55
IN 2 UB 14 de novembre de 2011 Col . legi Oficial de Metges de Barcelona BOOK OF ABSTRACTS

BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

IN2UB14 de novembre de 2011

Col.legi Oficial de Metges de Barcelona

BOOK OF ABSTRACTS

Page 2: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

Disseny gràfic i maquetació: Cristina Muñoz Idoate | www.idoate.com

Page 3: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

3IV Jornada IN2UB - 14 Novembre 2011 TAULA DE CONTINGUTS

TAULA DE CONTINGUTS

Salutació del director

Registre de participants

Programa

Keynote speaker

Abstracts

Posters

4

5

8

9

18

7

Page 4: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

4IV Jornada IN2UB - 14 Novembre 2011 SALUTACIÓ DEL DIRECTOR

Benvolguts investigadors i investigadores,

Vull agrair-vos, un any més, la vostra participació a la jornada anual de IN2UB. D’ençà dels inicis de l’institut, ara celebrem la quarta Jornada i estem contents de veure que aquest projecte de reunir-vos a tots per intercanviar experiències i incentivar el diàleg té continuïnat. Enguany vull agrair en es-pecial la participació de Rogério Gaspar, de la Universitat de Lisboa, així com la participació de membres d’altres insitucions afins a l’IN2UB i actives en la recerca en nanociència que es fa actualment a Catalunya com són el CRESIB, l’IBEC i l’IQAC-CSIC.

El meu agraïment també a Mª José Garcia Celma i a Albert Romano per la seva ajuda pel que fa a l’organització científica, i un agraïment especial per a Xavier Batlle, Maria Teresa Montero i Jordi Hernández Borrell, per la seva col•laboració imprescindible en els detalls d’última hora.

L’edició del recull ha anat a cura de Meritxell Salvany, gestora de l’institut, mentre que el disseny gràfic és de Cristina Muñoz Idoate. Volem agrair-los a elles també la seva col•laboració, així com agraïm a Isabel Calaf, a Susana Hernández i a Salvador Piqué, del Col•legi Oficial de Metges de Barcelona (COMB), la seva bona feina pel que fa a la logística de la jornada.

Espero poder-vos retrobar l’any vinent a la V Jornada, després d’un curs ple de recerca i de noves fites que ara encetem

Amílcar LabartaDirector de l’IN2UBBarcelona, novembre de 2011

Page 5: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

5IV Jornada IN2UB - 14 Novembre 2011 REGISTRE DE PARTICIPANTS

REGISTRE DE PARTICIPANTSNOM COGNOM 1 COGNOM 2 FACULTAT DEPARTAMENT

Guadalupe Abrego Escolar FARMÀCIA Farm. i Tecnol. Farmacèutica

Helen Lissette Alvarado Bonilla FARMÀCIA Farm. i Tecnol. Farmacèutica

Jordi Andreu Batallé - FÍSICA Física Aplicada i Òptica

Rosa Maria Aparicio Pelegrín FARMÀCIA Farm. i Tecnol. Farmacèutica

Leticia Arnedo Sánchez - Màster de Nanociència

Xavier Batlle Gelabert FÍSICA Física Fonamental

Yonder Berencén - FÍSICA Electrònica

Edgar Julián Cabrera Magaña FÍSICA Física Aplicada i Òptica

Gabriela Calderó Linnhoff IQAC-CSIC CIBER-BBN

Anna Cristina Calpena Campmany FARMÀCIA Farm. i Tecnol. Farmacèutica

Carla Carbonell Cortés FÍSICA Física Fonamental

Albert Cirera Hernández FÍSICA Electrònica

Sergi Claramunt Ruiz FISICA Electrònica Meritxell Cortés Francisco QUÍMICA Química Física Immaculada Dinarès Milà FARMÀCIA Farmacol. i Quím. Terapèutica

Òscar Domènech Cabrera FARMÀCIA Fisicoquímica

Mª Antonia Egea Gras FARMÀCIA Fisicoquímica

Gustavo Egea Guri MEDICINA Biol Cel•lular, immunol. i Neurociències

Elvira Escribano Ferrer FARMÀCIA Farm. i Tecnol. Farmacèutica

Marta Espina Garcia FARMÀCIA Fisicoquímica

Xavier Fernández Busquets IBEC-CRESIB

Federico Ferrarese Lupi FÍSICA Electrònica

Albert Figuerola Silvestre QUÍMICA Química Inorgànica

Cristina Fornaguera Puigvert IQAC-CSIC CIBER-BBN

Víctor Manuel Freire Soler FÍSICA Física Aplicada i Òptica

Maria José Garcia Celma FARMÀCIA Farm. i Tecnol. Farmacèutica

Mª Luisa Garcia López FARMÀCIA Fisicoquímica

Antoni Garcia Santiago FÍSICA Física Fonamental

Paula García Borque FARMÀCIA Farmacol. i Quím. Terapèutica

Núria García Castelló FÍSICA Electrònica

Sonia García Jimeno FARMÀCIA Fisicoquímica

Blas Garrido Fernández FÍSICA Electrònica

Rogério Gaspar - UNIVERSITAT DE LISBOA - EUFEPS

Elvira Gómez Valentín QUÍMICA Química Física

Elisabet González Mira FARMÀCIA Fisicoquímica

Frank Güell Vilà FÍSICA Electrònica

Jordi Hernández Borrell FARMÀCIA Fisicoquímica

Sergi Hernández Márquez FÍSICA Electrònica

Sergi Hernández Navarro QUÍMICA Química Física

Jordi Ignés Mullol QUÍMICA Química Física

Sergio Illera Robles FÍSICA Electrònica

Page 6: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

6IV Jornada IN2UB - 14 Novembre 2011

NOM COGNOM 1 COGNOM 2 FACULTAT DEPARTAMENT

Amílcar Labarta Rodríguez FÍSICA Física Fonamental

Stefanie Leitner - IQAC-CSIC CIBER-BBN

Sergi Lendínez - FÍSICA Física Fonamental

Julià López Vidrier FÍSICA Electrònica

Lluís López Conesa FÍSICA Electrònica

Pedro Melgar Lesmes IQAC-CSIC

Mina Moeni - FARMÀCIA Fisicoquímica

Oriol Monereo Cuscó FÍSICA Electrònica

Mª Teresa Montero Barrientos FARMÀCIA Fisicoquímica

Genoveva Morral Ruiz FARMÀCIA Farm. i Tecnol. Farmacèutica

Carlos Moya Álvarez FíSICA Física Fonamental

Francesca Peiró Martínez FÍSICA Electrònica

Paolo Pellegrino - FÍSICA Electrònica

Oriol Penon Esteva FARMÀCIA Farmacol. i Quím. Terapèutica

Maria Lluïsa Pérez Garcia FARMÀCIA Farmacol. i Quím. Terapèutica

Núria Petit Garrido QUÍMICA Química Física

Beatriz Pina Romero FAE Francisco Albero, S. A.

Arnau Pou Raurell FÍSICA Electrònica

Alba Pulido Companys QUÍMICA Química Física

Joan Manel Ramírez Ramírez FÍSICA Electrònica

Francisco M. Ramos - FAE Francisco Albero, S. A.

José Manuel Rebled Corsellas FÍSICA Electrònica

Daniel Reta Mareñu Màster de Nanociència

Ana Mafalda Rodrigues - FARMÀCIA Farmacol. i Quím. Terapèutica

Ferran Roig Roig FARMÀCIA Farm. i Tecnol. Farmacèutica

Albert Romano Rodríguez FÍSICA Electrònica

Meritxell Salvany Balada IN2UB Gestora

Jordi Samà Monsonís FÍSICA Electrònica

Cristina Seco Martorell FíSICA Fonamental

Javier Selva Sánchez MEDICINA Biol Cel•lular, immunol. i Neurociències

Llorenç Servera Serapio Doctorand

Pietro Tierno QUÍMICA Química Física

Elisa Vallés Giménez QUÍMICA Química Física

Josep Oriol Valls Planells FARMÀCIA

Martha Vázquez - FARMÀCIA Farm. i Tecnol. Farmacèutica

Ramon Vicente Castillo QUÍMICA Química Inorgànica

Anna Vilà Arbonés FÍSICA Electrònica

Joan Vilana Balastegui Màster de Nanociència

Sílvia Vílchez Maldonado IQAC-CSIC CIBER-BBN

Elena Xuriguera Martín QUÍMICA C. dels Materials i Eng. Metal•lúrgica

REGISTRE DE PARTICIPANTS

Page 7: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

7IV Jornada IN2UB - 14 Novembre 2011 PROGRAMA

PROGRAMA

9.20-9.50 Recepció i acollida

9.50-10.00 Obertura: Amílcar Labarta

10.00-10.25 Jordi Andreu (UB)Energia solar fotovoltaica: de la R+D a la industrialització

10.25-10.50 Jordi Hernández Borrell (UB)Sectivitat lipídica i distribució de lactosa permeasa d’escherichia coli en bicapes: estudis d’AFM i FRET

10.50-11.20 Coffee break

11.20-11.40 Xavier Fernández Busquets (IBEC-CRESIB)Towards a Magic Bullet against Malaria: Paul Ehrlich revisited 11:40-12:00 Stefanie Leitner (IQAC-CSIC)Studies on Cationic Polymeric Nano-emulsions and Nanoparticle Dispersions for Biomedical Applications

12:00-12:50 Rogério Gaspar (Universitat de Lisboa - EUFEPS)

13.00 Lunch

14.30-16.00 Poster Session

16.00-16.20Albert Figuerola Silvestre (UB)Nanohybrids: Nanodomains and Nanointerfaces

16.20-16.40 Pietro Tierno (UB)Paramagnetic Micro-ellipsoids: from Catalytic Motors to Janus Composite

16.40-17.00 Yonder Berencén (UB)Perspectives of Light Emitting Devices Based on Silicon-rich Silicon Nitride/Oxide for Lighting Application

17.00-17.25 Mª Lluïsa Pérez Garcia (UB)From Supramolecular Chemistry to Molecular Nanoscience for Life Sciences

17.25 Cloenda

Page 8: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

8IV Jornada IN2UB - 14 Novembre 2011

KEYNOTE SPEAKER

Rogério Gaspar is currently Full Professor in Pharmaceutics at the Faculty of Pharmacy at the University of Lisbon and, since January 2011, he is a member of the EUFEPS Executive Committee. Early in his career, both at the University of Coimbra and whilst undertaking his PhD studies at the Université Catholique de Louvain in Brussels, he developed an interest in advanced drug delivery systems. He has continued to work in this area and has a wide experience in the design and evaluation of nanoparticles and liposomes for drug (e.g. Leish-maniasis and cancer) and gene (cytosolic) delivery.

Throughout his career, Rogério Gaspar has been called upon to support the development of Potuguese Regulatory Strategy. He has also been participant in several EMEA working groups developing European Regulatory Strategy as well as overseeing International Harmomization.

Rogério GasparFull Professor in Pharmaceutics at the Faculty of Pharmacy at the University of Lisbon

Member of the EUFEPS Executive Committee

Page 9: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

ABSTRACTS

Page 10: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

10IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Energia solar fotovoltaica: de la R+D a la industrialitzacióJordi Andreu1,2, Joan Bertomeu1, José Miguel Asensi1

Universitat de Barcelona1, T-Solar2

La pressió sobre el sector energètic continua crei-xent, fins i tot en una situació de moderació de la demanda causada per la crisi econòmica. Per altre part, la important disminució de preus d’algunes tec-nologies renovables i especialment de l’energia solar fotovoltaica provoquen un canvi en les previsions en el sector de la generació d’energia elèctrica.

El mercat fotovoltaic està dominat per la tecnolo-gia del silici cristal•lí i multicristal•lí, amb un 85% del mercat el 2010, la resta del mercat correspon a les tecnologies de capa prima mentre que les centrals solars de concentració representen només un 0,1% del mercat.

