36
Slide: 1 Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester 1 Bringing High- Performance Networking to HEP users Richard Hughes-Jones Stephen Dallison, Nicola Pezzi, Yee-Ting Lee MB - NG

Bringing High-Performance Networking to HEP users

Embed Size (px)

DESCRIPTION

MB - NG. Bringing High-Performance Networking to HEP users. Richard Hughes-Jones Stephen Dallison, Nicola Pezzi, Yee-Ting Lee. UKLIGHT. The Bandwidth Challenge at SC2003. Peak bandwidth 23.21Gbits/s 6.6 TBytes in 48 minutes. Phoenix - Amsterdam 4.35 Gbit HighSpeed TCP - PowerPoint PPT Presentation

Citation preview

Page 1: Bringing High-Performance Networking to HEP users

Slide: 1Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

1

Bringing High-Performance Networking to HEP users

Richard Hughes-Jones

Stephen Dallison, Nicola Pezzi, Yee-Ting Lee

MB - NG

Page 2: Bringing High-Performance Networking to HEP users

Slide: 2Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

2

Peak bandwidth 23.21Gbits/s 6.6 TBytes in 48 minutes

The Bandwidth Challenge at SC2003

10 Gbits/s throughput from SC2003 to Chicago & Amsterdam

0

1

2

3

4

5

6

7

8

9

10

11/19/0315:59

11/19/0316:13

11/19/0316:27

11/19/0316:42

11/19/0316:56

11/19/0317:11

11/19/0317:25 Date & Time

Throughput

Gbits/s

Router traffic to Abilele

Phoenix-Chicago

Phoenix-Amsterdam

Phoenix - Amsterdam 4.35 Gbit HighSpeed TCPrtt 175 ms , window 200 MB

Page 3: Bringing High-Performance Networking to HEP users

Slide: 3Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

3

TCP (Reno) – What’s the problem? TCP has 2 phases: Slowstart & Congestion Avoidance AIMD and High Bandwidth – Long Distance networksPoor performance of TCP in high bandwidth wide area networks is due

in part to the TCP congestion control algorithm. For each ack in a RTT without loss:

cwnd -> cwnd + a / cwnd - Additive Increase, a=1 For each window experiencing loss:

cwnd -> cwnd – b (cwnd) - Multiplicative Decrease, b= ½

Time to recover from 1 lost packet for round trip time of ~100 ms:

Page 4: Bringing High-Performance Networking to HEP users

Slide: 4Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

4

Investigation of new TCP Stacks The AIMD Algorithm – Standard TCP (Reno)

For each ack in a RTT without loss:

cwnd -> cwnd + a / cwnd - Additive Increase, a=1 For each window experiencing loss:

cwnd -> cwnd – b (cwnd) - Multiplicative Decrease, b= ½ High Speed TCP

a and b vary depending on current cwnd using a table a increases more rapidly with larger cwnd – returns to the ‘optimal’ cwnd size sooner

for the network path b decreases less aggressively and, as a consequence, so does the cwnd. The effect

is that there is not such a decrease in throughput. Scalable TCP

a and b are fixed adjustments for the increase and decrease of cwnd a = 1/100 – the increase is greater than TCP Reno b = 1/8 – the decrease on loss is less than TCP Reno Scalable over any link speed.

Fast TCP

Uses round trip time as well as packet loss to indicate congestion with rapid convergence to fair equilibrium for throughput.

