic acid (C18, n = 7)118

CO2H

oleic acid (C18, Z-Δ9)(>80% of fat in olive oil )

1

18

9

58

11 14

58

11 14 17

OHOHOH

glycerol

OCOR1

OCOR2

OCOR3

3x fatty acids

glycerides

Page 4: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Fatty Acids Derivatives – Secondary Metabolites• Secondary metabolites

– further elaborated derivatives of polyunsaturated fatty acids (PUFAs)• e.g. polyacetylenes & ‘eicosanoids’ (prostaglandins, thromboxanes & leukotrienes)

Page 5: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Primary Metabolism - Overview

CO2 + H2O

1) 'light reactions': hv -> ATP and NADPH2) 'dark reactions': CO2 -> sugars (Calvin cycle)

OHOHOHOOH

HO

glucose& other 4,5,6 & 7 carbon sugars

Primary metabolism Secondary metabolites

oligosaccharidespolysaccharidesnucleic acids (RNA, DNA)

phosphoenol pyruvate

glycolysis

CO2

HOOH

OHOOH

HO

POCO2

PO

erythrose-4-phosphate

SHIKIMATE METABOLITEScinnamic acid derivativesaromatic compoundslignans+

shikimate

aromatic amino acids

aliphatic amino acidspeptidesproteinsCO2

Opyruvate

SCoA

Oacetyl coenzyme A

Citr ic acidcycle

(Krebs cycle)

ALKALOIDSpenicillinscephalosporinscyclic peptides

tetrapyrroles (porphyrins)

PHOTOSYNTHESIS

saturated fatty acidsunsaturated f atty acidslipids

FATTY ACIDS & POLYKETIDESpolyacetylenesprostaglandinsaromatic compounds, polyphenolsmacrolides

ISOPRENOIDSterpenoidssteroidscarotenoids

SCoA

OCO2

malonyl coenzyme A

CoAS

O

O

HO

HOCO2

mevalonateacetoacetyl coenzyme A

Primary metabolites

Page 6: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Malonyl Coenzyme A• Malonyl coenzyme A is the key ‘extender unit’ for the biosynthesis of fatty acids (& polyketides):

– is formed by the carboxylation of acetyl coenzyme A mediated by a biotin-dependent enzyme– this is the first committed step of fatty acid/polyketide biosynthesis (& is a rate controlling step)

Primary metabolism Secondary metabolism

SCoA

Oacetyl CoA

CO2

SCoAO

CoAS

O

O

saturated fatty acidsunsaturated fatty acidslipids

FATTY ACIDS & POLYKETIDESprostaglandinspolyacetylenesaromatic compounds, polyphenolsmacrolides

ISOPRENOIDSterpenoidssteroidscarotenoids

CO2

NADHNAD

CO2

Opyruvate GLYCOLYSIS

oxidative decarboxylation

CITRIC ACID CYCLE

acetyl CoA carboxylase(biotin-dependent)

SCoAO

HO

HOCO2

mevalonate (MVA)

CoASH

2x NADPH

2x NADP

CoASH

2x CoASH

SCoA

OCO2

malonyl CoA

acetoacetyl CoA

Page 7: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Malonyl Coenzyme A• Bicarbonate is the source of the CO2:

– the bicarbonate is first activated via phosphorylation by ATP– then the phosphorylated bicarbonate carboxylates biotin to give carboxybiotin– then the carboxybiotin carboxylates the enolate of acetyl CoA to give malonyl CoA:

– the carboxylation of biotin & acetyl CoA are mediated by a single biotin-dependent enzyme (complex) having both biotin carboxylase and transcarboxylase active sites

– NB. coupling to ATP ‘hydrolysis’ provides energy to drive carboxylation processes

O

HO O

O

HO OPO

OHO

ATP

ADPO

CoAS O

O

malonyl CoA

Pi

biotin = Nu

NHHN

S

O

HH

O

NHEnz

bicarbonate

CoAS

O

enolate of acetyl CoA = Nu

Nu

NHN

S

O

HH

O

NHEnz

O

OMg

biotincarboxylase transcarboxylase

Nu

Page 8: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Fatty Acids – Iterative Oligomerisation• fatty acids are biosynthesised from acetyl CoA as a starter unit by iterative ‘head-to-tail’

oligomerisation involving:– condensation with malonyl CoA as an extender unit (with loss of CO2) – a decarboxylative Claisen

condensation– 3-step reduction of the resulting ketone → methylene

• after n = 2-8 iterations the C8-20 saturated fatty acid is released from the enzyme(s):