El fort creixement del mercat fotovoltaic (un 40% anual) ha provocat una expansió desordenada de les capacitats de producció del fabricants que en alguns casos ha assolit el 100% anual i que actual-ment provoca una oferta de mòduls fotovoltaics su-perior a la demanda.

Aquestes condicions disminueixen el marge de beneficis de molts fabricants i retreu recursos a la I+D i dificulta la disminució de costos de la tecnolo-gia fotovoltaica, especialment de les tecnologies que s’han desenvolupat mes recentment.

En el camp de les capes primes la tecnologia que domina el mercat es la del CdTe, que presenta pro-blemes medioambientals (Cd) i de disponibilitat de materials (Te).

La tecnologia del silici amorf s’està introduint en el mercat de l’energia després de ser utilitzada àm-pliament en petits dispositius de consum. Comparat amb el CdTe l’eficiència assolida es inferior però el potencial de millora de l’eficiència amb les noves tecnologies d’unió doble i triple es superior al CdTe i no requereix utilitzar elements contaminants o es-cassos.

La presentació revisarà la situació actual de de-senvolupament de la tecnologia fotovoltaica de silici amorf, tant a nivell industrial com de R+D, la impor-tància de la nanotecnologia1,2 per a l’increment de l’eficiència dels plafons de silici amorf i alguns as-pectes pràctic sobre la utilització pràctica dels pla-fons d’aquesta tecnologia.

Piràmide solar amb mòduls de aSi T-Solar. IFEMA Madrid.

1CAMills, J Escarre, E Engel, E.Martinez, A Errachid, J Bertomeu, J Andreu, J A Planell and J Samitier, "Micro- and nanostructuring of poly(ethylene-2,6-naphthalate) surfaces, for biomedical applications, using polymer replication tech-niques", Nanotechnology 16 (2005) 369–375.2Corsin Battaglia, Jordi Escarre, Karin Söderstrom, Mathieu Charrière, Matthieu Despeisse, Franz-Josef Haug and Christophe Ballif, NATURE PHOTONICS | VOL 5 | SEPTEMBER 2011, p.535.

Page 11: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

11IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Selectivitat lipídica i distribució de Lactosa permeasa de Escherichia coli en bicapes: estudis de AFM i FRETCarme Suárez-Germà, Oscar Domènech,M.Teresa Montero, Jordi Hernández-Borrell*Departament de Fisicoquímica, Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona

La proteïna de transmembrana Lactosa perme-asa, ha estat reconstituïda en bicapes lipídiques suportades (BLS) i en proteoliposomes de diferents composicions lipídiques (POPE:POPG, DOPE:POPG, DPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se lateralment en las regions fluïdes. La na-turalesa dels dominis ha sigut establerta a partir de mesures d’espectroscòpia de força(FS).

La investigació de la regió anular de la proteïna es va realitzat mitjançant la tècnica de FRET, em-prant el mutant amb un únic triptòfan (W151/C154G LacY) com donador, i derivats fosfolipídics de pirè,

com a donador. Per obtenir informació sobre la se-lectivitat lipídica de la proteïna, s’ha ajustat un model teòric a els resultats de FRET obtinguts. Es conclou d’aquests que el fosfolípid majoritari a la regió anular és POPE. Aquesta afinitat especial, però, depèn de l’existència de dominis lipídics. Així la reconstitució de la proteïna en DPPE:POPG determina un augment de l’afinitat per POPG. Es conclou mitjançant els es-tudis comparatius dels resultats de FRET i AFM, que: (i) la inserció de la proteïna es produeix preferent-ment en dominis en estat fluid, i (ii) que en cas d’ha-ver separació de fases aquests dominis fluids estan enriquits en el fosfolípid de temperatura de transició més baixa.

*[email protected]

Page 12: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

12IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

From supramolecular chemistry to molecularnanoscience for the life sciencesMa Lluïsa Pérez-GarcíaFacultat de Farmàcia, Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona

Supramolecular chemistry, chemistry beyond the molecule, is a fundamental area of research that ex-ploits non-covalent interactions between molecules for the construction of molecular assemblies. It re-lies on processes such as self-assembly and self-organization, which become tools for the preparation of functional supramolecules and nanomaterials, fol-lowing a bottom-up approach.

Our research is based on the use of supramolecu-lar chemistry for the preparation of functional systems including a) π-electron rich/poor catenanes as mod-els for molecular switches, where the switch could be induced by external stimuli such as electrons or

stereochemistry, b) amphiphilic synthetic receptors with anion binding properties, able to organize into liquid crystals, monolayers and micelles, c) gemini-type surfactants based on imidazolium salts able to form and stabilize gold nanoparticles for the delivery of anionic drugs (Figure 1a), and d) (bio)functionali-zation of micronanotools for the study, tagging and actuation on living cells (Figure 1b), a project which involves the functionalization of inorganic and metal-lic surfaces with organic moieties designed to inter-act with biological material and sense its function, using both natural and synthetic receptors. In the talk we will revise some of the results obtained in these different areas.

Acknowledgment. Financial support from the Ministerio de Educación y Ciencia (MICINN) (TEC2008-06883-C03-02) and the Generalitat de Catalunya (2009SGR158) is acknowledged.

Page 13: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

13IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Towards a magic bullet against malaria: Paul Ehrlich revisitedP. Urbán1,2,3, J.J. Valle-Delgado1,2,3, E. Baró1,2,3, E. Moles1,2,3, J. Marques1,2,3, J. Estelrich3,4 and X. Fernàndez-Busquets1,2,3

1Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona2Nanomalaria Group, Barcelona Centre for International Health Research (CRESIB, Hospital Clínic - Universitat de Barcelona)3 Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona4 Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona

Introduction. Paul Ehrlich was the father of hae-matology, a revolutionary immunologist, and the cre-ator of the field of chemotherapy. Ehrlich’s dream of the “magic bullet” - his term - that would seek out and specifically destroy invading microbes or tumor cells is now not only a reality but a major aspect of clinical medicine. However, a century later the imple-mentation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the se-lected targets.1

Methods. We have used fluorescence microsco-py to assess in vitro the efficiency of liposomal nano-carriers for the delivery of their contents exclusively to pRBCs.2 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs.

Results. In less than 90 min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of tar-geted immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2 nM, 10 times below its IC50 in solution, cleared 26.7 ± 1.8% of pRBCs when delivered inside targeted im-munoliposomes.

Discussion. Next in our agenda is to advance towards a nanovector-based antimalarial delivery strategy suitable to enter preclinical trials. Liposomal nanovectors are adequate for parenteral delivery, in-dicated in cases of complicated malaria, those at risk of developing severe disease, or if the patient is vom-iting and unable to take oral antimalarials. Parenteral treatment can also be required in the last mile of a malaria eradication protocol for the single-dose, in-dividualized administration of drugs specifically tar-geted to pRBCs with good accuracy. Notwithstand-ing, formulations adequate for the oral intake of targeted nanovectors would be a valuable contribu-tion to treating malaria now in endemic areas with poor health care systems. However, liposomes and whole antibodies are difficult to formulate for oral in-take, which will likely benefit from smaller (but equally 100% specific) targeting agents and drug-containing structures in the form of polymeric nanoparticles. Our first objective along this path is the development of new highly specific pRBC targeting agents of varied chemical nature adequate for the functionalization of both liposomes and polymeric nanoparticles, with a special emphasis on non-immunogenic molecules sufficiently small to be adequate for the design of orally administered nanovectors.

This research was supported by grants BIO2008-01184, CSD2006-00012, and 2009SGR-760.

1P. Urbán, J.J. Valle-Delgado, and X. Fernàndez-Busquets “Nanotools for the delivery of antimicrobial peptides”, Current Drug Targets, in press.2P. Urbán, J. Estelrich, A. Cortés, and X. Fernàndez-Busquets “A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro”, Journal of Controlled Release, 151 (2), 202-211 (2011).

Page 14: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

14IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Studies on cationic polymeric nano-emulsionsand nanoparticle dispersions for biomedical applicationsS. Leitner1, G. Calderó1, M. J. García-Celma2, C. Solans1

1Institut de Química Avançada de Catalunya (IQAC)Consejo Superior de Investigaciones Científicas (CSIC)Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina(CIBER-BBN). Barcelona, Spain2Dept. de Farmàcia i Tecnologia Farmacèutica. Univ. de Barcelona. Unitat Associada d’I+D alCSIC. Barcelona, Spain

Over the last decades nanotechnology has gained increasing attention in the field of drug de-livery. Among non-viral vectors cationic nano-emul-sions are promising systems because aside from their small size, cellular uptake could be facilitated due to the positive surface charges. Electrostatic in-teractions with negatively charged DNA are warrant-ed resulting in nano-sized complexes appropriate for biomedical applications1-5. The aims of this work are the preparation and characterization of oil-in-water cationic nano-emulsions containing a biocompat-ible preformed polymer in the dispersed phase and their use for the preparation of nanoparticles. The Polymerin-water (P/W) cationic nano-emulsions were obtained by using the low-energy Phase Inversion Composition (PIC) emulsification method. A mixture of cationic and nonionic surfactants was used and a hydrophobically modified polysaccharide (HMPS) was dissolved in a non-toxic volatile solvent. Nano-emulsions were obtained at O/S ratios between 60/40 and 80/20 and at water contents above 82.5 wt% of water content. They showed an average droplet size

of typically about 91 ± 7 nm and positive Zeta poten-tial values which varied significantly as a function of cationic surfactant content. Visual assessment of the stability of the nano-emulsion at 25ºC showed that no destabilization phenomena occurred during 11 days.

Further studies performed by light backscatter-ing at 25º C showed that no creaming or sedimenta-tion took place during 24 hours after nano-emulsion preparation. Nano-particles were prepared from the (P/W) nano-emulsion by using the solvent evapora-tion method, showing slightly smaller sizes (about 85 nm) and Zeta potential values similar to those of the template nano-emulsion. In order to remove the excess of surfactant, dialysis was carried out until a constant Zeta potential value was attained (about 48h in PBS). The Zeta potential values obtained after dialysis (about 20 mV below the undialysed nanopar-ticle dispersion) were attributed to the cationic sur-factant adsorbed on the nanoparticles, suggesting that these are candidates for transfection purposes.

1T. Hagigit et al. (2008) Eur. J. Pharm Biopharm 70, 248-259.2Torchilin V. P. (2006) Adv. Drug Delivery Rev. 58, 1532-1555.3Yang S. C., Benita S., Drug Dev. Res. (2000) 50: 476-486.4Ott G., Singh M., Kazzaz J., Briones M., Soenawan E., Ugozzoli M., O’Hagan. D.T. (2002) J. Control. Release 79: 1-5.5Liu C.-H., Yu S.-Y., Colloid Surface B (2010) 79: 509-515.

Page 15: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

15IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Nanohybrids:Nanodomains & NanointerfacesA. FiguerolaDepartament de Química Inorgànica, Universitat de Barcelona i Istituto Italiano di Tecnologia, Genova, Italy

The ability of tailoring the dimensions and morp-hology of nanocrystals represents a landmark achie-vement in materials science, since at the nanoscale both size and shape dictate their peculiar properties. Additionaly, the increasing technological demand is recently favouring the development of novel objects where two or more materials are combined in the sin-gle unit, without sacrifing the nanometer dimensions of the same. Hence, the synthesis of complex nano-crystals, where at least two inorganic materials share a solely inorganic interface, is specially interesting. Several adavantatges can arise from such heteros-tructures, as for instance the improvement/tuning of their physical properties, the combination of different properties in single nanoparticles, or the possibility to offer two differentiated chemical surfaces that can be selectively and simultaneously exploited for different purposes.

Here I will present a collection of heterostructures where metals, oxides and semiconductors can co-exist in the same unit.1-3 I will explain the synthetic method used for their preparation and the mecha-nism of their growth, with special emphasis on the structural characterization of both the nanodomains and the nanointerfaces between them. Such degree of architectural and chemical complexity in this new generation of nanocrystals is expected to introduce significant improvements in fields as different as the-ranostics, photovoltaics and energy storage, as will be described in the talk.

