27
metcogroup Steflomet Brand POT- cum – PTFE Bearings FOR KOYEMBEDU JUNCTION AT JUNCTION DEVELOPMENT PROJECT, CHENNAI (MAIN – 2) CONTRACTOR: M/s Infrastructures Limited. Design Calculations & Drawings for Main - 2 (REV. – 0) Ref: 630 MG DATE OF SUBMISSION: February, 2009 METCOGROUP ENGINEERS PVT. LTD. KOLKATA

Bridge Bearing Main -2 Design Calculation (R-0)

Embed Size (px)

DESCRIPTION

Bridge bearing calc

Citation preview

Page 1: Bridge Bearing Main -2 Design Calculation (R-0)

metcogroup

Steflomet Brand

POT- cum – PTFE Bearings

FOR KOYEMBEDU JUNCTION AT JUNCTION DEVELOPMENT

PROJECT, CHENNAI (MAIN – 2)

CONTRACTOR: M/s Infrastructures Limited.

Design Calculations & Drawings for Main - 2

(REV. – 0)

Ref: 630 MG

DATE OF SUBMISSION: February, 2009

METCOGROUP ENGINEERS PVT. LTD.

KOLKATA

Page 2: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P20 VMSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 1,900.00 kN Lateral Horiz. Force Hlats (Seismic): 300.00 kN

Normal Vertical Load, Nnorm : 1,900.00 kN Frictional Horiz. Force, Hlng,s : 114.00 kN

Rotation, u : 0.010 rad Frictional Horiz. Force, Hlng,n : 114.00 kN

Min. Vertical Load, Nmin : 850.0 kN Horz. Force (Normal), Hn : 124.48 kN

Movement, elng (±) : 75 mm Horz. Force (Seismic), Hs : 305.37 kN

Lateral Horiz. Force Hlatn (Normal): 50.0 kN Design Horiz. Force, H (for

bearing components only) : 305.4 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570W (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 300 mm Thickness of pad, he : 20

Area of pad, Ae = π x di²/4 : 7.07E+04 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE Eff. plan area of PTFE, An : 6.12E+04 mm²

Dia of PTFE (dp) : 320 mm Contact width with piston, w : 6 mm

Thkness of saddle plate, hm : 15 mm Thk of guide, ku : 20 mm

Heigth of SS on saddle, hts : 10 mm Length of guide, Lu : 310 mm

.4 POT CYLINDER

Dia of base plate, Do : 380 mm Thkness of base plate, kb : 16 mm

Outer dia of cylinder, do : 370 mm Depth of cylinder, hc : 35 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

364 mm Width of cylinder wall,

bp=(do-di)/2

: 35 mm

.5 TOP ASSEMBLY

Length of top plate, a : 530 mm Width of top plate, b : 380 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 36 mm

Length of SS plate, as : 520 mm Width of SS plate, bs : 370 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 380.0 mm

.6 ANCHOR

Bottom:

Bolt Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 39.0

.8 Overall height of bearing (h) mm : 117

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40

Allowable direct stress (Normal)= 0.50.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct, σcb (Seismic) = Nmaxx1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom direct, σcb (Normal) = Nx1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 1.03 MPa

Bottom bending (Seismic), σcbc = Hsx1000xha / [π.(deb)3/32] MPa = 2.52 MPa

λb = σcb/scb,all + σcbc/σcbc,all = 0.990 MPa <= 1 (Normal) Hence OK

λb = σcb/scb,all + σcbc/σcbc,all = 0.881 MPa <= 1 (Seismic) Hence OK

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40 MPa

Allowable direct stress (Normal)= 0.50.fck 20.00 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Top direct, σct (Seismic) = Nmaxx1000 / [π.det²/4] N/mm² = 16.75 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-MO�OAXIAL BEARI�G

Page 3: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct, σct (Normal) = Nx1000 / [π.det²/4] N/mm² = 16.75 MPa

Top bending, σctc = Hnx1000x(h-ha)/[π.det3/32] MPa = 1.80 MPa

Top bending, σctc = Hsx1000x(h-ha)/[π.det3/32] MPa = 4.42 MPa

λt = σct/sct,all + σctc/σctc,all = 0.973 MPa <= 1 (Normal) Hence OK

λt = σct/sct,all + σctc/σctc,all = 0.935 MPa <= 1 (Seismic) Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 31.03 N/mm² < 40 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 26.88 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 8.31 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 65.83

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 124.64

(c) Total stress σt = σt1 + σt2 = 190.47 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 15.36 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 43.62 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 58.98 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 26.33 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 172.00 MPa

(c) Total stress σbt = σbt1 + σbt2 = 198.3 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 223.1 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface, we = Hx1000x1.3/(di x σp) = 5.19 mm < w, Hence OK

0.7 GUIDE

(i) Shear stress, σqu =Hx1000 / (Lu x ku)= 48.4 N/mm² < 153 N/mm² OK

(ii) Bndg stress, σbu=Hx1000x6x(hts/2+7+ks)/(Luxku²) = 217.7 N/mm² < 224 N/mm² OK

(iii) Combined stress, σeu = (σbtu²+3xσqu²)^(½) = 233.3 N/mm² < 306 N/mm² OK

(ivi) Direct stress on SS, σdu = Hx1000/{hts x (Lu-10)} = 96.8 N/mm² < 200 N/mm² OK

.8 ANCHOR

(a) Anchor Screws

Bottom:

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 319 kN > H OK

Top:

Anchor Screws

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 319 kN > H OK

(b) AnchorSleeves

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Page 4: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P18 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 1,700.00 kN Movement, elng (±) : 75 mm

Normal Vertical Load, Nnorm : 1,700.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.01 rad Frictional Horiz. Force, Hf : 102 kN

Min. Vertical Load, Nmin : 300.0 kN Design Horiz. Force, H (for

bearing components only) : 170.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 270 mm Thickness of pad, he : 18

Area of pad, Ae = π x di²/4 : 5.73E+04 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 270 mm Eff. plan area of PTFE, An : 5.73E+04 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 6 mm

.4 POT CYLINDER

Dia of base plate, Do : 340 mm Thkness of base plate, kb : 19 mm

Outer dia of cylinder, do : 330 mm Depth of cylinder, hc : 31 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

346 mm Width of cylinder wall,

bp=(do-di)/2

: 30 mm

.5 TOP ASSEMBLY

Length of top plate, a : 500 mm Width of top plate, b : 370 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 17 mm