HSTCP-LP, H-TCP, BiC-TCP

Page 5: Bringing High-Performance Networking to HEP users

Slide: 5Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

5

Packet Loss with new TCP Stacks TCP Response Function

Throughput vs Loss Rate – further to right: faster recovery Drop packets in kernel

MB-NG rtt 6ms DataTAG rtt 120 ms

Page 6: Bringing High-Performance Networking to HEP users

Slide: 6Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

6

High Throughput Demonstrations

Manchester (Geneva)

man03lon01

2.5 Gbit SDHMB-NG Core

1 GEth1 GEth

Cisco GSR

Cisco GSR

Cisco7609

Cisco7609

London (Chicago)

Dual Zeon 2.2 GHz Dual Zeon 2.2 GHz

Send data with TCPDrop Packets

Monitor TCP with Web100

Page 7: Bringing High-Performance Networking to HEP users

Slide: 7Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

7

Drop 1 in 25,000 rtt 6.2 ms Recover in 1.6 s

High Performance TCP – MB-NG

Standard HighSpeed Scalable

Page 8: Bringing High-Performance Networking to HEP users

Slide: 8Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

8

High Performance TCP – DataTAG Different TCP stacks tested on the DataTAG Network rtt 128 ms Drop 1 in 106

High-SpeedRapid recovery

ScalableVery fast recovery

StandardRecovery would

take ~ 20 mins

Page 9: Bringing High-Performance Networking to HEP users

Slide: 9Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

9

End Systems: NICs & Disks

Page 10: Bringing High-Performance Networking to HEP users

Slide: 10Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

10

End Hosts & NICs SuperMicro P4DP6

Latency

Throughput

Bus Activity

Use UDP packets to characterise Host & NIC

SuperMicro P4DP6 motherboardDual Xenon 2.2GHz CPU400 MHz System bus66 MHz 64 bit PCI bus

gig6-7 Intel pci 66 MHz 27nov02

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40Transmit Time per frame us

Recv

Wire

rate

M

bits/

s

50 bytes 100 bytes 200 bytes 400 bytes 600 bytes 800 bytes 1000 bytes 1200 bytes 1400 bytes 1472 bytes

64 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

900

170 190 210

Latency us

N(t)

512 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

170 190 210Latency us

N(t)

1024 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

190 210 230

Latency us

N(t)

1400 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

190 210 230

Latency us

N(t)

Intel 64 bit 66 MHz

y = 0.0093x + 194.67

y = 0.0149x + 201.75

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000Message length bytes

Late

ncy u

s

Send PCI

Receive PCI

1400 bytes to NIC

1400 bytes to memory

PCI Stop Asserted

Page 11: Bringing High-Performance Networking to HEP users

Slide: 11Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

11

Host, PCI & RAID Controller Performance RAID5 (stripped with redundancy) 3Ware 7506 Parallel 66 MHz 3Ware 7505 Parallel 33 MHz 3Ware 8506 Serial ATA 66 MHz ICP Serial ATA 33/66 MHz Tested on Dual 2.2 GHz Xeon Supermicro P4DP8-G2 motherboard Disk: Maxtor 160GB 7200rpm 8MB Cache Read ahead kernel tuning: /proc/sys/vm/max-readahead = 512

RAID0 (stripped) Read 1040 Mbit/s, Write 800 Mbit/s

Disk – Memory Read Speeds Memory - Disk Write Speeds

Page 12: Bringing High-Performance Networking to HEP users

Slide: 12Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

12

The performance of the end host / disks BaBar Case Study: RAID BW & PCI Activity

3Ware 7500-8 RAID5 parallel EIDE 3Ware forces PCI bus to 33 MHz BaBar Tyan to MB-NG SuperMicro

Network mem-mem 619 Mbit/s Disk – disk throughput bbcp

40-45 Mbytes/s (320 – 360 Mbit/s) PCI bus effectively full! User throughput ~ 250 Mbit/s