1A. Figuerola et al., “Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing”, Nano Letters, 10, 3028-3036 (2010).2A. Figuerola et al., “End-to-End Assembly of Shape-Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains”, Advanced Materials, 21, 550-554 (2009).3A. Figuerola et al., “One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePt-Iron Oxide Heterodimer Nanocrystals”, Journal of the American Chemical Society, 130, 1477-1487 (2008).

Figura 1: CdS-Au rod-tip nanocrystals (left) and FePt-iron oxide heterodimers (right).

Au nanocrystals CdS-Au nanocrystals FePt-Fe3O4 nanocrystals

Page 16: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

16IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Paramagnetic micro-ellipsoids: from catalytic motors to Janus compositeOrioll Güell, Rosa Albalat, Francesc Sagués and Pietro TiernoDepartment of Physical Chemistry, University of Barcelona, Spain

In the first part of this talk I will show how we realize spherical and anisotropic catalytic microtransporters by using spherical and elliptical colloids half-coated with Pt and immersed in an aqueous H2O2 solution. We demonstrate how to How to control and guide the anisotropic particles using dynamic magnetic mod-ulations. The proposed method, which enables the control of chemically powered micrometerscale par-ticles in fluid media, has potential for applications in microscale transport and lab-on-a-chip technology.1

In the second part of the talk, I will describe a sim-ple and general method to realize Janus paramag-netic micro-ellipsoids.We elongate liquefied spherical paramagnetic particles embedded in a thermoplastic thin film upon application of a mechanical stress and gather the magnetic doping of the particles by using an external high magnetic field gradient. The asym-metric location of the nanoscale superparamagnetic grains inside the anisotropic particles is confirmed by TEM, and by following the particle dynamics un-der a rotating magnetic field.2

1P. Tierno, R. Albalat, F. Sagués Autonomously Moving Catalytic Microellipsoids Dynamically Guided by External Magnetic Fields, Small, 6, 1749 (2010).2O. Güell, F. Sagués, P. Tierno Magnetically Driven Janus Micro-Ellipsoids Realized via Asymmetric Gathering of the Magnetic Charge 23, 3674 (2011).

Page 17: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

17IV Jornada IN2UB - 14 Novembre 2011 ABSTRACTS

Perspectives of light emitting devices basedon silicon-rich silicon nitride/oxide for lighting applicationY. Berencén,1,* Josep Carreras,2 J. M. Ramírez,1 O. Jambois,1 J.A. Rodríguez,3 C. Domínguez,4 Charles E. Hunt,2,5 and B. Garrido1

1MIND-IN2UB, Dept. Electrònica, Universitat de Barcelona, Spain2IREC, Catalonia Institute for Energy Research, Barcelona, Spain3Physics Faculty, University of Havana, Cuba4Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain5California Lighting Technology Center, University of California, USA*[email protected]

During the last years, many investigations have been focused to the development of an efficient sili-con-based optically active material with the purpose to allow the photonics and electronics integration in the same chip1,2,3. Silicon-rich silicon nitride (SRSN) and silicon-rich silicon oxide (SRSO) materials have been mostly studied thanks to their good emission properties and compatibility with the mainstream complementary metal oxide semiconductor tech-nology2,3. However, a new and disruptive approach of these materials towards solid state lighting (SSL) has not been accomplished before, which could be suitable for developing white-light monolithically inte-grated emitters for lighting purposes.

We present a metal-nitride-oxide-semiconductor light-emitting device (MNOSLED) as a proof of con-cept for “Silicon-based Lighting” (SiL). The mecha-nism of current injection and transport in silicon

nitride layers and silicon oxide tunnel layers is deter-mined by electro-optical characterization. The emis-sion appears warm white to the eye, and the tech-nology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A corre-lated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color render-ing index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the exter-nal quantum efficiency is improved to exceed 10%, this technique could be competitive with other ener-gy-efficient solid-state lighting options.

1M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197-200 (1999). 2O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, J. Appl. Phys. 106, 063526 (2009). 3J. Warga, R. Li, S. N. Basu, and L. Dal Negro, Appl. Phys. Lett. 93, 151116 (2008).

Page 18: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

POSTERS

Page 19: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

19IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 20: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

20IV Jornada IN2UB - 14 Novembre 2011 POSTERS

1,2

O

Si

OO

OHC

O

Si

OO

OHC

OH OH

O

Si

OO

OHC

OH

70 º 20º 100º

60

70

80

90

100

110

30 min 60 min 120 min 180 min overnight

cont

act a

ngle

Ethanol

Toluene

60

70

80

90

100

110

vapor solution

cont

act a

ngle

60

70

80

90

100

110

1 10 50 100 135 150 200mM

cont

act a

ngle

Cl

H2NNH2

K2CO3, AcetonitrileNH

H2N

OSiOO

O

OSiOO

NH

HN

NaBH3CN

NH

NH

NH2

NH2

1

2

Page 21: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

21IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Abrego G.1, Calpena AC1, Alvarado HL2, Espina M.2, Valls O.2, García M.L.2

1Deparment of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Spain2Deparment of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Spain.

INTRODUCTIONThe commercial dosages of pranoprofen for ophthalmic applications are eye drops. However, eye drops have several disadvantages such as rapid tear turnover and the resulting precorneal loss, induction of tear flow due to irritation caused by the drug preparation, as well as the relatively large volume of the administered eye-drop high rate of lacrimal drainage. A significant effort towards new drugs delivery system to improve ocular administration of drugs has been observed in the last decades.1

The association of pranoprofen, loaded PLGA nanoparticles, significantly modify the release profile, making it ideal in a colloidal system for ocular administration in the treatment of inflammatory .

MATERIALS AND METHODS

CONCLUSION REFERENCES

The PLGA (50:50) chosen was Resomer®RG756. Pranoprofen was obtained from Alcon Cusi, Poloxamer 188 was obtained from BASF. PP-NPs were produced by solvent displacement method.2 The particle size, size distribution and zeta potential of PP-NPs was determined using a Zetasizer Nano ZS. The entrapment efficiency was determined by HPLC, previous validation of the analytical method. Stability of PP-NPs was carried out using the Turbiscan LAB 5 and In vitro release studies were performed using amber glass Franz-type diffusion cell and an artificial membrane. To know the released amount of PP, several samples from the receptor fluid were taken over a period of 32 hours.

RESULTS AND DISCUSSIONConsidering, the most critical factors influencing the physicochemical properties of the PP-NPs, a 23 full factorial designs was created, composed by 3 variables: concentration of Pranoprofen (cPP), Poloxamer 188 (cP188) y pH; which were set at two levels as shown in table 1.

Factor Levels

-1 +1Pranoprofen (mg/ mL) 0.5 1.5Poloxamer188 (mg/ mL) 10 20pH 3.5 4.5

A total of eight experiments were performed and the results of the designed experiment were: the mean particle size of the developed formulations ranged between 177.4 ± 1.670 nm and 205.4 ± 1.510 nm; Polydispersity index varied from 0.032 ± 0.019 to 0.176 ± 0.015, whereas zeta potential varied from -14.7 ± 0.603 to -26.8 ± 0.862 mV.

The main effects of the variables and their interactions on mean particle size were not significant (p-value >0.05) (Figures 1-2).

Figure 2: Response surface of the effect and interactions between the concentration of drug and pH.

No significant modifications of backscattering profile due to particle size were detected at the end of experiment (Figure 3), which indicate that particle aggregation is not significant and suggest a good stability.

0 3 6 9 12 15

AC

A:cPP

AB

cP188

C:pH

BC +-

Figure 3: Back scattering (BS)profile of PP-NPs

The figure 4 and table 2 show the release patterns of PP-NPs and PP-PBS solution (pH 7.4). As can see the diffusion of PP from PBS solution was almost completed over 2 hours. Concerning PP- NPs, those showed a biphasic pattern: an immediate release followed by a slower release profile.

MDT: Mean Dissolution time; AUC: Cumulative Area under the Curve of Dissolution; EF: Dissolution Efficiency.

Figure 4. In vitro release profiles of PP-NP and free drug

Parameters Nanoparticles Standard

MDT (Hours) 0,61 1,43

AUC (%) 2173,19 2718,89

EF (%) 98,10 95,52

IVIV JornadaJornada IN2UB. 14 November 2011, Barcelona, SpainIN2UB. 14 November 2011, Barcelona, Spain..

PRANOPROFEN LOADED PLGAPRANOPROFEN LOADED PLGA--NANOSPHERES FOR OCULAR NANOSPHERES FOR OCULAR ADMINISTRATIONADMINISTRATION

The colloidal systems non-toxic, biocompatible, and biodegradable are in the centre of interest due to their outstanding potential to target where the pharmacological activity of a drug is desired or where physiological conditions have to be examined. Although a different number of polymers have been investigated for formulating biodegradable nanoparticles, polyesters such as Poly D-L-Lactic-co-glycolic (PLGA).The main goal of this study was to design PLGA nanoparticles containing pranoprofen (PP-NPs), a non-steroidal anti-inflammatory drug for ocular administration.

Table 1. Factors and coded values for experimental design

From the results of the validation of the method was determined that the method is linear, accurate and precise in the range of concentrations between 12.5 μg /mL to 200 μg/mL. The entrapment efficiency of drug range between 47.24 % and 97.40 %.

Figure 1: Pareto chart of the standardized effects for the average particle size.

Table 2. Amodelistics parameters.

cP188=15,0

cPPpH

Zave

0,5 0,7 0,9 1,1 1,3 1,5 3,54

4,5180183186189192195198

10 20Height (mm)

BS

Gamisans F, Lacoulonche F,Chayvet A, Esoina M, Garcia ML, Egea MA. Flurbiprofeno-loaded nanospheres:Analysis of the matrix structure by thermal methods.Int J pharm 179:37-48.

Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J. Pharm 1989,55:R1–R4.

1.

2.

Page 22: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

22IV Jornada IN2UB - 14 Novembre 2011 POSTERS

R.M. Aparicio1, A. Vílchez2, J. Miras2, J. Esquena2, M.J. García-Celma1, 2

(1) Departament de Farmàcia i Tecnologia Farmacèutica. Facultat de Farmàcia. Universidat de Barcelona. Joan XXIII, s/n 08028. Barcelona. (2) Departament de Nanotecnologia Química i Biomolecular (NQB). Institut de Química Avançada de Catalunya (IQAC-CSIC). Jordi Girona 18-

26. 08034 BarcelonaCIBER-BBN (Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina)

Milli-Q

SALBUTAMOL

Los principios activos (ketoprofeno, hidrocloruro de clindamicina y sulfato de salbutamol) se han incorporado a las espumas de poliestireno y de quitosano por inmersión en soluciones agua/etanol 50% p/p con un 2, 5 o 10 % de fármaco. Tras 24 h se evapora el solvente en estufa de desecación a 50ºC hasta alcanzar un peso constante (24 h).

En todos los ensayos el medio receptor es una solución reguladora de fosfatos,PBS, a pH=7,4 que se mantiene a 37+0,5ºC en agitación constante. Se toman muestra a intervalos de tiempo preestablecidos durante 24 h y se repone con PBS la misma cantidad extraída.

La cuantificación de los fármacos se ha realizado mediante espectrofotometría UV y mediante HPLC a 233, 210 y 276 nm respectivamente para el ketoprofeno, el hidrocloruro de clindamicina y el sulfato de salbutamol.

Espumas sólidas de PS-DVB en celdas de difusión con membrana de celulosa (A), y emplazadas en vasos de 500 mL

Espumas sólidas de PS-DVB impregnadas con principio activo en vasos termostatizados con

bolsas de diálisis

GENIPINA

KETOPROFENO

QUITOSANO

Espumas sólidas macroporosas de PS-DVB (A) y de quitosano reticulado con genipina (B). Una parte se ha se ha funcionalizado con grupos sulfato.