O

CoAS

O

EnzS

O

SEnz

O

O O

EnzS

CO2

OEnzS EnzS

O O

EnzS

EnzS

O

reduction

EnzS

O O

EnzS

O

Malonyl CoA

EnzS

O Ofattyacids

decarboxylativeClaisen condensation dCc#1 [R]#1

dCc#2

[R]#2dCc#3

2x NADPH

2x NADP+ H2O

EnzS

O[R]#3

Page 9: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

The Decarboxylative Claisen Condensation (dCc)• in vitro – the classical Claisen condensation:

• in vivo - the decarboxylative Claisen condensation catalysed by a ketosynthase (KS)

– the energy released upon loss of CO2 provides a driving force for the condensation– thioesters are also particularly reactive partners in this type of condensation...

O

OEtH

O

OEt

O

EtO

OEtO O

EtO

O

O

EtO

EtO

+

EtO

O

EnzS

O

SEnz

O

O O

EnzS

CO2

OEnzS

EnzS

O O

EnzS

+

Page 10: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

The Claisen Condensation - Why Thioesters?• recall the chemistry of coenzyme A (1st lecture) – properties of alkyl thioesters (cf. alkyl esters)

– highly electrophilic carbonyl (~ ketone)– high acidity of protons α to the carbonyl of thioesters (cf. ester)– weak C-S bond (cf. C-O bond):

• due to poor orbital overlap between the p-orbital lone pair on sulfur (nS) [cf. nO] and the carbonyl anti bonding orbital π*C=O; (i.e. minimal ‘resonance’ nS → π*C=O)

– good leaving group ability of RS- (cf. RO-)• due to pKa (RSH) ~10 cf. pKa (ROH) ~16

O

SR

ORa poorer leaving group

SRa good leaving group

cf.

Nu:

SR

O Nu O

Nu

O

OR

Nu:

OR

O Nu O

Nu

3p

cf .SH R

O

2p

OH R

O

less ef fective

pKa = 25pKa = 20

weak C-S bond

polarisedreacive carbonyl

O

SH R

O

OH R

Page 11: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Ketone → Methylene - Reduction• ketone → methylene reduction is achieved via a 3-step process:

1. NADPH-mediated ketone → alcohol reduction catalysed by a keto reductase (KR)2. syn-eliminataion of water catalysed by a dehydratase (DH) 3. NADPH-mediated hydrogenation of the double bond catalysed by an enoyl reductase (ER)

• all steps are generally stereospecific but stereospecificity varies from organism to organism– indicated specificities are for human FAS

N

HS H

N

EnzS

O OH

HS

syn-elimination

NH2

O

NH2

O

NADP

ketone -> alcoholreduction

H2O

EnzS

O

EnzS

O

EnzS

O

N

H HR

N

NH2

O

NH2

O

NADP

H

alkenehydrogenation

EnzS

O O

NADPH NADPH

Page 12: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Fatty Acids – Overview of FAS• The in vivo process by which all this takes place involves a ‘molecular machine’ - Fatty Acid

Synthase (FAS)– Type I FAS: single multifunctional protein complex (e.g. in mammals incl. humans)– Type II FAS: set of discrete, dissociable single-function proteins (e.g. in bacteria)– All FASs comprise 8 components (ACP & 7× catalytic activities): ACP, KS, AT, MT, KR, DH, ER & [TE] :

SSO O

O

O

SSH O

O

SSH OSHSO

O

CoAS

O

O

O

CoAS

reduction

KS KSACP ACP

ACPACP KSKS

translocationTE

n

n = 2-8cycles

SHSOO

OH

n

ACP

SHSH

ACP

SHSO

KS ACP

decarboxylativeClaisen

condensationAT

KS = keto synthase (also known as CE = condensing enzyme); AT = acetyl transferase; MT = malonyl transferase;KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein

MT

1) KR2) DH3) ER

KS

KS

Page 13: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

The Acyl Carrier Protein (ACP)• the Acyl Carrier Protein (ACP) is the key protein that allows the growing oligomer to access the

appropriate active sites• The ACP is first primed by the post-translational modification of one of its serine hydroxyl groups:

– the introduction of a phosphopantetheine ‘swinging-arm’ by reaction with acetyl coenzyme A:

– this swinging-arm provides flexibility for module-module acyl transfer & provides binding energy for catalysis– the ACP is inactive prior to priming

phosphopantetheine chain~ 20Å

OP

O

O-O

MeMeO

OHNH

O

NH

HS

N

NN

N

O

NH2

OHO

OPOPO

OOOO coenzyme A (CoASH)H

O

NH

O

NH

HS

PHO

OO

HO

pantetheinate chain

ACP OH

ACPprimed acyl carrier protein

phpsphopantetheinyl transferase(ACP synthase)

Page 14: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Human Fatty Acid Synthase (FAS)• the first three-dimensional structure of human fatty acid synthase (272 kDa) at 4.5 Å resolution by X-

ray crystallography:– Maier, Jenni & Ban Science 2006, 311, 1258 (DOI) ; also Fungal FAS @ 3.1 Å resolution see: Jenni et al.

Science 2007, 316, 254 & 288

Structural overview. (A) Front view: FAS consists of a lower part comprising the KS (lower body) and MAT domains (legs) connected at the waist with an upper part formed by the DH, ER (upper body), and KR domains (arms). (B) Top view of FAS with the ER and KR domains resting on the DH domains. (C) Bottom view showing the arrangement of the KS and MAT domains and the continuous electron density between the KS and MAT domains

Page 15: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS (type II FAS)

Pantetheine

Cys

NB. the following sequence of slides have been adapted from: http://www.courses.fas.harvard.edu/%7echem27/

Page 16: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

O

Me S Co

• AT1 loads acetyl group onto KS1

Acetyl-CoA

Page 17: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

OMe

Page 18: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

OMe

• AT1 loads malonyl group onto ACP1

Malonyl-CoA

O

S Co

O

O-

Page 19: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

S

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

OMe

O

O

-O

Page 20: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

S

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

OMe

• KS1 catalyzes Claisen condensation

O

O

-O

CO2

Page 21: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

S

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

O

OMe

Page 22: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

• KR1 catalyzes reduction of ketone

Me

O O

S

Page 23: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

Me

O OH

S

Page 24: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

• DH1 catalyzes dehydration of alcohol

Me

O OH

S

Page 25: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

O

S Me

Page 26: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

• ER1 catalyzes reduction of alkene

O

S Me

Page 27: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

O

S Me

Page 28: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 MT2 KS2

SH

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

Cys

• KS2 catalyzes translocation to module 2

KR

O

Me

S

Cys

Page 29: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

S

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2

O

Me

TE

SH

CysOH

Ser

Page 30: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

S

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2

O

Me

TE

SH

• MT2 loads malonyl group onto ACP2

Malonyl-CoA

O

S Co

O

O-

CysOH

Ser

Page 31: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

S

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2

O

Me

TE

SO

O

-O

CysOH

Ser

Page 32: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

S

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2

O

Me

TE

S

• KS2 catalyzes Claisen condensation

O

O

-O

CO2

CysOH

Ser

Page 33: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2

O

Me

TE

SO

CysOH

Ser

Page 34: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

• KR2 catalyzes reduction of ketone

Me

O O

SCys

OHSer

Page 35: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

Me

O OH

SCys

OHSer

Page 36: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

• DH2 catalyzes dehydration of alcohol

Me

O OH

SCysOH

Ser

Page 37: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TEMe

O

SCysOH

Ser

Page 38: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

• ER2 catalyzes reduction of alkene

Me

O

SCysOH

Ser

Page 39: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TEMe

O

S OHCys Ser

Page 40: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

• TE catalyzes transesterification

OHCys Ser

Me

OS

Page 41: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

OCys Ser

Me

O

SH

Page 42: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

• TE catalyzes hydrolysis

OCys Ser

Me

O

SH

OHH

Page 43: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 MT2 KS2

SH

FATTY ACID BIOSYNTHESIS

Pantetheine

KR2 DH2 ER2 TE

OHCys Ser

Me

O

SHOH

Page 44: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Unsaturated Fatty Acids• two mechanisms are known for the introduction of double bonds into fatty acids:

– in BACTERIA: anaerobic [O] → monounsaturated FAs (MUFAs)– in MAMMALS, INSECTS & PLANTS: aerobic [O] → MUFAs & polyunsaturated FAs (PUFAs)

Page 45: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Prostaglandins & Thromboxanes• prostaglandins & thromboxanes are derived from further oxidative processing of arachiodonic acid• both are important hormones which control e.g. smooth muscle contractility (blood pressure),

gastric secretion, platelet aggregation & inflammation (<nM activity)– various pharmaceuticals including corticosteroids & asprin inhibit biosynthethetic steps in these pathways

Page 46: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Leukotrienes• leukotrienes are the other main class of 2° metabolites derived from arachiodonic acid

– they are potent (<nM) inflammatory substances released during allergic reactions

CO2H5-lipoxygenase

O O5

arachidonic acid

H H

CO2HO OH

HH

leukotriene A4 (LTA4)

leukotriene B4 (LTB4)

CO2HOHOH

LTA4 hydrolase

leukotriene C4 (LTC4)

S

LTC4 synthase

CO2HO

HN CO2H

NH

O

CO2H

H2N

O

OHCO2H

C5H11

NRPS(glutathione)

fatty acid

Page 47: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

The Polyketide Pathway• Polyketides are also sometimes known as acetogenins• acetyl CoA is also the starting point for the biosynthesis of polyketide secondary metabolites• these metabolites are topologically very different to the fatty acid metabolites but are in fact

synthesised in a very similar fashion. The significant difference is that during the iterative cycle of chain extension the β-keto group is generally not completely reduced out. This gives rise to huge structural diversity based around a 1,3-oxygenation pattern & cyclisation to give aromatic compounds

• NB. unlike fatty acids. polyketides are NOT biosynthesised by humans – only microorganisms (bacteria) & fungi

O

SCoA

O

SEnz

O

SEnz

O O

O

OH

HO

CO2HOH

n

FATTY ACIDS (FAs)

n

n

POLYKETIDES (PKs)

the polyketide pathway

O

CoAS

O

O

O

CoAS

O

O

× (n+1)

× (n+1)

Page 48: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Polyketides• the structural variety of polyketide secondary metabolites is very wide:

– NB. starter units marked in red; extender units in bold black; post oligomerisation appended groups in blue

rapamycin(immunosuppressant)

NB. a mixed polypropionate/acetate

6-methylsalicylic acid(antibiotic)

POLYKETIDES

aflatoxin B1(mycotoxic carcingen)

erythromycin A(antibiotic)

mevinolin(=lovastatin®)

(anti-cholesterol)

actinorhodin(antibiotic)

O

O

O

O O

MeO H

H

O

O

O

O

O

OO

NMe2

HO

OH

OMe

HOOH

OH

Me O

O

O O

OH

OHCO2H

HO

CO2HOH

O

O

OHCO2H

MeMe

O

OMe

MeOCl

O

O

O

O OH

orsellinic acid citrinin(kidney toxin

'yellow rice disease')

OH

O

OH

Griseofulvin(treatment for ring worm infections)

6-deoxyerythronolide BNB. a polypropionate

O

O

O

N O

O

O

HO

MeO

MeO

OMe

OH

O

OH H

Me

O

OH

OH

O

O

CO2H2 H

Page 49: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Historical Perspective – ‘The Acetate Hypothesis’• 1907: James Collie (University of London) effects conversion of dehydroacetic acid to orcinol by

boiling with Ba(OH)2 (while trying to deduce the structure of the former):

– Collie perceptively postulated the triketone as an intermediate & suggetsed that this might also be an intermediate in the biosynthesis of orcinol (the ‘polyketide hypothesis’)

• 1955: Arthur Birch used 14C labelled acetate to show that 6-methylsalicylic acid (ex. Penicillium patulum) was biosynthesised by head-to-tail oligomerisation of 4 × acetate units and proposed the following biogenesis – proceeding via a tetraketide intermediate (cf. Collie!):

O

O O

OO

H2O

O

HOO

dehydroacetic acidO

OHO

O

O

OH

HO

orcinol

H

H2O

O

OH

OH

O

HOOH

2,4,6-triketone(triketide)

O

OH4x

3x H2O

OOH

O

O O

OOH

HO

O O

OH

HO

O O

OH

OH

OH O2x H2O14C labelled

acetate 6-methylsalicilic acidtetraketide

Page 50: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Polyketides – Oligomerisation Steps• polyketides are biosynthesised by a process very similar to that for fatty acids

– the key differences are:• greater variety of starter units, extender units & termination processes• absent or incomplete reduction of the iteratively introduced β-carbonyl groups: ie. each cycle may differ in terms

of KR, DH & ER modules & stereochemistry

– this leads to enormous diversity...

