62
[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §3.1 Relative Extrema

[email protected] MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

Embed Size (px)

Citation preview

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§3.1 RelativeExtrema

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx3

Bruce Mayer, PE Chabot College Mathematics

§3.1 Learning Goals

Discuss increasing and decreasing functions

Define critical points and relative extrema

Use the first derivative test to study relative extrema and sketch graphs

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx4

Bruce Mayer, PE Chabot College Mathematics

Increasing & Decreasing Values

A function f is INcreasing if whenever a<b, then:

• INcreasing is Moving UP from Left→Right

A function f is DEcreasing if whenever a<b, then:

• DEcreasing is Moving DOWN from Left→Right

)()( bfaf

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx5

Bruce Mayer, PE Chabot College Mathematics

Inc & Dec Values Graphically

0 1 2 3 4 5 6 7 8 9 10-4

-3

-2

-1

0

1

2

3

4

5

6

7

x

y =

f(x)

MTH15 • Bruce Mayer, PE

XYf cnGraph6x6BlueGreenBkGndTemplate1306.m

INcreasing

DEcreasing

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx6

Bruce Mayer, PE Chabot College Mathematics

Inc & Dec with Derivative

If for every c on the interval [a,b]• That is, the Slope is POSITIVE

Then f is INcreasing on [a,b]

If for every c on the interval [a,b]• That is, the Slope is NEGATIVE

Then f is DEcreasing on [a,b]

0)(' cxdx

dfcf

0)(' cxdx

dfcf

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx7

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec

The function, y = f(x),is decreasing on [−2,3] and increasing on [3,8]

43 2 xxfy

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx8

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

The default list price of a small bookstore’s paperbacks Follows this Formula• Where

– x ≡ The Estimated Sales Volume in No. Books– p ≡ The Book Selling-Price in $/book

The bookstore buys paperbacks for $1 each, and has daily overhead of $50

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx9

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

For this Situation Find:• Find the profit as a function of x • intervals of increase and decrease for the

Profit Function

SOLUTION Profit is the difference of revenue and

cost, so first determine the revenue as a function of x:

xpxxR 2/310 xx

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx10

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

And now cost as a function of x:

Then the Profit is the Revenue minus the Costs:

cost fixedcost variable xC 501 x

xCxRxP

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx11

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

Now we turn to determining the intervals of increase and decrease.

The graph of the profit function is shown next on the interval [0,100] (where the price and quantity demanded are both non-negative).

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx12

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

From the Plot Observe that The profit function appears to be increasing until some sales level below 40, and then decreasing thereafter.

Although a graph is informative, we turn to calculus to determine the exact intervals

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx13

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

We know that if the derivative of a function is POSITIVE on an open interval, the function is INCREASING on that interval. Similarly, if the derivative is negative, the function is decreasing

So first compute thederivative, or Slope,function:

509' 2/3 xxdx

dxP

2/1

2

39 x

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx14

Bruce Mayer, PE Chabot College Mathematics

Example Inc & Dec Profit

On Increasing intervals the Slope is POSTIVE or NonNegative so in this case need

SolvingThisInEquality:

The profit function is DEcreasing on the interval [36,100]

02

39 2/1 x

dx

dP

02

39 2/1 x

3

292/1 x 36x

92

3 2/1 x

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx15

Bruce Mayer, PE Chabot College Mathematics

Relative Extrema (Max & Min)

A relative maximum of a function f is located at a value M such that f(x) ≤ f(M) for all values of x on an interval a<M<b

A relative minimum of a function f is located at a value m such that f(x) ≥ f(m) for all values of x on an interval a<m<b

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx16

Bruce Mayer, PE Chabot College Mathematics

Peaks & Valleys

Extrema is precise math terminology for Both of• The TOP of a

Hill; that is, a PEAK

• The Bottom of a Trough, That is a VALLEY

0 10 20 30 40 50-3

-2

-1

0

1

2

3

4

x

y =

f(x)