A

C

B

A B

A

BCLINDAMICINA

(1) Esquena J, Sankar GSRR, Solans C. Langmuir 19:2983. 2003. (2) Esquena J, Solans C, In: Emulsions and Emulsion Stability; J. Sjöblom, Ed.; Taylor and Francis, New York, 2006. (3) Molina R, Vílchez A, Canal C, Esquena J. Surf. Interface Anal. 2009, 41, 371–377.

Proyecto CTQ 2008-06892-C03/PPQ (MCYT).

Incorporación de principio activo en función de la concentración de la solución hidroalcoholica

Ketoprofeno cedido a partir de las espumas sólidas de PS-DVB y de quitosano con distintos métodos

Sulfato de salbutamol cedido a partir de espumas de PS-DVB convencionales y funcionalizadas con grupos sulfato

La cantidad de ketoprofenoincorporado en las espumas sólidas de PS-DVB incrementa al aumentar la concentración del principio activo en la solución de impregnación. Con las espumas sólidas de quitosano las diferencias son menos evidentes.

% FÁRMACO INCORPORADO

26 27

49 49

7665

797968

0

20

40

60

80

100

KETOPROFENOincorporado (% p/p)

CLINDAMICINA HClincorporada (% p/p)

Espuma de PS-DVB en solution con 2% de fármacoEspuma de PS-DVB en solution con 5% de fármacoEspuma de PS-DVB en solution con 10% de fármacoEspuma de quitosano en solución con 5% de fármacoEspuma de quitosano en solución con 10% de fármaco

% KETOPROFENO CEDIDO

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26

TIEMPO (h)

ABCDEFGHIJKLM

Inmersión espuma sólida PS-DVB en bolsas de diálisis y solución al 2% (A), al 5% (B) y al 10% (G)*Inmersión espuma sólida PS-DVB en célula de liberación en solución al 5% (D) y al 10% (C)*Formulaciones orales comerciales: Comprimidos GR 100 mg (E) y cápsulas 50 mg (F) en equipo de disolución**Inmersión espuma sólida PS-DVB en solución al 5% (H) y 10% (I) en cestillos**Inmersión espuma sólida PS-DVB funcionalizada en sol. al 5% (J) y al 10% (K) en cestillos**Immersión espuma sólida de quitosano en solución al 5% (L) y

10% (M) en cestillos**

* cuantificación por espectrofotometría UV; ** cuantificación con HPLC

En la cesión de las espumas sólidas de PS-DVB impregnadas con ketoprofeno destaca el aumento del tiempo de retención del principio activo, independientemente del método utilizado. Comparando con formas sólidas comercializadas (E y F), la liberación es notablemente más lenta y sostenida, alcanzando aproximadamente el 60% de cesión a las 9 h y un 95% a las 24 h. En las espumas sólidas de quitosano no se ha observado aumento del tiempo de retención, lo que puede atribuirse a las propiedades hidrófilas del quitosano.

No se han observado diferencias en la cesión del sulfato de salbutamol utilizando espumas sólidas funcionalizadas

con grupos sulfato respecto a las espumas sólidas convencionales.

El aumento del tiempo de retención observado en los métodos 1 y 3, tanto para soluciones del principio activo como para las espumas sólidas se puede atribuir al efecto de la membrana de diálisis.

% CLINDAMICINA HCl CEDIDA

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24TIEMPO (h)

Espuma sólida PS-DVB en solución al 2% p.a., y bolsa diálisisEspuma sólida PS-DVB en solución al 5% p.a., y bolsa diálisisEspuma sólida PS-DVB en solución al 10% p.a., y bolsa diálisisEspuma sólida PS-DVB en solución al 10% p.a., en eq. disolució con cestilloSolución al 12% p.a. en bolsa dialisisEspuma sólida de quitosano en solución al 10% p.a. en eq. disolución con cestillo y HPLC

Hidrocloruro de clindamicina cedido a partir de espumas sólidas de PS-DVB y de quitosano utilizando distintos métodos

% SULFATO DE SALBUTAMOL CEDIDO

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26TIEMPO (h)

Inmersión espuma sólida PS-DVB en soluciónal 5% (metodo 2)

Inmersión espuma sólida de PS-DVBfuncionalizada en solución al 5% (método 2)

Las espumas sólidas de PS-DVB parecen adecuadas como sistemas de liberación controlada para fármacos hidrófobos como el ketoprofeno ya que aumentan el tiempo de retención respecto a formas de dosificación sólidas convencionales. El método más adecuado para estudiar la liberación de fármacos a partir de materiales macroporosos parece ser el método 3 (aparato de disolución con cestillos), ya que evita la retención provocada por la membrana de diálisis.

Page 23: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

23IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 24: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

24IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Diffusion and skin permeation of clindamycin from a highly concentrated emulsion

E. Escribano (1), M Reza Sanaee, M. Llinàs (2), G. Calderó (2), C. Solans (2), MJ García-Celma (1) (1) Dpt. Farmàcia i Tecnologia Farmacèutca. Facultat de Farmàcia (UB)

Institut de Nanociència i Nanotecnologia de la Universitat de Barcelona (IN2UB)(2) Dept. Nanotecnologia química y biomolecular. Institut de Química Avançada de Catalunya (IQAC-CSIC).

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER_BBN)

Highly concentrated emulsions also known as high internal phase ratio emulsions (HIPRE) are emulsions in which the volume fraction is higher than 0.74.1-2 The droplets of HIPREs are separated from each other by a thin film of continuous phase that can be nanostructured.3 Owing to their properties, HIPREs are being studied for many applications.4 Their potential as controlled drug delivery systems has been evidenced in the literature.5 Clindamycin hydrochloride is a macrolide antibiotic with a molecular weight of 461.44 g/mol which is freely soluble in water. It is a common topical treatment for acne and can be useful against some methicillin-resistant Staphylococcus aureus infections.6

The aims of the present work were: a) to prepare a W/O HIPRE containing clindamycin hydrochloride (1% wt); b) to study its diffusion through lipophilic and lipophilic synthetic membranes in comparison to a solution, and C) to study the percutaneous absorption through human skin.

Briefly, water in oil emulsion was prepared by stepwise addition of aqueous solution with Clindamycin o oil/surfactant (O/S) mixtures at 250C, under stirring at 2600 rpm. The mixture was put in ultrasound device for ten minutes to take out the observed bubbles of air.

Stability of the emulsion obtained was assessed both at 32ºC and at room temperature. Samples have been kept for 48 hours in each constant condition and were observed by optical microscopy with the resolution of 60, 30 and 10 micrometer.

For the release study and skin permeation, the MicroettePlusR system (Hanson Research, USA) was used. The experiments were performed at 320C, 400 rpm and PBS pH 7.4 (sink conditions) as receptor medium. To perform the skin permeation experiments dermatomed abdominal human skin (0.4 mm) from the same donor was used, and the transepidermal water losses (TEWL) of skin pieces were measured to asure the integrity of the skin. Clindamycin concentration in the samples was determined by HPLC with UV detection (210 nm).

The study performed with clindamycin solutions (1%wt) in PBS revealed that the drug diffused completely through the hydrophilic membrane but was retained in the lipophilic synthetic membrane. The clindamycin release from the HIPRE was performed at higher rate when the hydrophilic membrane was used (63.10μg·h-1/2 respect to 21.18μg·h-1/2) according to the Higuchi model. However, the percentage of release at 24h was only 9.56%. The permeation of clindamycin from the emulsion through the skin was very small and negligible. It could be attributed to the high solubility of the drug in the inner phase of the HIPRE and to the nanostructure of the emulsion. The maximum penetration through the skin in 24h in this research was less than 0.7% and it is according to the lipophilic nature of the skin.

1K. Lissant. “The geometry of high internal phase ratio emulsions,” J. Collois and Interface Sci. 22, 462-468 (1996). 2H. Kunieda, D. Evans, C. Solans and M. Yoshida. “The structure of gel emulsions in a water/non-ionic surfactant/oil system,” Colloids and surfaces 47, 35-43 (1990). 3C. Solans, R. Pons, S. Zhu, H.T. Davis, D.F. Evans, K. Nakamura and H. Kunieda. “Studies on macro- and microstructures of highly concentrated water-in-oil emulsions (gel-emulsions),” Langmuir 9, 1479-1482 (1993). 4C. Solans, J. Esquena, N. Azemar, C. Rodríguez and H. Kunieda. “Highly concentrated (gel) emulsions: Formation and properties,” In: D.N. Petsev, ed.: Emulsions: Structure, stability and interactions. Elsevier. 511-555, Amsterdam 2004. 5G. Caldero, M. Llinas, M. J. Garcia Celma and C. Solans.” Studies on Controlled Release of Hydrophilic Drugs from W/O High Internal Phase Ratio Emulsions,” J Pharm Sci, 99 (2), 701-7011 (2010). 6R. S. Daum . "Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus

aureus". N Engl J Med 357 (4): 380–90.(2007).

Page 25: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

25IV Jornada IN2UB - 14 Novembre 2011 POSTERS

RESULTS

CONCLUSIONS REFERENCES

ACKNOWLEDGEMENTS

DESIGN OF DEXAMETHASONE LOADED NANOPARTICLE DISPERSIONS AS DRUG DELIVERY SYSTEMS FOR INHALATORY ADMINISTRATION

C. Fornaguera, G. Calderó, M. Llinàs, C. SolansInstitut de Química Avançada de Catalunya, Consell Superior d’Investigacions Científiques (IQAC-CSIC)CIBER de Bioingenirería, Biomateriales y Nanomedicina (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona, Spain

AIMS- Preparation of dexamethasone (DXM)-loaded oil-in-water (O/W) polymeric nano-emulsions, by a low-energy method.

- Use of these nano-emulsions to prepare drug-loaded nanoparticles by the solvent evaporation method.

- Study of nanoparticle dexamethasone encapsulation efficiency and its release behaviour.

EXPERIMENTALMaterials

Methods

- Poly(lactic-co-glycolic acid) (PLGA) (MW ~10000-15000 g/mol)- Dexamethasone (DXM), insoluble in water)- Non-ionic ethoxylated surfactant (HLB = 15.0)- MilliQ filtered water (W)- Ethyl acetate

• Nano-emulsion formation: by slow addition of water (90%) to oil/surfactant (O/S) mixtures.• Nano-emulsion stability: by monitoring macroscopic changes with time.• Nanoparticle formation: by solvent evaporation of the nano-emulsion droplets.• Nanoparticle isolation: by centrifugation.• Nano-emulsion and nanoparticle characterization: by dynamic light scattering (DLS) and TEM.• Nanoparticle encapsulation efficiency: by filtration/centrifugation and HPLC analysis of the filtrated liquid.• Dexamethasone release experiments: by dialysis bag method and HPLC analysis.

INTRODUCTION

Polymeric nanoparticle (NP) dispersions are colloidal systems of great interest for biomedical applications. They can be prepared from polymeric nano-emulsions by the solvent evaporation method (Fig. 1) (1,2).

Fig. 1 : Scheme of nanopaticle preparation from nano-emulsions by the solvent evaporation method.

In this context, poly(lactic-co-glycolic acid) (PLGA) has been approved for human use due to its biocompatibility and biodegradability. So, it is promising for the preparation of nanoparticle dispersions for biomedical applications. Inhalatory administration of nanoparticles can be useful to treat pulmonary and systemic diseases due to the structure and characteristics of nanoparticles and respiratory system (3,5).For these reasons, nanoparticle dispersions could be appropriate delivery systems for inhalatory administration of drugs like dexamethasone; an effective anti-inflammatory agent for the treatment of many chronic and immune diseases, such as asthma (6,7).

1. Nano-emulsion formation 2. Nano-emulsion characterization and stability

4. Dexamethasone release

Water / Non-ionic ethoxylated surfactant / [PLGA in ethyl acetate] system with and without dexamethasone.

Nano-emulsions were formed at O/S ratios between 40/60 and 70/30 and water contents above 85% in the absence of DXM and from 45/55 to 75/25 O/S ratio and water contents above 70% in the presence of DXM.