Page 51: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Polyketide Diversity • starter units:

• extender units:

• non-functional or missing KR, DH, ER:

• stereochemistry:

• termination step:– depends on nucleophile that releases product at TE stage:

no KROH

no DHno EROH

or or

O (R) (S) (Z) (E)none

missingH H

O

CoAS

R = MeR = EtR = nPr & iPr

O

CoAS

O

CoAS

O

CoAS R

acetyl CoA propionyl CoA butyryl CoA

O

CoAS

isobutyryl CoA

O

CoAS

O

OR'

R' = HR' = MeR' = Et

malonyl CoA (C2) Me-malonyl CoA (C3) Et-malonyl CoA (C4)

O

CoAS

O

O

O

CoAS

O

OMe

O

CoAS

O

OEt

1) side chain stereochemistry (determined by KSn)2) OH stereochemistry (determined by KRn+1)3) alkene stereochemistry (determined by DHn+1)

Nu = H2OO

EnzS

O

HO

Nu = OHintramolecular

O

ONu = CoA O

CoAS

O

H

NADH

Page 52: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Polyketides – Overview of PKS• the in vivo process of polyketide synthesis involves PolyKetide Synthases (PKSs):

– PKSs (except Type II, see later) comprise the same 8 components as FASs. i.e. (ACP & 7× catalytic activities): ACP, KS, AT, MT, [KR, DH, ER & TE]

– Type I PKSs: single (or small set of) multifunctional protein complex(es)• modular (microbial) - each ‘step’ has a dedicated catalytic site (→ macrolides)• iterative (fungal) – single set of catalytic sites, each of which may operate in each iteration (cf. FASs) (→

aromatics/polyphenols - generally)– Type II PKSs: single set of discrete, dissociable single-function proteins

• iterative (microbial) - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols)

SSO O

O

O

SSH O

O

SSH OSHSO

O

CoAS

O

O

O

CoAS

reduction ?

KS KSACP ACP

ACPACP KSKS

translocationTE

n

ncycles

SHSOO

OH CE

n

ACP

SHSH

ACP

SHSO

KS ACP

decarboxylativeClaisen

condensationAT

KS = keto synthase; AT = acetyl transferase; MT = malonyl transferase;KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein

MT

1) ± KR2) ± DH3) ± ER

KSOOO

O

OO

Type I (modular & iterative):[Type II see later]

Page 53: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 A

POLYKETIDE BIOSYNTHESIS [Type I – (modular)]

Pantetheine

Cys

ACP0 AT0

SH

Pantetheine Pantetheine

NB. the following sequence of slides has also been adapted from: http://www.courses.fas.harvard.edu/%7echem27/