Read from RAID5 Disks Write to RAID5 Disks

Page 13: Bringing High-Performance Networking to HEP users

Slide: 13Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

13

Data Transfer Applications

Page 14: Bringing High-Performance Networking to HEP users

Slide: 14Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

14

The Tests (being) MadeApp TCP Stack SuperMicro on

MB-NG

SuperMicro on

SuperJANET4

BaBar on

SuperJANET4

Iperf Standard

HighSpeed

Scalable

bbcp Standard

HighSpeed

Scalable

bbftp Standard

HighSpeed

Scalable

apache Standard

HighSpeed

Scalable

Gridftp Standard

HighSpeed

Scalable

Page 15: Bringing High-Performance Networking to HEP users

Slide: 15Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

15

Topology of the MB – NG Network

KeyGigabit Ethernet2.5 Gbit POS Access

MPLS Admin. Domains

UCL Domain

Edge Router Cisco 7609

man01

man03

Boundary Router Cisco 7609

Boundary Router Cisco 7609

RAL Domain

Manchester Domain

lon02

man02

ral01

UKERNADevelopment

Network

Boundary Router Cisco 7609

ral02

ral02

lon03

lon01

HW RAID

HW RAID

Page 16: Bringing High-Performance Networking to HEP users

Slide: 16Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

16

Topology of the Production Network

KeyGigabit Ethernet2.5 Gbit POS Access10 Gbit POS

man01

RAL Domain

Manchester Domain

ral01

HW RAID

HW RAID routers switches

3 routers2 switches

Page 17: Bringing High-Performance Networking to HEP users

Slide: 17Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

17

Average Transfer Rates Mbit/sApp TCP Stack SuperMicro on

MB-NG

SuperMicro on

SuperJANET4

BaBar on

SuperJANET4

Iperf Standard 940 350-370 425

HighSpeed 940 510 570

Scalable 940 580-650 605

bbcp Standard 434 290-310 290

HighSpeed 435 385 360

Scalable 432 400-430 380

bbftp Standard 400-410 325 320

HighSpeed 370-390 380

Scalable 430 345-532 380

apache Standard 425 260 300-360

HighSpeed 430 370 315

Scalable 428 400 317

Gridftp Standard 405 240

HighSpeed 320

Scalable 335

Page 18: Bringing High-Performance Networking to HEP users

Slide: 18Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

18

iperf Throughput + Web100 SuperMicro on MB-NG network HighSpeed TCP Linespeed 940 Mbit/s DupACK ? <10 (expect ~400)

BaBar on Production network Standard TCP 425 Mbit/s DupACKs 350-400 – re-transmits

Page 19: Bringing High-Performance Networking to HEP users

Slide: 19Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

19

bbftp: Host & Network Effects 2 Gbyte file RAID5 Disks:

1200 Mbit/s read 600 Mbit/s write

Scalable TCP

BaBar + SuperJANET Instantaneous 220 - 625 Mbit/s

SuperMicro + SuperJANET Instantaneous

400 - 665 Mbit/s for 6 sec Then 0 - 480 Mbit/s

SuperMicro + MB-NG Instantaneous

880 - 950 Mbit/s for 1.3 sec Then 215 - 625 Mbit/s

Page 20: Bringing High-Performance Networking to HEP users

Slide: 20Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

20

bbftp: What else is going on? Scalable TCP

BaBar + SuperJANET

SuperMicro + SuperJANET

Congestion window – dupACK Variation not TCP related?

Disk speed / bus transfer Application

Page 21: Bringing High-Performance Networking to HEP users

Slide: 21Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

21

Applications: Throughput Mbit/s HighSpeed TCP 2 GByte file RAID5 SuperMicro + SuperJANET

bbcp

bbftp

Apachie

Gridftp

Previous work used RAID0(not disk limited)

Page 22: Bringing High-Performance Networking to HEP users

Slide: 22Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

22

Motherboards NICs, RAID controllers and Disks matter The NICs should be well designed:

NIC should use 64 bit 133 MHz PCI-X (66 MHz PCI can be OK) NIC/drivers: CSR access / Clean buffer management / Good interrupt handling

Worry about the CPU-Memory bandwidth as well as the PCI bandwidth Data crosses the memory bus at least 3 times

Separate the data transfers – use motherboards with multiple 64 bit PCI-X buses 32 bit 33 MHz is too slow for Gigabit rates 64 bit 33 MHz > 80% used

Choose a modern high throughput RAID controller Consider SW RAID0 of RAID5 HW controllers

