54
Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology Daniel L. Cook 1, 2 John H. Gennari 3 Jose L. V. Mejino 2 Maxwell L. Neal 3 1 Physiology & Biophysics, 2 Biological Structure 3 Biomedical and Health Informatics University of Washington, Seattle AMIA 2008, Washington, DC

Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

  • Upload
    zelig

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology. Daniel L. Cook 1, 2 John H. Gennari 3 Jose L. V. Mejino 2 Maxwell L. Neal 3. 1 Physiology & Biophysics, 2 Biological Structure 3 Biomedical and Health Informatics University of Washington, Seattle. - PowerPoint PPT Presentation

Citation preview

Page 1: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Bridging Biological Ontologies and Biosimulation:The Ontology of Physics for Biology

Daniel L. Cook 1, 2

John H. Gennari 3

Jose L. V. Mejino 2

Maxwell L. Neal 3

1Physiology & Biophysics, 2Biological Structure3Biomedical and Health InformaticsUniversity of Washington, Seattle

AMIA 2008, Washington, DC

Page 2: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

Available bioinformatics for “multiscale” structure

extended from Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.

Foundational Model of Anatomy

Gene Ontology

ChEBI

Cell Type

Page 3: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

No bioinformatics for multidomain processes

fluidssolids

diffusionheat transfer

myocardial contraction, leg motion…

electrochemistry transmembrane potential, action potential…chemical kinetics metabolism, gene expression, cell signaling…

body temperature regulation…intracellular calcium dynamics…

blood flow, respiratory gas flow…

Physical Physical domainsdomains

Domain Process

Page 4: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

Bioinformatic problem: query process knowledge

fluidssolids

diffusionheat transfer

myocardial contraction, leg motion…

electrochemistry transmembrane potential, action potential…chemical kinetics metabolism, gene expression, cell signaling…

body temperature regulation…intracellular calcium dynamics…

blood flow, respiratory gas flow…

Physical Physical domainsdomains

Domain Process

• How is blood pressure controlled?• Which nerves control blood

pressure?

Page 5: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

Processes encoded as biosimulations models

fluidssolids

diffusionheat transfer

myocardial contraction, leg motion…

electrochemistry transmembrane potential, action potential…chemical kinetics metabolism, gene expression, cell signaling…

body temperature regulation…intracellular calcium dynamics…

blood flow, respiratory gas flow…

Physical Physical domainsdomains

Domain Process

physics-basedbiosimulation model

Page 6: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

Available models constitute “physiome”

fluidssolids

diffusionheat transfer

myocardial contraction, leg motion…

electrochemistry transmembrane potential, action potential…chemical kinetics metabolism, gene expression, cell signaling…

body temperature regulation…intracellular calcium dynamics…

blood flow, respiratory gas flow…

Physical Physical domainsdomains

Domain Process

PhysiomePhysiome

Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.

Page 7: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

63 organ types

2 bodies

>> 100,000 molecule types

>400 cell-part types

12 organ systems

> 100 elements

>600 cell types

Physiome problem: reuse and merge models

fluidssolids

diffusionheat transfer

myocardial contraction, leg motion…

electrochemistry transmembrane potential, action potential…chemical kinetics metabolism, gene expression, cell signaling…

body temperature regulation…intracellular calcium dynamics…

blood flow, respiratory gas flow…

Physical Physical domainsdomains

Domain Process

PhysiomePhysiome

Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.

physics-basedbiosimulation model

Page 8: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Proposal for a solution:

Semantics of biosimulation models can be encoded as ontologies and

mapped to reference ontologies.

Biosimulation

model codeSemSimReference

ontologies

Page 9: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Outline:

Biosimulation

model codeSemSimOPB, FMA,

GO, CheBI, etc.

• Problems: biosimulation, bioinformatics

• SemSim ontology• Ontology of Physics for Biology

(OPB)• Conclusion

Semantics of biosimulation models can be encoded as ontologies and

mapped to reference ontologies.