Nano-emulsion formation was favored by the presence of 0.18% DXM in the oil component.

3. Nanoparticle preparation and characterization

1 Desgouilles S., et al. Langmuir 19 (2003) 9504-95102 Solans C., et al. Current Opinion in Colloid and Interface Science 10, 102-110, 20053 Todoroff J., Vanbever R., Current Opinion in Colloid and Interface Sciences 16 (2011) 246-254 4 Lai K. S., Wang Y., Hanes J., Advanced Drug Delivery Reviews 61 (2009) 158-1715 Azarmi S., Roa Wilson H., Löbenberg R., Advanced Drug Delivery Reviews 60 (2008) 863-8756 Barnes P. J., British Journal of Pharmacology 163 (2011) 29-437 García Martínez S., et al. Rev Asoc Mex Med Crit y Ter Int 20(2) (2006) 80-868 Jungsuwadee P., e al. Cilical Immunology 110 (2004) 13-219 Calderó G., et al. Langmuir 13 (3) (1997) 385- 39010 Zhang J., et al. Journal of Controlled Release 145 (2) (2010) 116-123

Fig. 4 : Example of a nano-emulsion.

Droplet sizes in the nano-emulsions without DXM are slightly lower.

Exceptuating low O/S ratio, nano-emulsion droplet size does not show significant variation as a function of the O/S ratio, independently of the presence of the DXM.

Fig. 5: Mean droplet size as a function of O/S ratio for nano-emulsions with 90% of W .

Nanoparticles showed spherical shape sometimes with crashed surface and

increased mean sizes in the presence of the drug.

Nanoparticle encapsulation efficiency decreases at

increasing O/S ratios. DXM encapsulation in all NP

dispersions was within the therapeutic dose range (8) for

inhalatory administration.

- Polymeric O/W nano-emulsions had been prepared in nano-emulsions of the water / non-ionic ethoxylated surfactant / [4% PLGA + x% DXM in ethyl acetate] system by the phase inversion composition method at constant temperature (25ºC). Formation was favored in the presence of 0.18% DXM in the oil component.

- Both, nano-emulsion and nanoparticle dispersion showed increased sizes with the presence of DXM.

- Dexamethasone release from nanoparticle dispersion was about one order of magnitude slower than from an aqueous solution. Nanoparticles with higher O/S ratios showed very slightly increased DXM release which may be due to the lower encapsulation yield. However, therapeutic doses are achieved in all compositions.

CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. CFP is grateful to CIBER-BBN for their Research Initiation Fellowship. Financial support from MEC (grant CTQ2008-06892-CO3-O1) and the Generalitat de Catalunya (grant 2009-SGR-961) is acknowledged.

Fig. 8: DXM release profile as a function of time at 25ºC from an aqueous solution and from NP dispersions. Symbols are the experimental results. Solid lines correspond to the best fitting of the experimental points with Fickian diffusion master curves (9).

Dexamethasone release from the NP dispersions was about one order of magnitude slower than from an

aqueous solution. This NP dispersions release DXM at an intermediate rate between aqueous solution and

other types of delivery systems(10).

Increases in O/S ratio does not significantly vary the diffusion coefficient . Only 70/30 O/S ratio NP dispersion

showed slightly increased diffusion coefficient.

TABLE IIDXM encapsulation efficiency and drug encapsulation in the NP dispersion from 90% W nanoparticles with different O/S ratios

O/S ratio Stability time (months)

40/60 >145/55 >250/50 > 355/45 > 260/40 > 265/35 > 170/30 < 1

TABLE IStability of DXM nano-

emulsions with a 90% of water content as a function

of O/S ratio assessed by visual observation at 25ºC.

Ethoxylated nonionicsurfactant

Water [Ethyl acetate + 4% PLGA + x% DXM]

25ºC

[Ethyl acetate + 4% PLGA + 0% DXM]

[Ethyl acetate + 4% PLGA + 0.18% DXM]

Fig. 3 : Region of nano-emulsion formation.

Nano-emulsionNanoparticledispersionSolvent

evaporation

Fig. 2: Molecular structure of a) PLGA and b) DXM respectively

a)

b)

Sample Diffusion coefficient ·10-10 (m2/s)

Aqueous solution 5.55 0.7450/50 NP dispersion 0.49 0.0260/40 NP dispersion 0.49 0.0070/30 NP dispersion 0.93 0.05

TABLE IIIDiffusion coefficient of DXM from the aqueous solution and from NP disper-sions obtained from nano-emulsions with 90% W and different O/S ratio

O/S Encapsulation efficiency (%)

Drug encapsulation in the NP dispersion (mgDXM/100gNP)

50/50 91.34 0.25 8.98 0.0360/40 84.46 0.49 10.19 0.0670/30 74.31 1.01 10.60 0.14

Fig. 6 : Typical appearance of: a) Non-loaded and b) DXM-loaded PLGA nanoparticles as observed by TEM after negative staining.

100 nm

a)

b)

100 nm

Fig. 7: Nanoparticle size distribution as obtained by TEM image analysis, obtained from nano-emulsions with 90% W and 50/50 O/S ratio.

0

1

2

3

4

5

6

7

5-10 20-25

35-40

50-55

65-70

80-85

95-100

110-115

125-130

140-145

155-160

170-175

185-190

200-205

215-220

230-235

254-250

260-265

275-280

290-295

Particle size (nm)

50/50 DXM 37ºC50/50

Freq

üenc

y(%

)

Particle size range (nm)

92.92 35.57 nm

128.70 52.10 nm

0.0

0.2

0.4

0.6

0.8

1.0

0 50000 100000 150000 200000 250000 300000

t (h)

C /

Cm

ax 50/50

60/40

70/30

aqueoussolution

12 7260483624

[email protected]

Page 26: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

26IV Jornada IN2UB - 14 Novembre 2011 POSTERS

G. Morral-Ruíz1*, P. Melgar-Lesmes2, M.L. García3, C. Solans2*and M.J. García-Celma1*

1Departamento de Farmacia y Tecnología Farmacéutica, Unidad I+D asociada al CSIC, Facultad de Farmacia, Universidad de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain.2Departamento de Nanotecnología Química y Biomolecular, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.

3 Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Barcelona.*Centro de Investigación de Biomedicina en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)

The authors acknowledge financial support by the Spanish Ministry of Education and Science, DGI (Grant CTQ 2008-06892-C03-02/PPQ), “Generalitat de Catalunya” DURSI (Grant 2009 SGR-961), and CIBER-BBN.

Monomer (IPDI) in the inner of oil nanodroplets

IPDI reacts with moleculeslocated at the droplet

interface

Formation of polyurethane or polyurea nanoparticles

PREPARATION OF PEGYLATED POLYURETHANE NANOPARTICLES FROM O/W NANO-EMULSIONS IN WATER/NONIONIC

SURFACTANT/OIL SYSTEMS

Figure 1: Non equilibrium phase diagram at 25ºC of water/PEG/ nonionic surfactant/saturatedmedium chain triglyceride system. Mean droplet diameter of selected O/W nano-emulsion.

INTRODUCTION

Polymeric nanoparticles are solid colloidal materials of less than 500 nm. Owingto their small size and large structural variety, nanoparticles constitute a promisingtool to be employed as controlled drug delivery systems. Polyurethanes arecurrently emerging as possible useful biomaterials due to their synthetic versatility,excellent mechanical properties and good biocompatibility.Nano-emulsions are emulsions characterised by a uniform and very small dropletsize in the range of 20-200 nm. They may have high kinetic stability.In the design of the nanoparticles for targeting drugs to specific tissues, thedevelopment of polymeric shells labelled with hydrophilic molecules such aspolyethylene glycol is especially noteworthy to avoid the opsonization andsubsequent elimination by the reticuloendothelial system.

RESULTS AND DISCUSSION

EXPERIMENTAL

Characterization of O/W nano-emulsion and Pegylated polyurethanenanoparticles: Particle size and polydispersity were determined by DynamicLight Scattering (DLS) in a Zetasizer nano Zs (Malvern Instruments, UK) just afterpreparation. Morphology of nanoparticles was observed by Transmission ElectronMicroscopy (TEM) and by Atomic Force Microscopy (AFM).

Preparation of nanoparticles from O/W nano-emulsions:

PEG-polyurethanenanoparticles

O/S

O/W nano-emulsion withdiisocyanate incorporated

O/SD

W+B

Preparation of O/Wnano-emulsion

Incorporation of diisocyanateto the O/S mixture

w w

D:Diisocyanate

Temperature: 25ºCHomogeneisation

72ºC, 4 hours

O: Oil

S: Surfactant

W: Water

B: PEG

AIMSThe aims of this research have been:

To study the formation of Pegylated polyurethane nanoparticles obtained byinterfacial polycondensation from O/W nano-emulsions with high waterconcentration (90%wt) in the water/ PEG/ nonionic surfactant/saturatedmedium chain tryglyceride system.To prepare and characterise by DLS, TEM and AFM the selected PEGpolyurethane nanoparticles.

0.0911.690 wt%;O/S:10/90

PDIZ-Average(nm)

Composition of O/Wnano-emulsion

Polymerisation (4h, 70±2ºC)

Inte

nsity

(%)

0

5

10

15

20

0.1 1 10 100 1000 10000Particle size (nm)

0.1272.1PDIZ-Average (nm)

PEG-polyurethane nanoparticles

L1: Direct micellar solution or O/W microemulsion.L2: Reverse micellar solution orW/O microemulsion)NE: O/W nano-emulsion regionII: Two isotropic liquid phasesLC: anisotropic phases (liquidcrystalline phases)M: Multiphase region.

Figure 3: TEM images and the histograms of the particle size corresponding to Pegylated polyurethanenanoparticles obtained from O/W nano-emulsions with an O/S of 10/90 and 90 wt.% of aqueouscomponent (PEG 200/water (a) and PEG 400/water (b)) in water/PEG/ nonionic surfactant/saturatedmedium chain triglyceride system.

Figure 4: Height (a) and phase contrast (b) images of PEG polyurethane nanoparticles obtained byAFM in tapping mode.

Figure 3 and 4 show homogeneous populations of isometric nanoparticles with continuous, clearly definedlimits and rounded shape.

MATERIALS: METHODS:

Nonionic surfactant:

Oil component: Saturated medium chaintriglyceride

Deionized water

PEG 200 and PEG 400:

Diisocyanate:

CONCLUSIONSPegylated polyurethane nanoparticles with a diameter lower than 80 nm and anarrow polydispersity index have been prepared from selected O/W nano-emulsions by polymerisation at the droplet interface in aqueous solution/nonionicsurfactant/oil systems. Particle sizes obtained were lower than those described in the literature.

[1] Kreuter J. In: Encyclopedia of Nanoscience and Nanotechnology. 7, 161-180, 2004.[2] Bergeron M., Lévesque S., Guidoin R. In. Biomedical Applications of Polyurethanes. Vermette P., Griesser H., LarocheG., Guidoin eds.; R Eurekah.Com, Landes Bioscience: Georgetown, Texas, 2001; Chapter 8[3] Gref R., Domb A., Quellec P., Blunk T., Müller R.H., Verbavatz J.M., Langer R. Advanced Drug Delivery Reviews 16,215-233, 1995.[4] Solans C. et al. Cur Op Colloid Inter Sci. 10: 102-110, 2005.[6] Jabbari, E., Khakpour, M. Biomaterials 21, 2073-2079, 2000.

REFERENCES

The formation of PEG-polyurethane nanoparticles was confirmed by the complete disappearance of thesize droplet curve attributed to nano-emulsion and the formation of a new population with a higher sizeconstituted by nanoparticles.

Figure 2: Formation of PEG-polyurethane nanoparticles from selected nano-emulsion with highwater concentration (90%wt) in the water/ PEG 400/ nonionic surfactant/saturated medium chaintriglyceride system.

