3
MeMo to Designers • April 2014 4-1 SPREAD FOOTINGS - ATTACHMENT 3 1 4-1 BRIDGE FOUNDATION LOADS Table 1. End Supports (Abutments) at Service Limit State Service Limit State M X (kip-ft) V Y (kips) P (kips) 1 Net M X_total M X_perm V Y_total V Y_perm P total P perm Eccentricity M X max M X min P total _ min Controlling load combination 2 Settlement M X max M X min P total _ max Controlling load combination 3 Table 2. End Supports (Abutments) at Strength/Construction Limit States Strength/Construction Limit States M X (kip-ft) V Y (kips) P total (kips) 1 Gross Bearing M X max M X min P total _ max Controlling load combination 3 Sliding V Y max V Y min P total _ min Controlling load combination 4 Notes: 1) Axial force (P) is assumed positive if compressive. 2) Controlling load combination is the one resulting in the highest eccentricity. 3) Controlling load combination is the one resulting in the highest ratio for foundations on soil, or or ratio for foundations on rock. or 4) Controlling load combination is the one resulting in the highest “factored sliding force/factored sliding resistance” ratio. q g,u /q R q g,max /q R q n,max /q pn q n,u /q pn ATTACHMENT 3

Bridge Foundation LoadS

Embed Size (px)

DESCRIPTION

caltrans memo

Citation preview

Page 1: Bridge Foundation LoadS

MeMo to Designers • April 2014

4-1 Spread FootingS - attachment 3 1

4-1 Bridge Foundation LoadSTable 1. End Supports (Abutments) at Service Limit State

Service Limit State MX (kip-ft) VY (kips) P (kips)1

NetMX_total MX_perm VY_total VY_perm Ptotal Pperm

Eccentricity MX max

MX min

Ptotal_min

Controlling load combination2

Settlement MX max

MX min

Ptotal_max

Controlling load combination3

Table 2. End Supports (Abutments) at Strength/Construction Limit States

Strength/Construction Limit States MX (kip-ft) VY (kips) Ptotal (kips)1

Gross

BearingMX max

MX min

Ptotal_max

Controlling load combination3

Sliding

VY max

VY min

Ptotal_min

Controlling load combination4

Notes: 1) Axial force (P) is assumed positive if compressive. 2) Controlling load combination is the one resulting in the highest eccentricity.3) Controlling load combination is the one resulting in the highest

ratio for foundations on soil, or or ratio for foundations on rock. or

4) Controlling load combination is the one resulting in the highest “factored sliding force/factored sliding resistance” ratio.

qg,u /qRqg,max/qRqn,max/qpn

qn,u /qpn

attachment 3

Page 2: Bridge Foundation LoadS

MeMo to Designers • April 2014

2 4-1 Spread FootingS - attachment 3

Table 3. Intermediate Supports (Bents & Piers) at Service Limit State

Service Limit State MX (kip-ft) MY (kips) P (kips)1

NetMX_total MX_perm MY_total MY_perm Ptotal Pperm

Eccentricity MX max

MX min

MY max

MY min

Ptotal_min

Controlling load combination2

Settlement MX max

MX min

MY max

MY min

Ptotal_max

Controlling load combination3

Table 4. Intermediate Supports (Bents & Piers) at Strength Limit State

Strength Limit State MX (kip-ft) MY (kip-ft) VX (kips) VY (kips) Ptotal (kips)1

GrossBearing MX max

MX min

MY max

MY min

Ptotal_max

Controlling load combination3

Sliding VX max

VX min

VY max

VY min

Ptotal_min

Controlling load combination4

Notes: 1) Axial force (P) is assumed positive if compressive. 2) Controlling load combination is the one resulting in the highest eccentricity.3) Controlling load combination is the one resulting in the highest or ratioqn,u /qpn qg,u /qR

for foundationson on soil, or ratio for foundations on rock. 4) Controlling load combination is the one resulting in the highest “factored sliding force/

factored sliding resistance” ratio.

qn,max /qpn or qg,max /qR

Page 3: Bridge Foundation LoadS

MeMo to Designers • April 2014

4-1 Spread FootingS - attachment 3 3

Table 5. Intermediate Supports (Bents & Piers) at Extreme Event-I Limit State (Seismic)

Extreme Event–ILimit State

M (kip-ft) V (kips) P (kips)MX MY VX VY PTotal

Md1 -I1,2

Md2 -IMd3 -IMd4 -IMd5 -IMd6 -IMd7 -IMd1 -IIMd2 -IIMd3 -IIMd4 -IIMd5 -IIMd6 -IIMd7 -II

Notes:1) M d1 - M d7 stand for cases where seismic overstrength moment ( ) and associated M o

shear (Vo) are applied at 15 degree increments (0°- 90°) to a symmetrical spread footing.2) Cases I and II correspond to highest and lowest column axial forces resulted from

seismic overturning in multicolumn bents. For single-column bents the two cases (I and II) will be summarized into one case.