Length of SS plate, as : 470 mm Width of SS plate, bs : 340 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 350.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 40.0

.8 Overall height of bearing (h) mm : 97

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 18.08 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 18.08 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 1.00 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.67 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.979 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.824 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 5: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 17.67 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 17.67 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 1.38 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 2.30 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.987 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.845 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 29.69 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 29.69 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 8.4 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 77.58

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 91.40

(c) Total stress σt = σt1 + σt2 = 168.98 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 17.81 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 31.48 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 49.30 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 32.07 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 132.22 MPa

(c) Total stress σbt = σbt1 + σbt2 = 164.3 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 185.2 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 3.21 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 209 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 209 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 6: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P28 VMSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 2,700.00 kN Lateral Horiz. Force Hlats (Seismic): 500.00 kN

Normal Vertical Load, Nnorm : 2,700.00 kN Frictional Horiz. Force, Hlng,s : 162.00 kN

Rotation, u : 0.010 rad Frictional Horiz. Force, Hlng,n : 162.00 kN

Min. Vertical Load, Nmin : 800.0 kN Horz. Force (Normal), Hn : 340.95 kN

Movement, elng (±) : 75 mm Horz. Force (Seismic), Hs : 506.52 kN

Lateral Horiz. Force Hlatn (Normal): 300.0 kN Design Horiz. Force, H (for

bearing components only) : 506.5 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570W (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 330 mm Thickness of pad, he : 22

Area of pad, Ae = π x di²/4 : 8.55E+04 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE Eff. plan area of PTFE, An : 6.87E+04 mm²

Dia of PTFE (dp) : 340 mm Contact width with piston, w : 8 mm

Thkness of saddle plate, hm : 15 mm Thk of guide, ku : 25 mm

Heigth of SS on saddle, hts : 10 mm Length of guide, Lu : 330 mm

.4 POT CYLINDER

Dia of base plate, Do : 530 mm Thkness of base plate, kb : 31 mm

Outer dia of cylinder, do : 430 mm Depth of cylinder, hc : 37 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

454 mm Width of cylinder wall,

bp=(do-di)/2

: 50 mm

.5 TOP ASSEMBLY

Length of top plate, a : 620 mm Width of top plate, b : 530 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 36 mm

Length of SS plate, as : 540 mm Width of SS plate, bs : 390 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 496.0 mm

.6 ANCHOR

Bottom:

Bolt Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 12 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 12 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 57.0

.8 Overall height of bearing (h) mm : 136

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40

Allowable direct stress (Normal)= 0.50.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct, σcb (Seismic) = Nmaxx1000 / [π.deb²/4] MPa = 16.68 MPa

Bottom direct, σcb (Normal) = Nx1000 / [π.deb²/4] MPa = 16.68 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 2.12 MPa

Bottom bending (Seismic), σcbc = Hsx1000xha / [π.(deb)3/32] MPa = 3.14 MPa

λb = σcb/scb,all + σcbc/σcbc,all = 0.993 MPa <= 1 (Normal) Hence OK

λb = σcb/scb,all + σcbc/σcbc,all = 0.856 MPa <= 1 (Seismic) Hence OK

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40 MPa

Allowable direct stress (Normal)= 0.50.fck 20.00 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Top direct, σct (Seismic) = Nmaxx1000 / [π.det²/4] N/mm² = 13.97 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-MO�OAXIAL BEARI�G

Page 7: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct, σct (Normal) = Nx1000 / [π.det²/4] N/mm² = 13.97 MPa

Top bending, σctc = Hnx1000x(h-ha)/[π.det3/32] MPa = 2.25 MPa

Top bending, σctc = Hsx1000x(h-ha)/[π.det3/32] MPa = 3.34 MPa

λt = σct/sct,all + σctc/σctc,all = 0.867 MPa <= 1 (Normal) Hence OK

λt = σct/sct,all + σctc/σctc,all = 0.759 MPa <= 1 (Seismic) Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 39.31 N/mm² < 40 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 31.57 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 5.52 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 61.94

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 136.90

(c) Total stress σt = σt1 + σt2 = 198.84 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 13.89 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 46.05 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 59.94 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 18.33 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 143.67 MPa

(c) Total stress σbt = σbt1 + σbt2 = 162.0 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 192.4 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface, we = Hx1000x1.3/(di x σp) = 7.83 mm < w, Hence OK

0.7 GUIDE

(i) Shear stress, σqu =Hx1000 / (Lu x ku)= 60.6 N/mm² < 153 N/mm² OK

(ii) Bndg stress, σbu=Hx1000x6x(hts/2+7+ks)/(Luxku²) = 218.2 N/mm² < 224 N/mm² OK

(iii) Combined stress, σeu = (σbtu²+3xσqu²)^(½) = 242.1 N/mm² < 306 N/mm² OK

(ivi) Direct stress on SS, σdu = Hx1000/{hts x (Lu-10)} = 151.5 N/mm² < 200 N/mm² OK

.8 ANCHOR

(a) Anchor Screws

Bottom:

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 608 kN > H OK

Top:

Anchor Screws

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 608 kN > H OK

(b) AnchorSleeves

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Page 8: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P28 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 2,500.00 kN Movement, elng (±) : 50 mm

Normal Vertical Load, Nnorm : 2,500.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.01 rad Frictional Horiz. Force, Hf : 150 kN

Min. Vertical Load, Nmin : 1,000.0 kN Design Horiz. Force, H (for

bearing components only) : 250.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 330 mm Thickness of pad, he : 22

Area of pad, Ae = π x di²/4 : 8.55E+04 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 330 mm Eff. plan area of PTFE, An : 8.55E+04 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 8 mm

.4 POT CYLINDER

Dia of base plate, Do : 530 mm Thkness of base plate, kb : 31 mm

Outer dia of cylinder, do : 430 mm Depth of cylinder, hc : 37 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

454 mm Width of cylinder wall,

bp=(do-di)/2

: 50 mm

.5 TOP ASSEMBLY

Length of top plate, a : 530 mm Width of top plate, b : 450 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 20 mm

Length of SS plate, as : 480 mm Width of SS plate, bs : 400 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 422.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 57.0

.8 Overall height of bearing (h) mm : 120

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 15.44 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 15.44 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 0.93 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.55 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.842 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.711 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 9: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 17.87 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 17.87 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 1.28 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 2.13 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.990 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.843 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 29.23 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 29.23 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 9.5 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 57.35

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 67.57

(c) Total stress σt = σt1 + σt2 = 124.92 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 12.86 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 22.73 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 35.59 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 16.98 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 70.91 MPa