200 nm

200 nm0 15 30 45 60 75 90 105 120

0

10

20

30

40

50

Particle size (nm)

Freq

uenc

y(%

)

0 20 40 60 80 100 120 1400

5

10

15

20

25

30

Particle size (nm)

Freq

uenc

y(%

)

a)

b)

2.5 μm

b)a)

Page 27: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

27IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Vázquez ML1, Calpena AC1,4 , García ML2,4 ,Perarire C1 Garduño ML3

1Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Spain.2Department of Physical Chemistry. Faculty of Pharmacy, University of Barcelona, Spain.

3Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, México 4Nanoscience and Nanonotechnology Institute ((IN2UB). University of Barcelona

The inflammation treatment includes steroidal drugs (cortico steroids) and non steroidal drugs (NSAIDs). After the identification of the enzyme COX-2, have been described more than500 COX-2 inhibitors, depending on their chemical structure, NSAIDs inhibit both COX-1 and COX-2 in different degrees. This explains its anti-inflammatory and analgesic activities as well as unwanted side effects on the gastro intestinal tract (1) Thus, although diclofenac is a relatively safe and tolerable, serious gastrointestinal adverse affects occasionally appearafter oral administration. (2). An alternative treatment to avoid side effects is the use of topical dosage forms as nanoemulsions. Nanoemulsions are the thermodynamically stableisotropic system in which two immiscible liquid are mixed to form a single phase. Nanoemulsion droplet sizes fall typically in the range of 20-200 nm and show narrow size distributions(3)

The in vitro release experiment was conducted in order to understand the mechanism of drug release from 2-(2,6-dichloranilino) phenylacetic vehiculized in anhydrous nanoemulsionwith Plurol oleique®, Labrasol ®, Labrafac® and propylenglycol excipients, prepared by lab scale sonication .A transdermal permeation experiment was conducted in order to obtaininformation about the potencial use of this novel pharmaceutical form on inflammatory conditions.

REFERENCES:

The study, was carried out first by the preparation of nano-structured emulsion, using a surfactant, co-surfactant, emollient and moisturizer. Once prepared, diclofenac was incorporated,the final concentration was 5%, the particle size was determinated by the equipment Zeta - sizer (Malvern Instruments).The release study was carried out using membrane dialysis in a manual sampling system cells Co.Mod Franz Crown Glass. CDCF-9. The receptor phase was ethanol:water (7:3), undertemperature of 32 ± 1ºC. Samples were taken at fixed times during 118 hours. The permeation test was carried out using human skin (n=6) from abdominal lipectomies, from threedifferent donors in the same system and conditions of the study release. The concentrations were obtained by High Performance Liquid Chromatography (HPLC Waters LC Module I plusand Waters In-Line degasser AF) with the UV detector set at 211 nm. The analyses were preformed with a Column EC250/4.6 Nucleosil 100-5 C18 Macherey-Nagel. The mobil phase, forthe release sample consisting of Acn-Water was pumped at flow rate of 1.0 ml/min whereas the mobil phase for permeation samples, consisting of methanol-amonium acetate (1/%Isopropilamyna) was pumped at flow rate of 1.5 ml/min.

RESULTS AND DISCUSSION:

INTRODUCTION:

Study of in vitro release and transdermal delivery of 2-(2,6-dichloranilino)phenylacetic acid formulated in a nanostructured emulsion

(1) Cyclooxygenase inhibitors--current status and future prospects. European journal of medicinalchemistry 2001;36(2):109-26(2) Amnon C. Sintov, Shafir Botner.Transdermal drug delivery using microemulsion and aqueous systems:Influence of the skin storage conditions on the in vitro permeability of diclofenac from aqueous vehiculesystems,International Journal of Pharmaceutics.2006. 311: 56-52carries, Transfersomers, Biochimica et Biophysica Acta. 2001.1514: 191-205(3) Shah P, Bhalodia D, Shelat P. Nanoemulsion: A pharmaceutical review. Syst Rev Pharm 2010;1:24-32

IV JORNADA IN2UB Barcelona 14 Noviembre 2011

n.in.

METHOD AND MATERIALSMETHOD AND MATERIALS::

CONCLUSIONS:

These assays shows that the release of diclofenac diethylammonium takes placesustained release according to Korsmeyer Peppas kinetic model (a= 50.99, n=0.199).

The transdermal permeation in human skin of the nanoemulsion shows that the drugwill achieve a local action and no systemic effects would take place due to its lowsteady state concentrations.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120T (hr)

Observ

Predicte

The formulation present a droplet size of 50.76nm with a polidispersity of0.381.Differents release kinetic models was evaluated using the softwareWinNonlin® The results obtained show that the model wich describe the drugrelease of the diclofenac formulated in a nanoemulsion is Korsmeyer-Peppas.According to the following equation:

The diclofenac (2-(2,6 diclhloranilino) phenylacetic acid) nanoemulsionpresented a flux rate (expressed by median) of 2.26 μg/hour/cm2. Steadystate concentration achieved of diclofenac after 24 hours was of 0.014 μg/ml(therapeutic level oral dosage: 1.5 μg/ml).

Q = a Q = a ·· tt nn Q = Concentration of the druga = Diffusion coefficientt = Timen = Constant, characterizing the dependence of the diffusion coefficient

Amodelistics parameters obtained after the release test are listed in the following table.The graph shows the model fitting equation to the experimental data points.

PARAMETROSMediana Mín Máx

J (μg hrs ¹) 5,745 4,22 21,25J/SUP (μg hrs cm²) 2,2618 1,6614 8,3661Tl (hrs) 0,2 0,1 4,119P2=1/(6*Tl)(hrs 1) 0,8333 0,0404 1,6666

Co 5000 5000 5000P1=J/(2.54*Co*P2)(cm) 0,000069 0,000020 0,004135

Kp=P1*P2 0,000045 0,000033 0,000167Q24 extraida( μg Farmaco/mg Pielcm²)

0,00074 0,000591 0,000879

PARAMETROS NANOEMULSIONDICLOFENACO

MDT( hrs) 14.85 ± 0.34AUC (μg hr ) 12.16 ± 1.05EFICIENCIA (%) 86.74 ± 2.34

ACKNOWLEDGMENTS: Universitat de Barcelona . Vicerrectorat de Innovació i transferència del coneixement. proyecto ARI 2010-2011MAT 2010 – 19877 Project Ministerio de Ciencia e InovacionGatefossè España for the donations of components of the nanoemulsion

Page 28: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

28IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 29: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

29IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 30: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

30IV Jornada IN2UB - 14 Novembre 2011 POSTERS

We gratefully acknowledge financial support from INNPACTO (IPT-300000-2010-26) and from Generalitat de Catalunya (Grants 2009SGR961).

O

O/S = 70/30

S

W

Water addition

90% water

ACKNOWLEDGMENTS ACKNOWLEDGMENTS REFERENCESREFERENCES

CONCLUSIONS

RESULTS AND DISCUSSION

EXPERIMENTAL

POLYMERIC NANOPARTICLES OBTAINED FROM O/W POLYMERIC NANOPARTICLES OBTAINED FROM O/W NANONANO--EMULSIONSEMULSIONS FOR THE PREPARATION OF FOR THE PREPARATION OF SKINSKIN--CARECARE TEXTILESTEXTILES

S. Vílchez-Maldonado1,2 , G. Calderó 2,1, R. Molina1,2

1 Instituto de Química Avanzada de Cataluña (IQAC), Consejo Superior de Investigaciones Científicas (CSIC). Jordi Girona 18-26, 08034 Barcelona, (Spain) 2 Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)

MethodsMethods

NanoNano--emulsion formationemulsion formation

In this work, oil in water (O/W) nano-emulsions1 were obtained by the Phase Inversion Composition method and used as templates for nanoparticle preparation2. Biocompatible polymeric nanoparticles containing two skin-care actives were obtained and characterized by CCDLS, TEM and IR. Cotton textile was treated with nanoparticles dispersions by impregnation, padding and drying. The treated textiles were observed by SEM. The UV protection of cotton textile incorporating nanoparticles with sunscreen agent was measured by means of Ultraviolet Protection Factor (UPF).

SUMMARY

TechniquesTechniques

Stirring

O/W Nano-emulsion

Oil phase+

Surfactant

Nanoparticle dispersion

Solventevaporation

Polymeric nanoparticleNanodroplet

PhasePhase InversionInversion CompositionComposition MethodMethod (PIC) (PIC) andand SolventSolvent EvaporationEvaporation, T = 25, T = 25ººCC

AIMS

NanoparticleNanoparticle morphologymorphology andand sizesize distributiondistribution by TEMby TEM

Figure 1. Scheme of the preparation of nano-emulsions by the Phase Inversion Composition method and ofthe nanoparticles by the solvent evaporation method.

MaterialsMaterials

[email protected]

% HMPS in the oil phase4 5 6 7 8

Composition with 7% HMPS in the oil phase:Translucent appearance and Tyndall effectHighest oil content stable nano-emulsion

S = Polyoxyethylene ester (NHLB = 14-16)

Ethyl acetate/ HMPS/ SA Ethyl acetate/ HMPS/ SA/ROO =

HMPS/ SA = 3/1 HMPS/ SA/RO = 3/1/1

W/S/O system:

Nanoparticles with SA Nanoparticles with SA + RO

Monomodal distributionNo remarkable differences between both systems, both with an average

size arround 60 nm

0 20 40 60 80 100 120 140 160 180 200 220 2400

5

10

15

20

25

30

Diameter (nm)

Mean size = 60 nm

Freq

uenc

yco

unt

32 nm

Nano-emulsion(droplets)

Dispersion(particles)

74

89

71

85

0

10

20

30

40

50

60

70

80

90

100

110

Rh

(nm

)

System with SASystem with SA + RO

No remarkable difference in droplet size between both systems studiedThe nanoparticle Rh decrease with respect to the droplet Rh is attributed to the solvent

evaporation processFor both systems, the difference of Rh between droplets and particles is arround 15 nm

DropletDroplet andand particleparticle sizesize by CCDLSby CCDLS

0 20 40 60 80 100 120 140 160 180 200 220 2400

5

10

15

20

25

30

Mean size = 54 nm

Freq

uenc

yco

unt

37 nm

Diameter (nm)

DetectionDetection ofof encapsulatedencapsulated actives by FTIR actives by FTIR

Wavenumber(cm-1) Assignment

1743 C=O st (fatty acidscarboxylic groups)

1732 C=O st (surfactant ester)

1705 C=O st (sunscreenagent ester)

1610 arC-C st (sunscreenagent aromatic ring)

1610

1705

1739

1732

Nanoparticles with SANanoparticles with SA + RO

Evidence of sunscreen agent presence in both type of nanoparticlesPresence of surfactant in the nanoparticles with sunscreen agentThe rosehip oil and surfactant bands appear as a single overlapped band

IncorporationIncorporation ofof nanoparticles nanoparticles toto thethe fabricfabric

Cotton treated with nanoparticles loaded with Sunscreen agent

Cotton treated with nanoparticles loadedwith Sunscreen agent + rosehip oil

Untreated cotton

Presence of nanoparticles over the entire surface of the samplesHeterogeneous deposition of cotton fibresAggregation of nanoparticles

EvaluationEvaluation ofof thethe UltravioletUltraviolet ProtectionProtection Factor (UPF)Factor (UPF)Protection properties against ultraviolet solar radiation Standard AS/NZS 4399/1996

UPF classification system for protective clothes*

UPF Range UV protection category UPF grade

15 - 24 Good protection 15, 20

25 - 39 Very good protection 25, 30, 35

40 - 50, 50+ Excellent protection 40, 45, 50, 50+

Reference: untreated cottonSample: cotton treated with nanoparticles loaded with sunscreen agent

* Under UPF = 15, no protection is considered

UPF grade = 5UPF grade =45

Excellent protection of treated cottonagainst UV radiation

The main objective of this work is the preparation of polymeric nanoparticles for skin-caretextiles. The particular objectives included are: 1) The use of oil-in-water (O/W) nano-emulsions as templates to prepare polymericnanoparticles2) The incorporation of the nanoparticles on a cotton textile surface