Page 54: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 A

Pantetheine

Cys

ACP0 AT0

SH

Pantetheine Pantetheine

OMe S Co

• AT0 loads starting group (propionyl) onto ACP0

Propionyl-CoA

POLYKETIDE BIOSYNTHESIS

Page 55: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 A

Pantetheine

Cys

ACP0 AT0

S

Pantetheine Pantetheine

O

Me

POLYKETIDE BIOSYNTHESIS

Page 56: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

SH

ACP2 A

Pantetheine

Cys

ACP0 AT0

SPantetheine PantetheineO

Me

• KS1 catalyzes translocation to module 1

POLYKETIDE BIOSYNTHESIS

Page 57: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

SH

ACP2 A

Pantetheine

Cys

ACP0 AT0

SH

Pantetheine PantetheineO

Me

POLYKETIDE BIOSYNTHESIS

Page 58: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

SH

ACP2 AT2

SH

Pantetheine

Cys

• AT1 loads methylmalonyl group onto ACP1

Methylmalonyl-CoA

O

S Co

O

O-

P0 AT0

SH

O

Me

Me

POLYKETIDE BIOSYNTHESIS

Page 59: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

S

ACP2 AT2

SH

Pantetheine

Cys

O

O

O

-O

Me

Me

P0 AT0

SH

POLYKETIDE BIOSYNTHESIS

Page 60: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

S

S

ACP2 AT2

SH

Pantetheine

Cys

• KS1 catalyzes Claisen condensation

O

O

-O

CO2

O

Me

Me

P0 AT0

SH

POLYKETIDE BIOSYNTHESIS

Page 61: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

S

ACP2 AT2

SH

Pantetheine

Cys

O

O

Me

P0 AT0

SHMe

Stereocenter

POLYKETIDE BIOSYNTHESIS

*

Page 62: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 AT2

SH

Pantetheine

Cys

• KR1 catalyzes reduction of ketone

MeO O

SMe

P0 AT0

SH

POLYKETIDE BIOSYNTHESIS

*

Page 63: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 AT2

SH

Pantetheine

Cys

SMe

O OH

Me

P0 AT0

SH

Stereocenter

POLYKETIDE BIOSYNTHESIS

**

Page 64: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 AT2

SH

Pantetheine

Cys

• no DH1 activity

SMe

O OH

Me

P0 AT0

SH

POLYKETIDE BIOSYNTHESIS

**

Page 65: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 AT2

SH

Pantetheine

Cys

• no ER1 activity

SMe

O OH

Me

P0 AT0

SH

POLYKETIDE BIOSYNTHESIS

**

Page 66: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

ACP1 AT1 KS1 KR1 DH1 ER1

SH

ACP2 AT2 KS2

SH

SH

Pantetheine

Cys

• KS2 catalyzes translocation to module 2

KRCys

Me

O

HOMe

S

POLYKETIDE BIOSYNTHESIS

**

Page 67: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

H1 ER1 ACP2 AT2 KS2

S

Pantetheine

KR2 DH2 ER2 TE

SH

CysOH

Ser

Me

O

HOMe

POLYKETIDE BIOSYNTHESIS

**

Page 68: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Erythromycin – Type I(modular) PKS• 6-deoxyerthronolide is a precursor to erythromycin A – bacterial antibiotic (Streptomyces erythreus):

– propionate based heptaketide; 3 multifunctional polypeptides (DEBS1, DEBS2 & DEBS3, all ~350 kDa) – Katz et al. Science 1991, 252, 675 (DOI); Staunton, Leadley et al. Science 1995, 268, 1487 (DOI); Khosla et al. J.

Am. Chem. Soc. 1995, 9105 (DOI); review: Staunton & Weissman Nat. Prod. Rep. 2001, 18, 380 (DOI)

Page 69: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Mevinolin – Type I(iterative) PKS• mevinolin (=lovastatin®) – cholesterol lowering metabolite of filamentous fungus Aspergillus terreus

– inhibits HMG-CoA → mevalonate (see next lecture) – rate-limiting step in biosynthesis of cholesterol– acetate based polyketide composed of a diketide and nonaketide linked by an ester– 2 × Type I (iterative) PKSs: LNKS and LDKS...both contain MeT (methyl transferase) activities– Hutchinson et al. Science 1999, 284, 1368 (DOI)

O

CoAS

O

CoAS

O

O

3x CO2

3x

LNKS

mevinolin (=lovastatin®)

Me O

O

O O

OH

Me

MeO

SEnz(MeT)SAM

O

CoAS

O

O

3x CO2

3x

MeO

SEnz

Diels-Alder

MeOH

OH O

SEnz

O

CoAS

O

O

2x CO2

2x

MeOH

OH O

OH

P450

MeOH

OH O

OHOH

P450O

CoAS

O

CoAS

O

O

1x CO2

1x

LDKS(MeT)SAM

SEnz

OMe

nonaketide

diketide

Page 70: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Type II PKSs – Enzyme Clusters (Microbial)• Type II PKSs: single set of discrete, dissociable single-function proteins (ACP & 6× catalytic

functions): ACP, KSα, KSβ, [KR, DH, ER, & TE] [NB. NO acetyl or malonyl transferases (AT, MT)]– iterative - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols)

• these clusters (generally) use malonate as BOTH starter & extender unit• their ACP proteins are able to load malonate direct from malonyl CoA (no MT required)