(c) Total stress σbt = σbt1 + σbt2 = 87.9 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 107.3 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 3.86 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 349 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 349 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 10: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P32 VMSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 3,000.00 kN Lateral Horiz. Force Hlats (Seismic): 600.00 kN

Normal Vertical Load, Nnorm : 3,000.00 kN Frictional Horiz. Force, Hlng,s : 180.00 kN

Rotation, u : 0.010 rad Frictional Horiz. Force, Hlng,n : 180.00 kN

Min. Vertical Load, Nmin : 1,400.0 kN Horz. Force (Normal), Hn : 186.82 kN

Movement, elng (±) : 50 mm Horz. Force (Seismic), Hs : 606.71 kN

Lateral Horiz. Force Hlatn (Normal): 50.0 kN Design Horiz. Force, H (for

bearing components only) : 606.7 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570W (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 390 mm Thickness of pad, he : 26

Area of pad, Ae = π x di²/4 : 1.19E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE Eff. plan area of PTFE, An : 9.77E+04 mm²

Dia of PTFE (dp) : 400 mm Contact width with piston, w : 10 mm

Thkness of saddle plate, hm : 15 mm Thk of guide, ku : 30 mm

Heigth of SS on saddle, hts : 10 mm Length of guide, Lu : 390 mm

.4 POT CYLINDER

Dia of base plate, Do : 610 mm Thkness of base plate, kb : 26 mm

Outer dia of cylinder, do : 510 mm Depth of cylinder, hc : 43 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

494 mm Width of cylinder wall,

bp=(do-di)/2

: 60 mm

.5 TOP ASSEMBLY

Length of top plate, a : 620 mm Width of top plate, b : 520 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 36 mm

Length of SS plate, as : 550 mm Width of SS plate, bs : 450 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 520.0 mm

.6 ANCHOR

Bottom:

Bolt Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 12 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 12 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 57.0

.8 Overall height of bearing (h) mm : 137

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40

Allowable direct stress (Normal)= 0.50.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct, σcb (Seismic) = Nmaxx1000 / [π.deb²/4] MPa = 15.65 MPa

Bottom direct, σcb (Normal) = Nx1000 / [π.deb²/4] MPa = 15.65 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 0.90 MPa

Bottom bending (Seismic), σcbc = Hsx1000xha / [π.(deb)3/32] MPa = 2.92 MPa

λb = σcb/scb,all + σcbc/σcbc,all = 0.850 MPa <= 1 (Normal) Hence OK

λb = σcb/scb,all + σcbc/σcbc,all = 0.801 MPa <= 1 (Seismic) Hence OK

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40 MPa

Allowable direct stress (Normal)= 0.50.fck 20.00 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Top direct, σct (Seismic) = Nmaxx1000 / [π.det²/4] N/mm² = 14.13 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-MO�OAXIAL BEARI�G

Page 11: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct, σct (Normal) = Nx1000 / [π.det²/4] N/mm² = 14.13 MPa

Top bending, σctc = Hnx1000x(h-ha)/[π.det3/32] MPa = 1.08 MPa

Top bending, σctc = Hsx1000x(h-ha)/[π.det3/32] MPa = 3.52 MPa

λt = σct/sct,all + σctc/σctc,all = 0.788 MPa <= 1 (Normal) Hence OK

λt = σct/sct,all + σctc/σctc,all = 0.776 MPa <= 1 (Seismic) Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 30.72 N/mm² < 40 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 25.11 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 7.12 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 49.35

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 117.58

(c) Total stress σt = σt1 + σt2 = 166.93 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 10.88 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 38.89 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 49.77 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 14.15 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 120.56 MPa

(c) Total stress σbt = σbt1 + σbt2 = 134.7 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 159.9 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface, we = Hx1000x1.3/(di x σp) = 7.93 mm < w, Hence OK

0.7 GUIDE

(i) Shear stress, σqu =Hx1000 / (Lu x ku)= 51.3 N/mm² < 153 N/mm² OK

(ii) Bndg stress, σbu=Hx1000x6x(hts/2+7+ks)/(Luxku²) = 153.8 N/mm² < 224 N/mm² OK

(iii) Combined stress, σeu = (σbtu²+3xσqu²)^(½) = 177.6 N/mm² < 306 N/mm² OK

(ivi) Direct stress on SS, σdu = Hx1000/{hts x (Lu-10)} = 153.8 N/mm² < 200 N/mm² OK

.8 ANCHOR

(a) Anchor Screws

Bottom:

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 728 kN > H OK

Top:

Anchor Screws

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 728 kN > H OK

(b) AnchorSleeves

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Page 12: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P32 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 3,000.00 kN Movement, elng (±) : 50 mm

Normal Vertical Load, Nnorm : 3,000.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.01 rad Frictional Horiz. Force, Hf : 180 kN

Min. Vertical Load, Nmin : 1,400.0 kN Design Horiz. Force, H (for

bearing components only) : 300.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 390 mm Thickness of pad, he : 26

Area of pad, Ae = π x di²/4 : 1.19E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 400 mm Eff. plan area of PTFE, An : 1.26E+05 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 6 mm

.4 POT CYLINDER

Dia of base plate, Do : 500 mm Thkness of base plate, kb : 26 mm

Outer dia of cylinder, do : 470 mm Depth of cylinder, hc : 41 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

494 mm Width of cylinder wall,

bp=(do-di)/2

: 40 mm

.5 TOP ASSEMBLY

Length of top plate, a : 600 mm Width of top plate, b : 520 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 21 mm

Length of SS plate, as : 550 mm Width of SS plate, bs : 470 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 496.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 55.0

.8 Overall height of bearing (h) mm : 120

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 15.65 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 15.65 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 0.84 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.39 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.845 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.710 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 13: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 15.53 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 15.53 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 0.98 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 1.63 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.850 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.719 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 23.87 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 25.11 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 9.1 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 77.64

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 91.46

(c) Total stress σt = σt1 + σt2 = 169.10 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 16.32 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 28.85 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 45.17 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 31.83 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 125.48 MPa

(c) Total stress σbt = σbt1 + σbt2 = 157.3 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 175.7 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 3.92 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 429 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 429 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 14: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P36 VMSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 3,500.00 kN Lateral Horiz. Force Hlats (Seismic): 700.00 kN

Normal Vertical Load, Nnorm : 3,500.00 kN Frictional Horiz. Force, Hlng,s : 210.00 kN