Need plenty of CPU power for sustained 1 Gbit/s transfers Work with Campus network engineers to eliminate bottlenecks and packet loss

High bandwidth link to your server Look for Access link overloading / old Ethernet equipment / flow limitation policies

Use of Jumbo frames, Interrupt Coalescence and Tuning the PCI-X bus helps New TCP stacks are stable and run with 10 Gigabit Ethernet NICs New stacks give better response & performance

Still need to set the tcp buffer sizes System maximums in collaboration with the sysadmin Socket sizes in the application

Application architecture & implementation is also important

Summary, Conclusions & Thanks

Page 23: Bringing High-Performance Networking to HEP users

Slide: 23Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

23

More Information Some URLs

MB-NG project web site: http://www.mb-ng.net/ DataTAG project web site: http://www.datatag.org/ UDPmon / TCPmon kit + writeup:

http://www.hep.man.ac.uk/~rich/net Motherboard and NIC Tests:

www.hep.man.ac.uk/~rich/net/nic/GigEth_tests_Boston.ppt& http://datatag.web.cern.ch/datatag/pfldnet2003/ “Performance of 1 and 10 Gigabit Ethernet Cards with Server Quality Motherboards” FGCS Special issue 2004

TCP tuning information may be found at:http://www.ncne.nlanr.net/documentation/faq/performance.html & http://www.psc.edu/networking/perf_tune.html

TCP stack comparisons:“Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks” Journal of Grid Computing 2004

Page 24: Bringing High-Performance Networking to HEP users

Slide: 24Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

24

Backup Slides

Page 25: Bringing High-Performance Networking to HEP users

Slide: 25Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

25

SuperMicro P4DP6: Throughput Intel Pro/1000

Max throughput 950Mbit/s No packet loss

CPU utilisation on the receiving PC was ~ 25 % for packets > than 1000 bytes

30- 40 % for smaller packets

Motherboard: SuperMicro P4DP6 Chipset: Intel E7500 (Plumas) CPU: Dual Xeon Prestonia 2.2 GHz PCI, 64 bit, 66 MHz RedHat 7.2 Kernel 2.4.19

gig6-7 Intel pci 66 MHz 27nov02

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40Transmit Time per frame us

Recv

Wire

rate

M

bits

/s

50 bytes 100 bytes 200 bytes 400 bytes 600 bytes 800 bytes 1000 bytes 1200 bytes 1400 bytes 1472 bytes

gig6-7 Intel pci 66 MHz 27nov02

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40Transmit Time per frame us

% C

PU

Idl

e R

ecei

ver

50 bytes 100 bytes 200 bytes 400 bytes 600 bytes 800 bytes 1000 bytes 1200 bytes 1400 bytes 1472 bytes

Page 26: Bringing High-Performance Networking to HEP users

Slide: 26Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

26

SuperMicro P4DP6: Latency Intel Pro/1000

Some steps Slope 0.009 us/byte Slope flat sections : 0.0146

us/byte Expect 0.0118 us/byte

No variation with packet size FWHM 1.5 us Confirms timing reliable

Motherboard: SuperMicro P4DP6 Chipset: Intel E7500 (Plumas) CPU: Dual Xeon Prestonia 2.2 GHz PCI, 64 bit, 66 MHz RedHat 7.2 Kernel 2.4.19 Intel 64 bit 66 MHz

y = 0.0093x + 194.67

y = 0.0149x + 201.75

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000Message length bytes

Late

ncy u

s

64 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

900

170 190 210

Latency us

N(t)

512 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

170 190 210Latency us

N(t)

1024 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

190 210 230

Latency us

N(t)

1400 bytes Intel 64 bit 66 MHz

0

100

200

300

400

500

600

700

800

190 210 230

Latency us

N(t)

Page 27: Bringing High-Performance Networking to HEP users

Slide: 27Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

27

SuperMicro P4DP6: PCI Intel Pro/1000

1400 bytes sent Wait 12 us ~5.14us on send PCI bus PCI bus ~68% occupancy ~ 3 us on PCI for data recv

CSR access inserts PCI STOPs NIC takes ~ 1 us/CSR CPU faster than the NIC !