Page 10: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

structuralknowledge

physicsknowledge

physics-basedprocess

biosimulation

fluidssolids

chemical kinelectrochem

diffusionheat transfer

Time

In practice: code is hand-crafted

Biophysicists and bioengineers encode physics-based

mathematical models of biological processes

Page 11: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

In practice: code is formal — meaning is implicit

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

real Paorta(t)   mmHg; // Pressure of aortareal PSysVein(t)   mmHg;   // Pressure of systemic veinreal FSysArt(t) ml/sec; // Flow in systemic arteryreal Rartcap = 0.7 mmHg*sec/ml;  // Arterial resistance

FSysArt = (Paorta - PSysVein) / Rartcap; // Ohm's Law

physiological variable

names are arbitrary

anatomical participants

known only by annotation

variable dependencies known only by

annotation

Page 12: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

In practice: multiple, incompatible languages

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

JSim, SBML, CellML, MatLab,

others…

physics-basedprocess

biosimulation

Page 13: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

In practice: 100’s of models in linguistic silos

structuralknowledge CellML

SBML

JSim

MatLab

other

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

physics-basedprocess

biosimulation

physics-basedprocess

biosimulation

physics-basedprocess

biosimulation

physics-basedprocess

biosimulation

physics-basedprocess

biosimulation

Page 14: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Opportunity: a reservoir of process knowledge

CellML

SBML

JSim

MatLab

other

Page 15: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Problem: barriers to biosimulation model reuse

CellML

SBML

JSim

MatLab

physics-basedprocess

biosimulation

other

JSim

?

??

How to find, merge and re-encode models?

Page 16: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Problem: no access for bioinformatic queries

CellML

SBML

JSim

MatLab

other

Q & A

How to query knowledge of biological processes? SparQL

Page 17: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Two fields, two problems:

• Find models of blood pressure control.

• Which models include neural-control?

Biosimulation — re-use biosimulation models

• How is blood pressure controlled?• Which nerves control blood pressure?

Bioinformatics — query process knowledge

Page 18: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Outline:

Biosimulation

model codeSemSimOPB, FMA,

GO, CheBI, etc.

• Problems: biosimulation, bioinformatics

• SemSim ontology• Ontology of Physics for Biology

(OPB)• Conclusion

Semantics of biosimulation models can be encoded as ontologies and

mapped to reference ontologies.

Page 19: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Solution: encode SemSim ontological maps…

CellML

SBML

JSim

MatLab

other

SemSimSemSimSemSimSemSimSemSimOWL

SemSimsemantic maps of

biosimulation models

Page 20: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB, FMA, GO, CheBI, etc.

…and annotate to reference ontologies

CellML

SBML

JSim

MatLab

other

SemSimSemSimSemSimSemSimSemSimOWL

annotate SemSim components to

reference ontologies

SemSimsemantic maps of

biosimulation models

Page 21: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

SemSim — biosimulation ontological map

SemSim model

biosimulation code

Computational model

Physicalmodel

Gennari, J. H., M. L. Neal, B. E, Carlson, D. L. Cook (2008) Integration of multi-scale biosimulation models via light-weight semanticsPac Symp Biocomput (414-425)

Page 22: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

SemSim — step 1: represent math structure

SemSim modelComputational

model

Data structure

biosimulation code

Physicalmodel

represent variable as individuals of class

Data structure

Page 23: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

SemSim — step 1: represent math structure

SemSim modelComputational

model

Computation

Data structure

use / return

biosimulation code

Physicalmodel

represent variable as individuals of class

Data structure

represent equations as individuals of class

Computation

Page 24: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

SemSim — step 2: represent biological meaning

SemSim model

Physicalproperty

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation code

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

e.g., volume, pressure, molar flow, chemical

amount

Page 25: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

SemSim — step 2: represent biological meaning

SemSim model

Physicalentity

has_property

Physicalproperty

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation code

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

e.g., heart, blood in aorta, protein

kinase, folate, Ca++

e.g., volume, pressure, molar flow, chemical

amount

Page 26: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

SemSim — step 2: represent biological meaning

SemSim model

Physicalentity

has_property

Physical dependency

Physicalproperty

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation code

has_player

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

e.g., heart, blood in aorta, protein

kinase, folate, Ca++

e.g., volume, pressure, molar flow, chemical

amount

e.g., Ohm’s law, law of mass action, mass conservation

Page 27: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

SemSim model

Physicalentity

has_property

Physical dependency

Physicalproperty

has_player

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation codeGO

ChEBI

FMA

Map to reference ontologies of structure

Page 28: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

SemSim model

Physicalentity

has_property

Physical dependency

Physicalproperty

has_player

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation codeGO

ChEBI

FMA

OPB

Map to reference ontology of physics — OPB

Page 29: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Outline:

Biosimulation

model codeSemSimOPB, FMA,

GO, CheBI, etc.