Rotation, u : 0.010 rad Frictional Horiz. Force, Hlng,n : 210.00 kN

Min. Vertical Load, Nmin : 2,200.0 kN Horz. Force (Normal), Hn : 215.87 kN

Movement, elng (±) : 50 mm Horz. Force (Seismic), Hs : 707.83 kN

Lateral Horiz. Force Hlatn (Normal): 50.0 kN Design Horiz. Force, H (for

bearing components only) : 707.8 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570W (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 390 mm Thickness of pad, he : 26

Area of pad, Ae = π x di²/4 : 1.19E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE Eff. plan area of PTFE, An : 9.77E+04 mm²

Dia of PTFE (dp) : 400 mm Contact width with piston, w : 10 mm

Thkness of saddle plate, hm : 15 mm Thk of guide, ku : 30 mm

Heigth of SS on saddle, hts : 10 mm Length of guide, Lu : 390 mm

.4 POT CYLINDER

Dia of base plate, Do : 610 mm Thkness of base plate, kb : 26 mm

Outer dia of cylinder, do : 510 mm Depth of cylinder, hc : 43 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

494 mm Width of cylinder wall,

bp=(do-di)/2

: 60 mm

.5 TOP ASSEMBLY

Length of top plate, a : 620 mm Width of top plate, b : 520 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 36 mm

Length of SS plate, as : 550 mm Width of SS plate, bs : 450 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 520.0 mm

.6 ANCHOR

Bottom:

Bolt Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 8 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 8 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 57.0

.8 Overall height of bearing (h) mm : 137

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40

Allowable direct stress (Normal)= 0.50.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct, σcb (Seismic) = Nmaxx1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom direct, σcb (Normal) = Nx1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 1.04 MPa

Bottom bending (Seismic), σcbc = Hsx1000xha / [π.(deb)3/32] MPa = 3.41 MPa

λb = σcb/scb,all + σcbc/σcbc,all = 0.991 MPa <= 1 (Normal) Hence OK

λb = σcb/scb,all + σcbc/σcbc,all = 0.935 MPa <= 1 (Seismic) Hence OK

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40 MPa

Allowable direct stress (Normal)= 0.50.fck 20.00 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Top direct, σct (Seismic) = Nmaxx1000 / [π.det²/4] N/mm² = 16.48 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-MO�OAXIAL BEARI�G

Page 15: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct, σct (Normal) = Nx1000 / [π.det²/4] N/mm² = 16.48 MPa

Top bending, σctc = Hnx1000x(h-ha)/[π.det3/32] MPa = 1.25 MPa

Top bending, σctc = Hsx1000x(h-ha)/[π.det3/32] MPa = 4.10 MPa

λt = σct/sct,all + σctc/σctc,all = 0.918 MPa <= 1 (Normal) Hence OK

λt = σct/sct,all + σctc/σctc,all = 0.905 MPa <= 1 (Seismic) Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 35.84 N/mm² < 40 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 29.30 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 5.80 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 57.58

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 137.18

(c) Total stress σt = σt1 + σt2 = 194.75 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 12.70 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 45.37 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 58.07 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 16.50 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 140.66 MPa

(c) Total stress σbt = σbt1 + σbt2 = 157.2 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 186.6 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface, we = Hx1000x1.3/(di x σp) = 9.25 mm < w, Hence OK

0.7 GUIDE

(i) Shear stress, σqu =Hx1000 / (Lu x ku)= 59.8 N/mm² < 153 N/mm² OK

(ii) Bndg stress, σbu=Hx1000x6x(hts/2+7+ks)/(Luxku²) = 179.5 N/mm² < 224 N/mm² OK

(iii) Combined stress, σeu = (σbtu²+3xσqu²)^(½) = 207.3 N/mm² < 306 N/mm² OK

(ivi) Direct stress on SS, σdu = Hx1000/{hts x (Lu-10)} = 179.5 N/mm² < 200 N/mm² OK

.8 ANCHOR

(a) Anchor Screws

Bottom:

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 739 kN > H OK

Top:

Anchor Screws

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 739 kN > H OK

(b) AnchorSleeves

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Page 16: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P36 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 3,500.00 kN Movement, elng (±) : 50 mm

Normal Vertical Load, Nnorm : 3,500.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.01 rad Frictional Horiz. Force, Hf : 210 kN

Min. Vertical Load, Nmin : 2,200.0 kN Design Horiz. Force, H (for

bearing components only) : 350.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 390 mm Thickness of pad, he : 26

Area of pad, Ae = π x di²/4 : 1.19E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 400 mm Eff. plan area of PTFE, An : 1.26E+05 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 6 mm

.4 POT CYLINDER

Dia of base plate, Do : 500 mm Thkness of base plate, kb : 26 mm

Outer dia of cylinder, do : 470 mm Depth of cylinder, hc : 41 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

494 mm Width of cylinder wall,

bp=(do-di)/2

: 40 mm

.5 TOP ASSEMBLY

Length of top plate, a : 600 mm Width of top plate, b : 520 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 21 mm

Length of SS plate, as : 550 mm Width of SS plate, bs : 470 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 496.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 55.0

.8 Overall height of bearing (h) mm : 120

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 18.26 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 0.98 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.63 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.986 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.828 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 17: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 18.11 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 18.11 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 1.14 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 1.90 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.991 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.839 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 27.85 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 29.30 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 8.5 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 90.58

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 106.71

(c) Total stress σt = σt1 + σt2 = 197.28 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 19.04 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 33.65 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 52.70 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 37.14 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 146.39 MPa

(c) Total stress σbt = σbt1 + σbt2 = 183.5 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 205.0 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 4.58 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 589 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 589 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 18: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P45 VMSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 4,500.00 kN Lateral Horiz. Force Hlats (Seismic): 1,000.00 kN

Normal Vertical Load, Nnorm : 4,500.00 kN Frictional Horiz. Force, Hlng,s : 270.00 kN

Rotation, u : 0.010 rad Frictional Horiz. Force, Hlng,n : 270.00 kN

Min. Vertical Load, Nmin : 2,200.0 kN Horz. Force (Normal), Hn : 482.60 kN

Movement, elng (±) : 50 mm Horz. Force (Seismic), Hs : 1009.07 kN

Lateral Horiz. Force Hlatn (Normal): 400.0 kN Design Horiz. Force, H (for

bearing components only) : 1009.1 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570W (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 420 mm Thickness of pad, he : 28