• Polyoxyethylene ester NHLB = 14-16

• Ethyl Acetate

• Hydrophobically modified polysaccharide (HMPS), Mw ~ 65 kDa

• Skin-care actives (oil soluble):

-UVB Filter: Sunscreen agent (SA), (Eusolex6007)

-Skin regeneration enhancer: Rosehip oil (RO)

• Textile: cotton

• Cross Correlation Dynamic Light Scattering (CCDLS)

• Transmision Electron Microscopy (TEM)

• Scanning Electron Microscopy (SEM)

• Fourier Transform Infrared Spectroscopy(FTIR)

• UV Transmitance Spectroscopy

Figure 2. Ternary diagram representing the nano-emulsion composition

Figure 3. O/W nano-emulsions with different polymer% in the oil phase (from left to right: 4% to 8%)

Figure 4. Average Rh obtained by CCDLS of nano-emulsions and nanoparticledispersions of the studied systems

Figure 5. Size distribution and TEM image of nanoparticles loaded with sunscreen agent (left) andnanoparticles loaded with sunscreen agent+rosehip oil (right)

Figure 6. Section of IR spectra of nanoparticles loaded with SA and with SA + RO

Figure 7. SEM images of cotton textiles: treated with nanoparticles loaded with SA (left), untreated (center) and treated with nanoparticles with SA + RO (right)

Table II. UPF classification system for protective clothes

Table I. Main IR bands of raw materials

The Oil-in-Water nano-emulsions used as templates allow the preparation of polymeric nanoparticles loaded with two skin-care lipophilic actives.The additional incorporation of rosehip oil to the oil phase of nano-emulsions does not modify significantly the droplet and particle size with respect to the system with only

sunscreen agent as lipophilic active.The incorporation method of the nanoparticles to the textile leads to a heterogeneous deposition on the entire fabric surface, conferring high UV protection to cotton textile.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M.J. “Nano-emulsions”, Current Opinion in Colloid & Interface Science , 10 , 102 -110. (2005). Calderó, G., García-Celma, M.J., Solans, C. “Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation”, J. Colloid Interface Sci., 353(2), 406-411 (2011).

Solventevaporation

Cotton textiles treatment: impregnation with nanoparticle dispersions followed by padding and drying

Page 31: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

31IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 32: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

32IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 33: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

33IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Visible light emitting Si rich Si3N4 micro-disk resonators for sensoristic applications.

,

e b

m i

nm/RIU

RIU

Page 34: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

34IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 35: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

35IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 36: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

36IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Rotational Doppler Effect in Magnetic Resonance S. Lendínez (1), E.M. Chudnovsky (2), J. Tejada (1)

(1) Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain

(2) Physics Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589, U.S.A.

The Doppler Effect consists of a shift on the frequency received by an observer which is moving

with respect to the source of the radiation. Commonly, linear Doppler is observed. In this case, an observer moving at relative velocity v will perceive a frequency shifted by v/c: f ’ = f (1 ± v/c), where the plus (minus) sign is for an observer moving towards (backwards) the source.

However, the Doppler Effect can also be observed at rotations of the body. In particular, if a solid rotates with an angular velocity in the field of a circularly polarized electromagnetic wave, in its rotating frame the frequency of the wave will be shifted by ' = ± , where the plus (minus) sign is for a rotation in the opposite (same) direction of the circular polarization, as shown in the figure.

In the case of a rotating object with a resonant frequency, one would firstly think that the

frequency will be shifted by . However, a mechanical rotation of a system of charges is equivalent to a magnetic field, hence it must be checked whether the resonant frequency is affected by this magnetic field. Resonant frequencies of LC circuits are insensitive to magnetic fields, and the frequency will by shifted by as expected. On the contrary, frequencies based upon magnetic resonance will be sensitive to this magnetic field, so the frequency shift may not be .

Figure 1. The frequency of the circularly polarized electromagnetic wave ( , k) is the angular velocity of the

rotation of the electric (magnetic) field due to the wave at a given point in space. The rotation of the receiver at an angular velocity , depending on the direction of the rotation and the helicity of the wave, adds or subtracts to the frequency of the wave , rendering ' = ± in the coordinate frame of the receiver.

Page 37: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

37IV Jornada IN2UB - 14 Novembre 2011 POSTERS

(EF)TEM Characterization of Photonic Nanostructures with Applications in Tandem Solar Cells

L. Lopez-Conesa (1), S. Estrade (1,2), Andreas Hartel (3), M. Zacharias (3), J. Lopez-Vidrier (4), S. Hernandez (4), B. Garrido (4) and F. Peiro (1)

(1) LENS, MIND-IN2UB, Electronics Department, Universitat de Barcelona (2) TEM-MAT, CCiT, Universitat de Barcelona

(3) IMTEK, University of Freiburg (4) MIND-IN2UB, Electronics Department, Universitat de Barcelona

In recent years, Si nanostructured materials have shown a great potential for developing new generations of devices by controlling their quantum properties. In particular, Si nanocrystals (Si-nc) have presented outstanding electrical and optical properties for developing new optoelectronic devices. The ability to tune their band gap energy by controlling the size of these nanocrystals is very useful for photovoltaic applications in third generation tandem solar cells.

In the present work we will show the results of the characterisation by EFTEM and HRTEM of photonic nanostructures consisting of 10.5nm SiO2 / 20 x (SiO2 / SiOxNy) / (100) Si, with thicknesses of the SiOxNy layers varying between 2.5 and 12 nm, SiO2 spacer layer thickness varying between 0.5nm and 5nm and three different suboxide compositions.

In the SiOxNy layers, Si excess gives rise to the appearance of Si nanoparticles after annealing. Particle size distribution, as a function of layer thickness, the quality of the interfaces, the effect of different suboxide compositions and spacer layer thickness will be determined by EFTEM and HRTEM. EFTEM experiments will be carried out by selecting a 5 eV energy window around the crystalline Si plasmon (17 eV).

TEM and EFTEM images are obtained in a Jeol 2010F FEG TEM operating at 200 keVs, coupled a Gatan GIF spectrometer.

Figure 1. Unfiltered image (a) and EFTEM images around 17eV (b-d) of a mulitlayered structure with increasing SiOxNy thickness

Page 38: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

38IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 39: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

39IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Comportamiento PTC en composites de nanofibras de carbono preparados mediante tecnología tape casting

B.Pina1,F.M.Ramos1,2,M.Blanes1,T.Ezquerra3,C.Merino4,A.Cirera2

1: FAE-Francisco Albero S.A. Rafael Barradas, 19, 08908 L’Hospitalet, [email protected]:MIND/IN2UB Departament d’Electrònica, Universitat de Barcelona.

3:CSIC Instituto de Estructura de la Materia, Madrid 4: Grupo Antolín Ingeniería, Burgos

Se ha obtenido mediante tape casting un nanocomposite formado por una matriz de óxido de polietileno (POE) aditivada con nanofibras de carbono (CNFs)1 presentando un comportamiento eléctrico de tipo Positive Temperature Coefficient (PTC)2. Se trata de un sustrato (tape) flexible con propiedades sensóricas y caloríficas y consistencia mecánica suficiente para ser manipulado en procesos posteriores de integración en diferentes sustratos. En primer lugar, se ha realizado una batería de pruebas con diferentes cantidades de CNFs respecto al POE para determinar el umbral de percolación. La preparación de las muestras parte de una dispersión homogénea de nanofibras en agua, a continuación se añade el óxido de polietileno y finalmente se procesa mediante tape casting3,4. El sustrato obtenido tiene un espesor de 40 μm (Fig. 1). Fig.1.Tape de CNFs obtenido por tape casting

Se realizan DSC de cada una de las muestras para caracterizar el grado de cristalinidad y observar el posible efecto nucleante de las nanofibras en la matriz polimérica, estos ensayos han sido ratificados con análisis de DRX. Para finalizar se han medidos los coeficientes dieléctricos5 en función de la temperatura.

Para caracterizar eléctricamente los tapes obtenidos, se diseña un circuito interdigitado de pistas de cobre sobre un sustrato de poliéster. Este conjunto se lamina al tape de CNFs a 70ºC y 5000 psi, se implantan unos terminales a modo de bornes para aplicar voltaje y realizar las lecturas eléctricas. En cámara climática se han realizado ciclos térmicos sucesivos. Los resultados muestran que todos los nanocomposites exhiben comportamiento PTC, sufriendo todos ellos un aumento de resistencia al llegar a temperaturas de entre 65 y 70ºC (Fig. 2), seguido de un efecto NTC. Al aplicar voltaje a las muestras se ha observado una saturación de la intensidad a la misma temperatura.

Se ha definido el coeficiente PTC para cuantificar los saltos de resistencia, tal y como se expresa a continuación: CoefPTC=RTªswitch/R20º Donde Tªswitch es la temperatura a la que se observa la

resistencia más alta. Se observa que la magnitud del salto PTC es afectada directamente por la cantidad de carga presente en el nanocomposite.

Comparando los resultados obtenidos con los estudios ya realizados por diferentes autores se concluye que se ha conseguido desarrollar un nanocomposite con nanofibras de carbono mediante una tecnología no utilizada anteriormente para tal fin, alcanzando valores de resistividades inferiores6. Resulta ser un material potencial para aplicaciones tan diversas como sector del automóvil o textil.

Fig. 2. Ejemplo de comportamiento PTC

1 Ying Xi, Carbon 42, 1699-1706 (2004). 2 J.Meyer,”Glass Transition Temperature as a Guide to Selection of Polymers Suitable for PTC

materials”, Polymer Engineering and Science, 13 (6), 462-468 (1973). 3 J. Gurauskis, et al.: “Al2O3/Y-TZP and Y-TZP materials fabricated by stacking layers obtained by

aqueous tape casting”, Journal of the European Ceramic Society, 26 (8), 1489-1496 (2006). 4 Toyoaki Kimura, et al.”Self-temperature-control heaters by graphite-poly (ethylene glycol) mixed

systems: mechanism of electrical conduction”, Polymer, 29,526-534 (1988). 5 Monarchies et al. “Electrical properties of carbon black filled polyethylene”, Polymer Engineering

and Science 18 (8), 649-653 (1978).

Page 40: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

40IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 41: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

41IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Metal-Oxide semiconductor light emitting transitors for visible

and infrared applications J.M. Ramírez1, O. Jambois1, Y. Berencén1, D. Navarro-Urrios1, L. López-Conesa1, J. M. Rebled1,2, S. Estradé1,3, F. Peiró1, A. Anopchenko2, A. Marconi2, N. Prtljaga2, A. Tengattini2, L. Pavesi2, Jean-Phillippe Colonna3, J.-M. Fedeli3 and B. Garrido1

1Departament d'Electrònica, Universitat de Barcelona, Carrer Martì i Franquès 1, Barcelona 08028, Spain 2Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, Bellaterra 08193, Spain 3TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona, Spain 4Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo (Trento) 38123, Italy5CEA, Léti, Minatec campus 17 rue des Martyrs, 38054 Grenoble cedex 9, France

Among the huge variety of materials studied with photonics purposes, silicon has demonstrated to be a potential solution for the complete integration of the electronics and optics in a single CMOS chip. Nowadays, the poor luminescence shown due to its indirect bandgap has been mitigated by means of the quantum confinement inside the silicon nanoparticles. In addition, the inclusion of these elements in combination with other luminescent centers, i. e. erbium ions, has prooved to be essential for an efficient sensitization. Moreover, large operation device lifetimes can be obtained in optoelectronic devices, enhancing the electrical injection and reliability.