MTH15 • Bruce Mayer, PE

PEAKPEAK

VALLEY

VALLEY

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx17

Bruce Mayer, PE Chabot College Mathematics

Rel&

Ab

s Max&

Min

0 10 20 30 40 50-3

-2

-1

0

1

2

3

4

x

y =

f(x)

MTH15 • Bruce Mayer, PE

RelativeMax

AbsoluteMax

RelativeMin

AbsoluteMin

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx18

Bruce Mayer, PE Chabot College Mathematics

Critical Points

Let c be a value in the domain of f Then c is a Critical Point If, and only if

cxcx dx

df

dx

dfOR0

HORIZONTAL slopeat c

VERTICAL slopeat c

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx19

Bruce Mayer, PE Chabot College Mathematics

Critical Points GeoMetrically Horizontal Vertical

0 0.5 1 1.5 2 2.5 30

2

4

6

8

10

12

14

16

18

20

x

y =

f(x)

MTH15 • Critical-Pt

0.05 0.1 0.15 0.2 0.250.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

y=f(

x)

MTH15 • Zero Critical-Pt

(0.1695, 1.2597)

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx20

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 07Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%clear; clc;% The Limitsxmin = 0; xmax = 0.27; ymin =0; ymax = 1.3;% The FUNCTIONx = linspace(xmin,xmax,1000); y1 = x.*(12-10*x-100*x.^2); %% The Max Condition[yHi,I] = max(y1); xHi = x(I);y2 = yHi*ones(1,length(x));% The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y1, 'LineWidth', 5),axis([.05 xmax .6 ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y=f(x)'),... title(['\fontsize{16}MTH15 • Zero Critical-Pt',]),... annotation('textbox',[.15 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', ' ','FontSize',7)hold onplot(x,y2, '-- m', xHi,yHi, 'd r', 'MarkerSize', 10,'MarkerFaceColor', 'r', 'LineWidth', 2)set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.1:ymax])hold off

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx21

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 23Jun13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m% ref:%% The Limitsxmin = 0; xmax = 3; ymin = 0; ymax = 20;% The FUNCTIONx = linspace(xmin,1.99,1000); y = -1./(x-2);% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH15 • \infty Critical-Pt',]),... annotation('textbox',[.51 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', ' ','FontSize',7)hold onplot([2 2], [ymin,ymax], '--m', 'LineWidth', 3)set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:2:ymax])

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx22

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

Find all critical numbers and classify them as a relative maximum, relative minimum, or neither for The Function:

2

24

xxxf

-10 -8 -6 -4 -2 0 2 4 6 8 10-40

-30

-20

-10

0

10

20

30

40

x

y =

f(x)

MTH15 • Bruce Mayer, PE

XYf cnGraph6x6BlueGreenBkGndTemplate1306.m

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx23

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

SOLUTION Relative extrema can only take place at

critical points (but not necessarily all critical points end up being extrema!)

Thus we need to find the critical points of f. In other words, values of x so that

UnDefinedOR0 dx

df

dx

df

Think Division by Zero

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx24

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

For theZeroCriticalPoint

Now need to consider critical points due to the derivative being undefined

22

242

4)('0

xx

dx

d

xx

dx

dxf

1x

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx25

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

The Derivative Fcn, f’ = 4 − 4/x3 is undefined when x = 0.

However, it is very important to note that 0 cannot be the location of a critical point, because f is also undefined at 0

In other words, no critical point of a function can exist at c if no point on f exists at c

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx26

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

Use Direction Diagram to Classify the Critical Point at x = 1

Calculating the derivative/slope at a test point to the left of 1 (e.g. x = 0.5) find

Similarly for x>1, say 2:28)5.0(44)5.0(' 3 f → f is DEcreasing

5.3)2(44)2(' 3 f → f is INcreasing

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx27

Bruce Mayer, PE Chabot College Mathematics

Example Critical Numbers

From our Direction Diagram it appears that f has a relative minimum at x = 1.

A graph of the function corroborates this assessment.