Area of pad, Ae = π x di²/4 : 1.39E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE Eff. plan area of PTFE, An : 1.13E+05 mm²

Dia of PTFE (dp) : 430 mm Contact width with piston, w : 14 mm

Thkness of saddle plate, hm : 15 mm Thk of guide, ku : 35 mm

Heigth of SS on saddle, hts : 15 mm Length of guide, Lu : 420 mm

.4 POT CYLINDER

Dia of base plate, Do : 660 mm Thkness of base plate, kb : 40 mm

Outer dia of cylinder, do : 560 mm Depth of cylinder, hc : 50 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

580 mm Width of cylinder wall,

bp=(do-di)/2

: 70 mm

.5 TOP ASSEMBLY

Length of top plate, a : 690 mm Width of top plate, b : 660 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 45 mm

Length of SS plate, as : 580 mm Width of SS plate, bs : 480 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 622.0 mm

.6 ANCHOR

Bottom:

Bolt Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 16 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 16 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 75.0

.8 Overall height of bearing (h) mm : 167

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40

Allowable direct stress (Normal)= 0.50.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct, σcb (Seismic) = Nmaxx1000 / [π.deb²/4] MPa = 17.03 MPa

Bottom direct, σcb (Normal) = Nx1000 / [π.deb²/4] MPa = 17.03 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 1.89 MPa

Bottom bending (Seismic), σcbc = Hsx1000xha / [π.(deb)3/32] MPa = 3.95 MPa

λb = σcb/scb,all + σcbc/σcbc,all = 0.993 MPa <= 1 (Normal) Hence OK

λb = σcb/scb,all + σcbc/σcbc,all = 0.918 MPa <= 1 (Seismic) Hence OK

Structure at Bottom of Bearing: Concrete Grade of Concrete, fck : M40 MPa

Allowable direct stress (Normal)= 0.50.fck 20.00 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.50.fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Top direct, σct (Seismic) = Nmaxx1000 / [π.det²/4] N/mm² = 14.81 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-MO�OAXIAL BEARI�G

Page 19: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct, σct (Normal) = Nx1000 / [π.det²/4] N/mm² = 14.81 MPa

Top bending, σctc = Hnx1000x(h-ha)/[π.det3/32] MPa = 1.88 MPa

Top bending, σctc = Hsx1000x(h-ha)/[π.det3/32] MPa = 3.93 MPa

λt = σct/sct,all + σctc/σctc,all = 0.881 MPa <= 1 (Normal) Hence OK

λt = σct/sct,all + σctc/σctc,all = 0.828 MPa <= 1 (Seismic) Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 39.83 N/mm² < 40 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 32.48 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 7.65 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 54.57

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 144.15

(c) Total stress σt = σt1 + σt2 = 198.72 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 12.99 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 51.48 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 64.48 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 15.59 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 154.45 MPa

(c) Total stress σbt = σbt1 + σbt2 = 170.0 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 203.4 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface, we = Hx1000x1.3/(di x σp) = 12.25 mm < w, Hence OK

0.7 GUIDE

(i) Shear stress, σqu =Hx1000 / (Lu x ku)= 68.0 N/mm² < 153 N/mm² OK

(ii) Bndg stress, σbu=Hx1000x6x(hts/2+7+ks)/(Luxku²) = 204.1 N/mm² < 224 N/mm² OK

(iii) Combined stress, σeu = (σbtu²+3xσqu²)^(½) = 235.7 N/mm² < 306 N/mm² OK

(ivi) Direct stress on SS, σdu = Hx1000/{hts x (Lu-10)} = 158.7 N/mm² < 200 N/mm² OK

.8 ANCHOR

(a) Anchor Screws

Bottom:

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 1038 kN > H OK

Top:

Anchor Screws

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 1038 kN > H OK

(b) AnchorSleeves

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Page 20: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P45 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 4,500.00 kN Movement, elng (±) : 50 mm

Normal Vertical Load, Nnorm : 4,500.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.01 rad Frictional Horiz. Force, Hf : 270 kN

Min. Vertical Load, Nmin : 2,000.0 kN Design Horiz. Force, H (for

bearing components only) : 450.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 420 mm Thickness of pad, he : 28

Area of pad, Ae = π x di²/4 : 1.39E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 420 mm Eff. plan area of PTFE, An : 1.39E+05 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 6 mm

.4 POT CYLINDER

Dia of base plate, Do : 560 mm Thkness of base plate, kb : 35 mm

Outer dia of cylinder, do : 510 mm Depth of cylinder, hc : 46 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

560 mm Width of cylinder wall,

bp=(do-di)/2

: 45 mm

.5 TOP ASSEMBLY

Length of top plate, a : 670 mm Width of top plate, b : 590 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 33 mm

Length of SS plate, as : 570 mm Width of SS plate, bs : 490 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 564.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 4 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 66.0

.8 Overall height of bearing (h) mm : 146

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 18.27 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 18.27 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 1.03 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.72 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.991 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.834 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 21: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 18.01 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 18.01 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 1.23 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 2.04 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.993 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.843 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 32.48 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 32.48 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 10.4 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 92.26

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 108.70

(c) Total stress σt = σt1 + σt2 = 200.96 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 20.21 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 35.71 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 55.92 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 37.73 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 147.62 MPa

(c) Total stress σbt = σbt1 + σbt2 = 185.3 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 209.1 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 5.46 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At bottom of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 549 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

At top of bearing, Coefficient of friction, µ = 0.2

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 549 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 22: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1.0 REFERENCE:

Drawing : 3-P63 VBSp φ1 REFERENCE: : IRC:83 (Part - III)

2.0 DESIGN PARAMETERS:

Design Vertical Load, Nmax : 6,000.00 kN Movement, elng (±) : 50 mm

Normal Vertical Load, Nnorm : 6,000.00 kN Movement, elat (±) : 10 mm

Rotation, u : 0.010 rad Frictional Horiz. Force, Hf : 360 kN

Min. Vertical Load, Nmin : 3,500.0 kN Design Horiz. Force, H (for

bearing components only) : 600.0 kN

3.0 BEARING PARAMETERS:

.1 Steel components to conform IS:2062 (MS), IS:1030 Gr 340-570 (CS). Therefore, Yield Stress, fy 340 MPa