In this work, silicon based metal-oxide-semiconductor light emitting transistors

(MOSLETs) have been studied. They consist in NMOS transistors with an active layer 50 nm thick placed between the gate and the conduction channel. Three different layers have been compared: a silicon-rich silicon oxide (SRSO), an erbium doped SRSO and finally an erbium doped pure oxide. Then, a complete description of the electro-optical characteristics has allowed us to determine the role of the active elements in these structures. Also, the electroluminescence has been quantified for the SRSO (emitting in the visible) and the Er doped SRSO layers (emitting in the infrared). Finally, a TEM characterization of one single device prepared by Focussed Ion Beam (FIB) has been done, determining the geometry, thickness and the distribution of the luminescent centers inside the active layer.

Fig. 1; a) Preliminary step on FIB MOSLET preparation process (the inset shows a general view of the dispositive). b) HAADF-TEM image of the 50nm active layer. The inset presents the end part of the channel.

a) b)

50nm

poly-Si

c-Si

Er

Drain

Source

Gate

Channel

Page 42: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

42IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 43: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

43IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 44: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

44IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 45: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

45IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 46: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

46IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 47: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

47IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 48: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

48IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Study of aqueous dispersions of particles under electric fields Sergi Hernàndez-Navarro, Pietro Tierno, Jordi Ignés-Mullol and Francesc Sagués

SOC&SAM, Departament de Química Física, Facultat de Química, Universitat de Barcelona

We have studied the effect of electric fields on confined aqueous dispersions of solid particles.1

By applying certain electric fields it is possible to create new ordered structures,2 with different shapes and cell parameters ranging from micrometers to nanometers. This opens a whole range of possible applications in many different fields, such as creating new optical and electro-optical devices, biosensors and micrometer-sized reactors.

Our experimental system consist in an aqueous dispersion of particles confined between two ITO-glass plates separated a few microns. The particles used in our experiments were polystyrene spheres (3 m), paramagnetic polystyrene spheres (3 m), and peanut-shaped particles (two spheres sticked together, one of 2 m and the other of 3 m).

The amplitude and frequency of the applied electric field enable us to control the degree of attraction or repulsion between dielectric particles.3 For example, applying an a.c. field at high frequencies (~10KHz), particles adopt a repulsive structure due to repulsion between their induced electric dipoles. On the contrary, if one decreases the frequency (i.e. ~1KHz) much more compact and ordered bidimensional structures appear,4 caused by an increase of the attractive force, of electrohydrodynamic or electroosmotic nature.

Our goal is to investigate active reology on these structures5 by mixing some paramagnetic polystyrene particles into polystyrene particle dispersions. Paramagnetic beads should act as probes, pulled by a known magnetic field gradient.

Fig 1: Confined polystyrene spheres (3 m) under a low frequency electric field.

1 M. Trau, D.A. Saville and I.A. Aksay, "Field-Induced Layering of Colloidal Crystals", Science, 272,

706-709 (1996). 2 T. Gong, D.T. Wu and D.W.M. Marr, "Two-dimensional Electrohydrodynamically Induced Colloidal

Phases", Langmuir, 18, 10064-10067 (2002). 3 K.Q. Zhang and X.Y.Liu, "Two Scenarios for Colloidal Phase Transitions", Physical Review Letters,

98, 105701 (2006). 4 F. Nadal, F.Argoul, P.Hanusse and B. Pouligny, "Electrically induced interactions between colloidal

particles in the vicinity of a conducting plane", Physical Review E, 65, 061409 (2002). 5 R.P.A. Dullens and C. Bechinger, "Shear Thinning and Local Melting of Colloidal Crystals", Physical

Review Letters, 107, 138301 (2011).

Page 49: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

49IV Jornada IN2UB - 14 Novembre 2011 POSTERS

NANOWIRES CHARACTERISATION

-

Relation between the aspect ratio of CoPt nanowires and CoPt microstructures and their magnetic properties

Meritxell Cortés, Elvira Gómez, Elisa VallésDpt. Química Física e Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí Franquès 1, E-08028 Barcelona, Spain

AIM OF THE WORKThere has recently been a significant research effort in the modulation of magnetic properties of different systems for application in microelectromechanical-systems (MEMS), in which both soft and hard-magnetic materials are required. The aim of the present work is to explore electrochemical methods for the production of different CoPt microstructures and nanowires with different aspect ratio in order to modulate their magnetic behaviour.

The optimum substrate has been used for each structure. In order to prepare the samples, a solution containing CoCl2, Na2PtCl6, C6H8O7, H3BO3 and NH4Cl was used. Electrodeposition has been carried out using a three-electrode cell under stirring and temperature controlled conditions. A study of the CoPt system was performed to select the optimum working potential range for the different substrates.

The electrodeposition method allowed us to prepare nanowires of 100-200 nm of diameter, and microstructures of 100 -500 nm-thick. Morphology, composition, structure and magnetic properties of deposits were studied. The electrodeposition conditions were adjusted to attain an hcp cobalt phase distorted by the presence of high platinum percentages (61-68 wt.%).

NANOWIRES PREPARATION

MICROSTRUCTURES PREPARATION

-

.

This work was supported by contract CTQ2010-20726 (subprogram BQU) from the Comisión Interministerial de Ciencia y Tecnología (CICYT). The authors wish to thank the Centres cientifics i tecnologics de la UB (CciTUB) for the use of their equipment. Some substrates have been prepared in the Clean Room of the IMB-CNM (CSIC), supported by the IMB-CNM (CSIC)NGG-158 project. M. C. would also like to thank the Departament d’Innovació, Universitats i Empresa of the Generalitat de Catalunya and Fons Social Europeu for their financial support.

DEPOSITION CONDITIONS reference electrode: Ag/AgCl/0.1 M NaCl counter electrode: Platinum spiral working electrode: Polycarbonate membranes (20 μm thick, chanel porous Ø 100 and 200 nm) sputtered with AuE= - 800 mV

CONCLUSION: Modulation of the magnetic properties of the CoPt system was obtained by electrodepositing different micro/nanostructures.

MICROSTRUCTURES CHARACTERISATION

Ø=100 nm

Ø=200 nm

DEPOSITION CONDITIONS reference electrode: Ag/AgCl/0.1 M NaClcounter electrode: Platinum spiral working electrode: glass/ITOE= - 1150 to -1350 mV

(-) (+) (-) (+)

(-)

LinesSquares

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

nanowiresmicrostructures

Inte

nsity

(a.u

)

2

Co3

O4

fcc

Au

hcp

002

hcp

100

hcp

101

hcp

110

hcp

112

100

Ti

>t >t

>t >t

DRX: Distorted Co-hcp phasemicrostructures preferred orientation 101nanowires Ø=200 nm preferred orientation 002nanowires Ø=100 nm preferred orientation 100

Peaks of Co3O4-fcc

62-68 wt.% PtGrowth rate of around 25 nm/min

Ø=100 nmCoercivity almost constant (850 Oe)Shape anisotropy less important as Ø decreases

-1

-0.5

0

0.5

1

-2000 -1500 -1000 -500 0 500 1000 1500 2000

M / Ms xM / Ms yM / Ms z

M /

Ms

H / Oe

-1

-0.5

0

0.5

1

-2 104 -1.5 104 -1 104 -5000 0 5000 1 104 1.5 104 2 104

M / Ms xM / Ms yM / Ms z

M /

Ms

H / Oe

Sh

ZOOM

Low magnetic interaction was observed between the nanowires when the separation between them is higher than their diameter

Well defined microstructuresVertical walls140 nm thick

61-64 wt.% Pt Coercivity 700 OeShape anisotropy

ZOOM

Hc 100nm-nanowires > Hc microstrutures > Hc 200nm-nanowires

-1

-0.5

0

0.5

1

-4000 -2000 0 2000 4000

nanowires 100nm paralnanowires 200 nm paralmicrostructures x-axis

M /

Ms

H / Oe

-1

-0.5

0

0.5

1

-4000 -2000 0 2000 4000

12 m paral12 m perp4 m paral 4 m perp1 m paral1 m perp

M /

Ms

H / Oe

-1

-0.5

0

0.5

1

-2 104 -1.5 104 -1 104 -5000 0 5000 1 104 1.5 104 2 104

12 m paral12 m perp4 m paral 4 m perp1 m paral1 m perp

M /

Ms

H / Oe

200 μm 600 μm 100 μm 400 μm

20 μm

1 μm 1.67 μm

1.67 μm 7.5 μm

10.0 μm

500 nm

Page 50: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

50IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Control of chirality: physical vs. chemical forces

Núria Petit-Garrido, Jordi Ignés-Mullol, Josep Claret and Francesc Sagués SOC&SAM group, IN2UB and Departament de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028

Barcelona, Spain

Control of chirality at different hierarchical levels, from complex molecular architectures to crystal structures and soft assembled materials, is a fundamental issue in basic and applied chemistry. Particularly evocated has been the idea to use the chiral force associated to fluid whirling, i.e. hydrodynamic vortices, to promote chirality. We recently reported a new and robust realization of such vortically-mediated chiral selection in soft assembled domains of achiral molecules1. We refer to Langmuir monolayers of an azobenzene derivative spread at the air-water interface when moderately sheared by the stirring of the aqueous subphase. The orientational chirality of isolated submillimeter domains is unambiguously assessed by means of polarized light reflection microscopy. Indeed, the imposed chiral influence, being a genuine three-dimensional macroscopic force applied to the aqueous bulk subphase , is downscale transferred to the two-dimensional, monomolecular thick monolayer residing on top of it. Currently we are working on a second scenario where we compare the control of chirality by means of a vortical flow, with the one obtained by a chiral molecule used as a dopant. In the latter, chirality is expressed by asymmetric carbon atoms as commonly observed in natural and synthetic amphiphiles, and it is manifested in the mesoscopic aggregates. We confront both paths that go to opposite directions: if the chiral dopant imprints a CW orientational chirality, the monolayer is sheared by a CCW stirring sense. Preliminary results show that the physical force is able to dominate the system.

1 N. Petit-Garrido, J. Ignés-Mullol, J. Claret, F. Saugés, "Chiral Selection by Interfacial Shearing of Self-Assembled Achiral Molecules", Phys. Rev. Lett., vol (103), 237802 (2009).

Page 51: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

51IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Physicochemical phenomena in two dimensional microfluidic systems

Alba Pulido-Companys, Jordi Ignés-Mullol, Josep Claret, and Francesc Sagués SOC & SAM group, Universitat de Barcelona, Departament de Química Física. Martí i Franquès 1, 08028, Barcelona,

Spain.

Inspired by the devices and achievements in the field of microfluidics1, we developed a new protocol in order to prepare complex fluidic systems based on Langmuir monolayers.2 Our experimental set-up allows controlling the flow of Langmuir monolayers through a circuit imprinted on a solid support, thus enabling us to study different mobility-mediated phenomena for species dispersed in monolayers or forming a monolayer. In this sense we have studied the diffusion of a fluorescent probe in a phospholipid monolayer, when a pure and a doped monolayer coflow in our microfluidic system, obtaining values for the diffusion coefficient of the fluorescent species. On the other hand we have studied the dissolution of a condensed monolayer by an expanded monolayer, while both are coflowing through a rectilinear channel. Using Brewster angle microscopy, the in situ observation of the 2D dissolution of condensed domains has been made possible, obtaining measurements of the dissolution rates. We are currently working on the mixing of two expanded monolayers coflowing through a channel, one of them formed by a fluorescent surfactant. The observation of the system is done by a combined fluorescence and Brewster angle microscope, allowing the simultaneous observation of the same spot by both techniques.

1 Tabeling, P. Introduction to Microfluidics; Oxford University Press: New York, 2005. 2 P. Burriel, J. Ignés-Mullol, J. Claret, F. Sagués, “A two dimensional microfluidic device using

circuits of wettability contrast “, Langmuir 26 (7), 4613-4615 (2010).

Page 52: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

52IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 53: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

53IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 54: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se

54IV Jornada IN2UB - 14 Novembre 2011 POSTERS

Page 55: BOOK OF ABSTRACTS - UBDPPE:POPG, 3:1 mol/mol). Les observacions de les BLS mitjançant la microscòpia de força atòmica (AFM) mostren la tendència natural de la proteïna a segregar-se