Relative Minimum

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx28

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

The average temperature, in degrees Fahrenheit, in an ice cave t hours after midnight is modeled by:

Use the Model to Answer Questions:• At what times was the temperature

INcreasing? DEcreasing? • The cave occupants light a camp stove in

order to raise the temperature. At what times is the stove turned on and then off?

1

1102

tt

ttT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx29

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

SOLUTION: The Temperature “Changes Direction”

before & after a Max or Min (Extrema)• Thus need to find the Critical Points which

give the Location of relative Extrema• To find critical points of T, determine values

of t such that one these occurs– dT/dt = 0 or – dT/dt → ±∞ (undefined)

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx30

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

Taking dT/dt:

Using the Quotient Rule

22

22

1

11101101

tt

ttdtd

ttdtd

tt

dt

dT

22

2

1

12110101

tt

tttt

dt

dT

222

11101

110

tttdt

d

dt

dT

tt

ttT

dt

d

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx31

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

Expanding and Simplifying

When dT/dt → ∞

• The denominator being zero causes the derivative to be undefined– however,(t2−t +1)2 is zero exactly when t2−t + 1

is zero, so it results in NO critical values

22

2

22

22

1

11210

1

1820101010

tt

tt

tt

tttt

dt

dT

011

11210 2222

2

tt

tt

tt

dt

dT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx32

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

When dT/dt = 0

Thus Find: Using the quadratic

formula (or a computer algebra system such as MuPAD), find

112101011

112100 22222

22

2

tttttt

tt

tt

011210 2 tt

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx33

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

For dT/dt = 0 find: t ≈ −1.15 or t ≈ 0.954 Because T is always continuous (check

that the DeNom fcn, (t2−t +1)2 has no real solutions) these are the only two values at which T can change direction

Thus Construct a Direction Diagram with Two BreakPoints:• t ≈ −1.15• t ≈ +0.954

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx34

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

The DirectionDiagram

We test the derivative function in each of the three regions to determine if T is increasing or decreasing. Testing t = −2

The negative Slope indicates that T is DEcreasing

954.015.1

| |

49

25

1)2(2

11)2(221022

2

2

tdt

dT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx35

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

The DirectionDiagram

Now we test in the second region using t = 0:

The positive Slope indicates that T is INcreasing

954.015.1

| |

11

1)0(0

11)0(201022

2

0

tdt

dT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx36

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

The DirectionDiagram

Now we test in the second region using t = 1:

Again the negative Slope indicates that T is DEcreasing

954.015.1

| |

1

1)1(1

11)1(211022

2

1

tdt

dT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx37

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

The Completed SlopeDirection-Diagram:

We conclude that the function is increasing on the approximate interval (−1.15, 0.954) and decreasing on the intervals (−∞, −1.15) & (0.954, +∞) • It appears that the stove was lit around

10:51pm (1.15 hours before midnight) and turned off around 12:57am (0.95 hours after midnight), since these are the relative extrema of the graph.

954.015.1

| |

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx38

Bruce Mayer, PE Chabot College Mathematics

Example Evaluating Temperature

GraphicallyRelative Max (Stove OFF)

Relative Min (Stove On)

1

1102

tt

ttT

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx39

Bruce Mayer, PE Chabot College Mathematics

MuPAD Plot Code

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx40

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard Work

Problems From §3.1• P40 → Use Calculus to Sketch Graph• Similar to P52 →

Sketch df/dx for f(x) Graph at right

• P60 → MachineTool Depreciation

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx42

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

Appendix srsrsr 22

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx43

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx44

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx45

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx46

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx47

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx48

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx49

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx50

Bruce Mayer, PE Chabot College Mathematics

P3.1-40 Hand Sketch

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx51

Bruce Mayer, PE Chabot College Mathematics

P3.1-40 MuPAD Graph

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx52

Bruce Mayer, PE Chabot College Mathematics

Wh

iteBd

Grap

hic

for P

3.1-52

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx53

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx54

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx55

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx56

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx57

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx58

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx59

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx60

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-12_sec_3-1_Rel_Extrema_.pptx61

Bruce Mayer, PE Chabot College Mathematics

P3.1-60 MuPAD