.2 ELASTOMER

Dia. of elastomeric pad, di : 510 mm Thickness of pad, he : 34

Area of pad, Ae = π x di²/4 : 2.04E+05 mm² Hardness IRHD (Shore -A) : 50±5

.3 SADDLE

Dia of PTFE (dp) : 540 mm Eff. plan area of PTFE, An : 2.29E+05 mm²

Thkness of saddle plate, hm : 15 mm Contact width with piston, w : 8 mm

.4 POT CYLINDER

Dia of base plate, Do : 660 mm Thkness of base plate, kb : 37 mm

Outer dia of cylinder, do : 630 mm Depth of cylinder, hc : 51 mm

Effective dia at the bottom, deb =

di + 2x2xkb :

658 mm Width of cylinder wall,

bp=(do-di)/2

: 60 mm

.5 TOP ASSEMBLY

Length of top plate, a : 730 mm Width of top plate, b : 650 mm

Th of SS Pl (ks) : 3 mm Thickness of top plate, kt : 25 mm

Length of SS plate, as : 690 mm Width of SS plate, bs : 610 mm

Effective dia of the dispesed area at the top structure, det = Min [{dp + 2x2x(kt+ks)} & b] : 650.0 mm

.6 ANCHOR

Bottom:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 8 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

Top:

Size (IS:1363) Mj : 16 Root area of bolt, Ab : 157 mm²

No off bolts (n) : 8 Class of bolt (IS:1367) : 10.9

Dia of Sleeve, D : 40 mm Length of Sleeve, L : 175 mm

.7 Ht of application of horiz force (ha) = kb + he + w/2 : 75.0

.8 Overall height of bearing (h) mm : 148

4.0 DESIGN CHECK:

Structure at Bottom of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

Bottom direct (Seismic), σcb = Nmax.1000 / [π.deb²/4] MPa = 17.64 MPa

Bottom direct (Normal), σcb = Nnorm.1000 / [π.deb²/4] MPa = 17.64 MPa

Bottom bending (Normal), σcbc = Hnx1000xha / [π.(deb)3/32] MPa = 0.97 MPa

Bottom bending (Seismic), σcbc = Hx1000xha / [π.(deb)3/32] MPa = 1.61 MPa

λb = σcb/scb,all + σcbc/σcbc,all (Normal) = 0.955 MPa <= 1 Hence OK

λb = σcb/scb,all + σcbc/σcbc,all (Seismic) = 0.802 MPa <= 1 Hence OK

Structure at Top of Bearing: Concrete Grade of Concrete : M40

Allowable direct stress (Normal)= 0.5.fck 20 MPa

Allowable bending stress (Normal) = 0.33fck 13.33 MPa

Allowable direct stress (Seismic)= 1.25 x 0.5fck 25.00 MPa

Allowable bending stress (Seismic) = 1.25 x 0.33fck 16.67 MPa

DESIG� OF Steflomet - POT / PTFE VERSO-BIAXIAL BEARI�G

Page 23: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

Top direct (Seismic), σct= Nmax.1000 / [π.det²/4] N/mm² = 18.08 MPa

Top direct (Normal), σct= Nnorm.1000 / [π.det²/4] N/mm² = 18.08 MPa

Top bending (Normal), σctc = Hnx1000x(h-ha) / [π.(det)3/32] MPa = 0.97 MPa

Top bending (Seismic), σctc = Hx1000x(h-ha) / [π.(det)3/32] MPa = 1.62 MPa

λt = σct/sct,all + σctc/σctc,all (Normal) = 0.977 MPa <= 1 Hence OK

λt = σct/sct,all + σctc/σctc,all (Seismic) = 0.821 MPa <= 1 Hence OK

.2 PTFE

Contact stress, σcp= Nx1000/An = 26.20 N/mm² < 45 OK

.3 ELASTOMER DISC

(a) Compressive stress, σce= Nx1000/Ae = 29.37 MPa <= 35 OK

(b) Strain at the perimeter due to rotation u rad, εp = 0.5xdixu/he,eff = 0.08 <= 0.15 OK

(c) Clearance between cylinder top and piston bottom = hc-he-we-u.(di/2) = 8.5 >5 OK

.4 POT CYLINDER

(i) Hoop's (tensile) stress in the cross section, due to

(a) Fluid pressure σt1=dixhexσce/(2xbpxhc) = 83.22

(b) Horizontal force σt2=Hx1000/(2xbpxhc) = 98.04

(c) Total stress σt = σt1 + σt2 = 181.26 MPa <= 204 Mpa, Hence OK

.5 POT INTERFACE

(i) Shear stress in cylinder & base interface considering 1mm orange slice, due to

(a) Fluid pressure, σq1 = he x σce / bp = 16.64 MPa

(b) Horizontal force σq2=(1.5xHx1000/di)/bp = 29.41 MPa

(parabolic distribution factor=1.5)

(c) Total stress σq = σq1 + σq2 = 46.06 MPa <= 153 Mpa, Hence OK

(ii) Bending stress in the interface considering 1mm orange slice

(a) Fluid pressure, σbt1= (σcexhe²/2)x6/bp² = 28.29 MPa

(b) Horizontal force, σbt2=(1.5x1000xH/di)x(ha-kb)x6/bp² = 111.76 MPa

(c) Total stress σbt = σbt1 + σbt2 = 140.1 MPa <= 224 Mpa, Hence OK

(iii Combined stress, σe = (σbt²+3xσq²)^(½) = 161.2 MPa <= 306 OK

.6 Eff. cont. width at piston-cylinder interface = Hx1000x1.3/(di x σp) = 6.00 mm < w, Hence OK

.7 ANCHOR

(a) Anchor Screws

Bottom

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

σbq,perm = permissible shear stress in screw = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 999 kN > H OK

Top

The total resistive force against shifting of the bearing

Hperm = [(Nmin x µ) + (n x Ab x σbq,perm) / 1000 ] > Hmax.