– the starter malonate is decarboxylated by ‘ketosynthase’ β (KSβ) to give S-acetyl-ACP– the extender malonates undergo decarboxylative Claisen condensations by ketosynthase α (KSα)

• these clusters rarely utilise KR, DH or ER activities and produce ‘true’ polyketides:

S

KSβ ACP

O

CoAS

O

O

O

CONH2

SSH

KSα ACP

O SHS

KSα ACP

O SSO O

O

O

SSH O

O

SSH OSHSO

O

CoAS

O

O

reduction(rarely)

KSα KSαACP ACP

ACPACP KSαKSα

translocationTE

n

ncycles

SHSO

O

OH KSα

n

ACP

decarboxylativeClaisen

condensation

KSβ = 'keto synthase β' (=decarboxylase!); KSα = 'keto synthase α' (=ketosynthase!); KR = keto reductase;DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein

1) ± KR2) ± DH3) ± ER

OOO

O

OO

Type II (iterative):

SH

KSβ ACP

CONH2

Page 71: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Biosynthesis of Actinorhodin – Type II PKS• actinorhodin – octaketide bacterial antibiotic (Streptomyces coelicolor)

– Hopwood Chem. Rev. 1997, 97, 2465 (DOI)

– timing of 1st cyclisation and mechanism of control of chain length uncertain• octaketide synthesis then cyclisation? (as shown above)• hexaketide synthesis then cyclisation then two further rounds of extension?

– indications can sometimes be gleaned from biomimetic syntheses...

O

CoAS

O

O

8x CO2

7x

O

CoAS

O

O

O O O

O O

SEnz

O O

O 1

16

O O O

O

SEnz

O O

1

16

OHHO

KR

aromatase

cyclase

actinorhodin

O

OH

OH

O

O

CO2H2 H

O O O

O

SEnz

O O

O 1

16

OH

O O

O

SEnz

O O

1

16

OHO O

SEnz

O O

1

16

OH

OH

cyclase

octaketide

PKS[ACP, KSβ, KSα]

Page 72: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Scope of Structures - Type II PKS• microbial polyphenolic metabolites:

• many display interesting biological activities...

O

NH2

OOHOOH

OHHH

OHNMe2

Me

tetracycline

decaketides (10x C2)

pentaketides (5x C2) OMe

MeO OMe

O O

eugenone

hexaketides (6x C2)O

OOH

plumbagin

heptaketides (7x C2)

O

O

OHOH

HO

emodinoctaketides (8x C2)

nonaketides (9x C2)

O

OOHOH

MeO

rubrofusarin

OH

O

O OH

OOH

rabelomycine

Page 73: Biosynthesis – Inspiration for Drug Discovery · CO. 2 +H. 2. O. 1) 'light reactions': hv -> ATP and NADPH 2) 'dark reactions': CO. 2-> sugars (Calvin cycle) HO O HO HO OH HO. glucose

Primary Metabolism - Overview

CO2 + H2O

1) 'light reactions': hv -> ATP and NADPH2) 'dark reactions': CO2 -> sugars (Calvin cycle)

OHOHOHOOH

HO

glucose& other 4,5,6 & 7 carbon sugars

Primary metabolism Secondary metabolites

oligosaccharidespolysaccharidesnucleic acids (RNA, DNA)

phosphoenol pyruvate

glycolysis

CO2

HOOH

OHOOH

HO

POCO2

PO

erythrose-4-phosphate

SHIKIMATE METABOLITEScinnamic acid derivativesaromatic compoundslignans, f lavinoids+

shikimate

aromatic amino acids

aliphatic amino acidspeptidesproteinsCO2

Opyruvate

SCoA

Oacetyl coenzyme A

Citric acidcycle

(Krebs cycle)

ALKALOIDSpenicillinscephalosporinscyclic peptides

tetrapyrroles (porphyrins)

PHOTOSYNTHESIS

saturated fatty acidsunsaturated fatty acidslipids

FATTY ACIDS & POLYKETIDESprostaglandinspolyacetylenesaromatic compounds, polyphenolsmacrolides

ISOPRENOIDSterpenoidssteroidscarotenoids

SCoA

OCO2

malonyl coenzyme A

CoAS

O

O

HO

HOCO2

mevalonateacetoacetyl coenzyme A

Primary metabolites