• Problems: biosimulation, bioinformatics

• SemSim ontology• Ontology of Physics for Biology

(OPB)• Conclusion

Semantics of biosimulation models can be encoded as ontologies and

mapped to reference ontologies.

Page 30: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB foundational theory — system dynamics

Engineering system dynamics• Bond graph theory

Karnopp, Margolis, Rosenberg (1968)• EngMath - Ontology for Engineering

MathematicsGruber, Olsen (1994)

• PHYSYS - Physical Systems OntologyBorst, Top, Akkermans (1994)

Biochemical system dynamics• Network thermodynamics

Oster, Perelson, Katchalsky (1971)Mickulecky (1983)Beard, Qian (2008)

Page 31: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB representational goals

• Represent abstractions used in physics-based biosimulations—not a theory of “reality”.

• Adhere to OBO principles.

• Implement in OWL; deploy to OBO and BioPortal.

Page 32: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB:Physics analytical entity

OPB

A Physics analytical entity is an abstraction of the real world created

within the science of classical physics for the description of physical entities

and the analysis of physical processes.

Page 33: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB:Physical entity

OPB

A Physics analytical entity is an abstraction of the real world created

within the science of classical physics for the description of physical entities

and the analysis of physical processes.

A Physical entity is a spatial, temporal, or energetic abstraction

of the physical world.

Page 34: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB:Physical property

OPB

A Physics analytical entity is an abstraction of the real world created

within the science of classical physics for the description of physical entities

and the analysis of physical processes.

A Physical property is a quantifiable attribute of a physical entity whose

value can be determined by physical measurement at a moment in time.

A Physical entity is a spatial, temporal, or energetic abstraction

of the physical world.

Page 35: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

chemical kinetics

volume flow pressure volume pressure momentum

velocity force displacement solid momentum

molar flow chemical potential chemical amount ----

ionic current voltage charge ----

particle flow chemical potential particle number ----

heat flow temperature heat amount ----

fluids

solids

electrophysiology

diffusion

heat transfer

Physical property organizing principle

Physical domain

Page 36: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

chemical kinetics

volume flow pressure volume pressure momentum

velocity force displacement solid momentum

molar flow chemical potential chemical amount ----

ionic current voltage charge ----

particle flow chemical potential particle number ----

heat flow temperature heat amount ----

fluids

solids

electrophysiology

diffusion

heat transfer

Physical property class hierarchy

Physical domain

Page 37: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB

A Flow subclass for each physical

domain

Physical property by domain

Page 38: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

OPB

A Physics analytical entity is an abstraction of the real world created

within the science of classical physics for the description of physical entities

and the analysis of physical processes.

A Physical property is a quantifiable attribute of a physical entity whose

value can be determined by physical measurement at a moment in time.

A Physical entity is a spatial, temporal, or energetic abstraction

of the physical world.

A Physical dependency is a quantitative dependency between the magnitudes of two or more physical

properties according to a physical law.

Physical dependency

Page 39: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Physical dependency organizing principle

A Physical dependency is a quantitative dependency between the magnitudes of two or more physical

properties according to a physical law.

Page 40: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Axiomatic physical dependency

Page 41: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Constitutive physical dependency

Flow

e.g., “Ohm’s law”

Force

Page 42: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Constitutive physical dependency

Flow

Force

Dis

plac

emen

t

Force

e.g., “Hooke’s law”

Page 43: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Constitutive physical dependency

Flow

Force

Dis

plac

emen

t

Force

Mom

entu

m

Flow

Page 44: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Physical dependency class hierarchy OPB

Page 45: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

A Resistive dependency subclass for each physical domain

OPB

Physical dependency by domain

Page 46: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap::: FSysArt =….:

OPB-SemSim working example

SemSim model

Physicalentity

has_property

Physical dependency

Physicalproperty

has_player

Physicalmodel

Computational model

Computation

Data structure

use / return

model code

Neal, M. L., J. H. Gennari, T. Arts, D. L. Cook (2009)Advances in semantic representation of multiscale biosimulations: A case study in merging modelsPac Symp Biocomput (in press)

Page 47: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Conclusion

CellML

SBML

JSim

MatLab

other

SemSimSemSimSemSimSemSimSemSim

OPB FMA GO

ChEBI etc.