σbq,perm = permissible shear stress in bolt = 238

H = Maxm horizontal force on the bearing

Total resistive force Hperm = 999 kN > H OK

(b) ANCHOR SLEEVE

Top

(i) Avg bearing stress in conc. scav = [Ab x sbq,perm]/(L x D) = 5.338 N/mm²

(ii) Considering triangular distribution, bearing stress in conc, sctr = 2 x scav = 10.676 N/mm²

(iii) Peak stress, scpk = 1.5 x sctr = 16.01 Mpa < 16.67 Mpa, Hence OK

Bottom

(i) Avg bearing stress in conc. σcav = (Ab x σbq,perm)/( L x D) = 5.3 MPa

(ii) Considering triangular distribution, bearing stress in conc, σctr = 2 x σcav = 10.7 MPa

(iii) Peak stress, σcpk = 1.5 x σctr = 16.0 Mpa < 16.67 Mpa, Hence OK

Page 24: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1 REFERENCE:

Drawing : 3-N12 VF9 θ

Designation : N12 VF9 θ Job No : 610MG

Specification : IRC:83 (Part-III), IS 1367, IS 4218

2.0 DESIGN PARAMETERS:

Horizntl force(H)kN : 1200 Rotation(u) rad : 0.010

[Seismic Case]

3.0 BEARING PARAMETERS:

.1 STEEL :

Cast steel : IS 1030 GR 340-570 Yield Stress (fy) Mpa : 340

Mild steel : IS 2062 GR B

.2 Pin

Dia (φdn) mm = 260 Depth of Pin (hn) mm = 48

Base Pl dia (φg) mm = 530 Th of Base Plate (k) mm = 16

Thk of Saddle (hm) mm = 22

.3 Bottom Cylinder

Base Dia (φg) mm = 530 Th of Base Pl (k) mm = 16

Int Dia (φdi) mm = 262 Ext Dia of (φdo) mm = 430

Depth (hp) mm = 58 Width bp = 0.5x(φdo-φdi) = 84

.4 Height of brg (h)mm = 106 Overall Height (H) mm = 138

.5 Ht of application of hor force from bot of brg (ha) mm = 50.0

.6 Anchor Bolts

Size (IS:1363) Mj = 16 Area each(Ab)"mm² = 157

Class of bolt = 10.9 PCD (φgc) mm = 470

Number (n) = 30

.7 Elastomer

Thickness (he) mm = 10 Seal thickness (hs) mm = 10

.8 Anchor assembly

Back Pl Dimension (db) mm(Sq.) = 620 Dia of Studs (ds) mm = 16

Back Pl Thickness (kb) mm = 16 Length of Studs (ls) mm = 100

Total No. of Studs (Ns) = 49 Area of stud (As) mm² = 157

Distance between outermost

studs(PCDo) mm = 560

4.0 DESIGN CHECK (Refer 4-SNS)

.1 Anchor Bolts :

Moment about bottom of base Plate (X-X), Mb = 1000H x ha = 6.00E+07 N-mm

Moment about top of top Plate , Mt = 1000H x (h-ha) = 6.72E+07 N-mm

As Mt>Mb. Design moment for anchor bolt (Mt)= 6.72E+07 N-mm

Moment of Inertia of bolt group, I = 3.12E+08 mm4

Maxm tensile stress in bolt, St = (Mt)(φgc)/(I) = 101 MPa 101 MPa < 357 MPa O K

[Ref. Cl. 926.2.5 of IRC:83 (Part-III)]

Maxm shear stress in bolt, Sv = (1000H)/(nx0.25xπxMj2) = 199 MPa 199 MPa < 238 MPa O K

[Ref. Cl. 926.2.5 of IRC:83 (Part-III)]

Combined shear & tension, Fb = (St/St,all+Sv/Sv,all) = 1.12

1.12 < 1.4 O K [Cl. 926.2.5.5 of IRC:83 (Part III)]

DESIGN OF1200 kN CAPACITY Steflomet PIN BEARING

Page 25: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

.2 Pitch of bolts :

Minm pitch reqd = 2.5 x (Mj + 3) = 48 mm

Actual pitch provided = (φgc x P) / n = 49 mm 49 mm > 48 mm O K

.3 Bottom cylinder

Tensile stress in cylinder neglecting continuity with base (Stf)

= (1000H) / (2 x hp x bp) = 123.2 MPa 123.2 MPa < 204 MPa O.K.

[Ref. Cl. 926.2.2.1 of IRC:83 (Part-III)]

Shear stress in Pot interface = Svm = 1.5 x 1000H / (bpxφdi) = [ 1.5 = Parabolic distribution factor ]

81.8 MPa 81.8 MPa < 153 MPa O.K.

[Ref. Cl. 926.2.2.3 of IRC:83 (Part-III)]

Bending stress at Pot interface

= Sbt = 6 x 1.5 x 1000H x (ha-k) /(φdix(bp)²) = 198.6 MPa 198.6 MPa < 224 MPa O K

[Ref. Cl. 926.2.2.2 of IRC:83 (Part-III)]

Combined stress = Sqrt(2xSvm²+Sbt²) = 244.0 MPa 244.0 MPa < 306 MPa O K

[Ref. Cl. 926.2.2.5 of IRC:83 (Part-III)]

.4 Base plate of Pin

Moment due to bolt Mbt = (φgc - φdo) x St x Ab /2 = 317730.5 N-mm

Effective width per bolt = π x fdo / n = 45.0 mm

Resisting moment of base plate = ( 45.0 x k² 224 ) / 6 = 430361.9 N-mm

430361.9 N-mm > 317730 N-mm O K

.5 Contact stress

E = Young's Modulus = 2.00E+05 Mpa

l = Assumed contact length as 90% of the mating length = 0.90.hn = 43.2 mm

Hertz's stress, Fmax

= 0.6 x [{( 1000H x E / ( l x φdi )) x ( 1 - ( φdn / φdi ))}^(0.5)] = 241.4 MPa

Permissible bearing stress = 255 Mpa 241.4 MPa < 255.0 MPa O K

However, mating surfaces of Pin & cylinder will be hardened metallurgically to ensure efficient transfer of forces.

.6 Anchor Studs

Moment about bottom of bot Back Plate , Mbb = 1000H x (ha+kb) = 7.92E+07 N-mm

Moment about top of top Back Plate , Mtb = 1000H x (h-ha+kb) = 8.64E+07 N-mm

As Mtb>Mbb. Design moment for anchor bolt (Mtb)= 8.64E+07 N-mm

Moment of Inertia of stud group, Is = 8.69E+08 mm4

Maxm tensile stress , Sts = (Mtb)(PCDo)/(Is) = 56 MPa 56 MPa < 214 MPa O K

[Ref. Cl. 926.2.2.1 of IRC:83 (Part-III)]

Max shear stress , Svs = (1000H)/(Nsx0.25xπxds2) = 122 MPa 122 MPa <142 MPa O K

[Ref. Cl. 926.2.2.3 of IRC:83 (Part-III)]

Combined shear & tension, Fb = (Sts/Sts,all+Svs/Svs,all) = 1.12

1.12 < 1.4 O K [Cl. 926.2.2.5 of IRC:83 (Part-III)]

Page 26: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 1 of 2

Rev. 0

1 REFERENCE:

Drawing : 3-N22 VF9 θ

Designation : N22 VF9 θ Job No : 610MG

Specification : IRC:83 (Part-III), IS 1367, IS 4218

2.0 DESIGN PARAMETERS:

Horizntl force(H)kN : 1750 Rotation(u) rad : 0.010

[Seismic Case]

3.0 BEARING PARAMETERS:

.1 STEEL :

Cast steel : IS 1030 GR 340-570 Yield Stress (fy) Mpa : 340

Mild steel : IS 2062 GR B

.2 Pin

Dia (φdn) mm = 310 Depth of Pin (hn) mm = 58

Base Pl dia (φg) mm = 670 Th of Base Plate (k) mm = 18

Thk of Saddle (hm) mm = 22

.3 Bottom Cylinder

Base Dia (φg) mm = 670 Th of Base Pl (k) mm = 18

Int Dia (φdi) mm = 312 Ext Dia of (φdo) mm = 530

Depth (hp) mm = 68 Width bp = 0.5x(φdo-φdi) = 109

.4 Height of brg (h)mm = 118 Overall Height (H) mm = 158

.5 Ht of application of hor force from bot of brg (ha) mm = 57.0

.6 Anchor Bolts

Size (IS:1363) Mj = 24 Area each(Ab)"mm² = 353

Class of bolt = 10.9 PCD (φgc) mm = 590

Number (n) = 24

.7 Elastomer

Thickness (he) mm = 10 Seal thickness (hs) mm = 10

.8 Anchor assembly

Back Pl Dimension (db) mm(Sq.) = 680 Dia of Studs (ds) mm = 20

Back Pl Thickness (kb) mm = 20 Length of Studs (ls) mm = 120

Total No. of Studs (Ns) = 53 Area of stud (As) mm² = 245

Distance between outermost

studs(PCDo) mm = 560

4.0 DESIGN CHECK (Refer 4-SNS)

.1 Anchor Bolts :

Moment about bottom of base Plate (X-X), Mb = 1000H x ha = 9.98E+07 N-mm

Moment about top of top Plate , Mt = 1000H x (h-ha) = 1.07E+08 N-mm

As Mt>Mb. Design moment for anchor bolt (Mt)= 1.07E+08 N-mm

Moment of Inertia of bolt group, I = 1.11E+09 mm4

Maxm tensile stress in bolt, St = (Mt)(φgc)/(I) = 57 MPa 57 MPa < 357 MPa O K

[Ref. Cl. 926.2.5 of IRC:83 (Part-III)]

Maxm shear stress in bolt, Sv = (1000H)/(nx0.25xπxMj2) = 161 MPa 161 MPa < 238 MPa O K

[Ref. Cl. 926.2.5 of IRC:83 (Part-III)]

Combined shear & tension, Fb = (St/St,all+Sv/Sv,all) = 0.84

0.84 < 1.4 O K [Cl. 926.2.5.5 of IRC:83 (Part III)]

DESIGN OF1750 kN CAPACITY Steflomet PIN BEARING

Page 27: Bridge Bearing Main -2 Design Calculation (R-0)

630 MG

Koyembedu Junction at Junction Development Project, Chennai (Main-2)

Page 2 of 2

Rev. 0

.2 Pitch of bolts :

Minm pitch reqd = 2.5 x (Mj + 3) = 68 mm

Actual pitch provided = (φgc x P) / n = 77 mm 77 mm > 68 mm O K

.3 Bottom cylinder

Tensile stress in cylinder neglecting continuity with base (Stf)

= (1000H) / (2 x hp x bp) = 118.1 MPa 118.1 MPa < 204 MPa O.K.

[Ref. Cl. 926.2.2.1 of IRC:83 (Part-III)]

Shear stress in Pot interface = Svm = 1.5 x 1000H / (bpxφdi) = [ 1.5 = Parabolic distribution factor ]

77.2 MPa 77.2 MPa < 153 MPa O.K.

[Ref. Cl. 926.2.2.3 of IRC:83 (Part-III)]

Bending stress at Pot interface

= Sbt = 6 x 1.5 x 1000H x (ha-k) /(φdix(bp)²) = 165.7 MPa 165.7 MPa < 224 MPa O K

[Ref. Cl. 926.2.2.2 of IRC:83 (Part-III)]

Combined stress = Sqrt(2xSvm²+Sbt²) = 212.9 MPa 212.9 MPa < 306 MPa O K

[Ref. Cl. 926.2.2.5 of IRC:83 (Part-III)]

.4 Base plate of Pin

Moment due to bolt Mbt = (φgc - φdo) x St x Ab /2 = 603107.3 N-mm

Effective width per bolt = π x fdo / n = 69.4 mm

Resisting moment of base plate = ( 69.4 x k² 224 ) / 6 = 839182.2 N-mm

839182.2 N-mm > 603107 N-mm O K

.5 Contact stress

E = Young's Modulus = 2.00E+05 Mpa

l = Assumed contact length as 90% of the mating length = 0.90.hn = 52.2 mm

Hertz's stress, Fmax

= 0.6 x [{( 1000H x E / ( l x φdi )) x ( 1 - ( φdn / φdi ))}^(0.5)] = 222.7 MPa

Permissible bearing stress = 255 Mpa 222.7 MPa < 255.0 MPa O K

However, mating surfaces of Pin & cylinder will be hardened metallurgically to ensure efficient transfer of forces.

.6 Anchor Studs

Moment about bottom of bot Back Plate , Mbb = 1000H x (ha+kb) = 1.35E+08 N-mm

Moment about top of top Back Plate , Mtb = 1000H x (h-ha+kb) = 1.42E+08 N-mm

As Mtb>Mbb. Design moment for anchor bolt (Mtb)= 1.42E+08 N-mm

Moment of Inertia of stud group, Is = 1.33E+09 mm4

Maxm tensile stress , Sts = (Mtb)(PCDo)/(Is) = 60 MPa 60 MPa < 214 MPa O K

[Ref. Cl. 926.2.2.1 of IRC:83 (Part-III)]

Max shear stress , Svs = (1000H)/(Nsx0.25xπxds2) = 105 MPa 105 MPa <142 MPa O K

[Ref. Cl. 926.2.2.3 of IRC:83 (Part-III)]

Combined shear & tension, Fb = (Sts/Sts,all+Svs/Svs,all) = 1.02

1.02 < 1.4 O K [Cl. 926.2.2.5 of IRC:83 (Part-III)]