Page 48: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Acknowledgements

SemSim / OPB team• Maxwell L. Neal (Grad student)• Michal Galdzicki (Grad student)• John H. Gennari, PhD (Assoc Prof)• Daniel L. Cook, MD, PhD (Res

Prof)

Bioinformatics• Cornelius Rosse• Onard Mejino• James Brinkley• Todd Detwiler

Partial funding from NIH MLN, MG: T15 LM007442-06 DLC, JHG: R01HL087706-01

UW contributorsBiophysics / biosimulation• James B. Bassingthwaighte• Herbert Sauro• Erik Butterworth• Hong Qian• Adriana Emmi• Fred Bookstein

Page 49: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

: Paorta PSysVein FSysArt Rartcap:: FSysArt =….:

structuralknowledge

physicsknowledge

fluidssolids

chemical kinelectrochem

diffusionheat transfer

Next steps…

SemSim model

Physicalentity

has_property

Physical dependency

Physicalproperty

has_player

Physicalmodel

Computational model

Computation

Data structure

use / return

biosimulation codeGO

ChEBI

FMA

SemGenparse code

access classeswrite new code

Ontology of

Physics for

Biology

Page 50: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

VSM

JSim

BARO

JSim

CV

JSim

VSM

SemSim

BARO

SemSim

CV

SemSim

CV+

SemSim

CV+

JSim

SemSim use-case 1: reuse legacy models

Gennari, J. H., M. L. Neal, B. E, Carlson, D. L. Cook (2008) Integration of multi-scale biosimulation models via light-weight semanticsPac Symp Biocomput (414-425)

3. encode merged SemSimas JSim model

2. use Prompt plug-in to Protégé to analyze and merge SemSim models

1. create SemSim models of JSim

biosimulation models

Page 51: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

CV

JSim

VSM

SemSim

BARO

SemSim

VSM

JSim

BARO

JSim

CV+

SemSim

CV+

JSim

CircAdapt

MATLAB

CAsys art

JSim

CV

SemSim CV-CAsys art

JSim

Neal, M. L., J. H. Gennari, T. Arts, D. L. Cook (2009)Advances in semantic representation of multiscale biosimulations: A case study in merging modelsPac Symp Biocomput (in press)

CAsys art

SemSim

CV-CA

SemSim

CAsys art

SemSim use-case 2: reuse merged model

1. reuse archived SemSim model

2. create and merge model in different

language

Page 52: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

FOL

SemSim

METH

SemSim

FOMC

SemSim

Fol-all

SemSim

Fol-all

JSim

SemSim use-case 3: folate chemical kinetics

Mike Galdzicki, J. H. Gennari, M. L. Neal, D. L. Cook (work in progress)

1. create SemSim models of folate metabolism from published descriptions

FOL

METH

FOMC

2. merge FOL & METH SemSim models

Nijhout, et al. (2004)

Reed, et al. (2004)

Reed, et al. (2006)

FOMC

JSim

3. encode SemSim models in JSim;

compare model output

Page 53: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Model are complex but can be parsed

Yngve, G., J. F. Brinkley, D. L. Cook, L. G. Shapiro (2007) A Model Browser for BiosimulationAMIA Annu Symp Proc (836-40)

real Paorta(t)   mmHg; // Pressure of aortareal PSysVein(t)   mmHg;   // Pressure of systemic veinreal FSysArt(t) ml/sec; // Flow in systemic arteryreal Rartcap = 0.7 mmHg*sec/ml;  // Arterial resistanceFSysArt = (Paorta - PSysVein) / Rartcap; // Ohm's Law

physical variables

physical participants

variable dependencies

Page 54: Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

Ontological maps can be queried for facts

Aortic blood pressure depends on vagus nerve firing rate.

aortic blood pressure

vagus nerve firing rate