Similar effect with the SysKonnect NIC

Motherboard: SuperMicro P4DP6 Chipset: Intel E7500 (Plumas) CPU: Dual Xeon Prestonia 2.2 GHz PCI, 64 bit, 66 MHz RedHat 7.2 Kernel 2.4.19

Page 28: Bringing High-Performance Networking to HEP users

Slide: 28Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

28

Raid0 Performance (1) 3Ware 7500-8 RAID0

parallel EIDE Maxtor 3.5 Series

DiamondMax Plus 9 120 Gb ATA/133

Raid stripe size 64 bytes

WriteSlight increase with number of disks

Read

3 Disks OK

Write 100 MBytes/s Read 130 MBytes/s

Read Throughput and no. Disks Stripe 64k raid0

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

ytes

/s

2 disk

3 disk

4 disk

Write Throughput and no. Disks Stripe 64k raid0

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

ytes

/s

2 disk

3 disk

4 disk

Page 29: Bringing High-Performance Networking to HEP users

Slide: 29Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

29

Raid0 Performance (2) Maxtor 3.5 Series

DiamondMax PLus 9 120 Gb ATA/133

No difference for Write

Larger Stripe lower the performance

Write 100 MBytes/s Read 120 MBytes/s

Disk-mem Write Throughput vs Stripe Size - 3 disk raid0

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

MB

ytes

/s

64

128

256

512

1000

Disk-mem Read Throughput vs Stripe Size - 3 disk raid0

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

ytes

/s

64

128

256

512

1000

Page 30: Bringing High-Performance Networking to HEP users

Slide: 30Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

30

Raid5 Disk Performance vs readahead_max

BaBar Disk Server Tyan Tiger S2466N

motherboard 1 64bit 66 MHz PCI bus Athlon MP2000+ CPU AMD-760 MPX chipset 3Ware 7500-8 RAID5 8 * 200Gb Maxtor IDE

7200rpm disks Note the VM parameter

readahead max

Disk to memory (read)Max throughput 1.2 Gbit/s 150 MBytes/s)

Memory to disk (write)Max throughput 400 Mbit/s 50 MBytes/s)[not as fast as Raid0]

Page 31: Bringing High-Performance Networking to HEP users

Slide: 31Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

31

Host, PCI & RAID Controller Performance

RAID0 (striped) & RAID5 (stripped with redundancy) 3Ware 7506 Parallel 66 MHz 3Ware 7505 Parallel 33 MHz 3Ware 8506 Serial ATA 66 MHz ICP Serial ATA 33/66 MHz Tested on Dual 2.2 GHz Xeon Supermicro P4DP8-G2 motherboard Disk: Maxtor 160GB 7200rpm 8MB Cache Read ahead kernel tuning: /proc/sys/vm/max-readahead

Page 32: Bringing High-Performance Networking to HEP users

Slide: 32Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

32

Serial ATA Raid Controllers RAID5

3Ware 66 MHz PCI

Read Throughput raid5 4 3Ware 66MHz SATA disk

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

it/s

readahead max 31readahead max 63readahead max 127readahead max 256readahead max 512readahead max 1200

ICP 66 MHz PCI

Write Throughput raid5 4 3Ware 66MHz SATA disk

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

it/s

readahead max 31readahead max 63readahead max 127readahead max 256readahead max 516readahead max 1200

Read Throughput raid5 4 ICP 66MHz SATA disk

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

it/s

readahead max 31readahead max 63readahead max 127readahead max 256readahead max 512readahead max 1200

Write Throughput raid5 4 ICP 66MHz SATA disk

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

File size MBytes

Mb

it/s

readahead max 31readahead max 63readahead max 127readahead max 256readahead max 512readahead max 1200

Page 33: Bringing High-Performance Networking to HEP users

Slide: 33Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

33

RAID Controller PerformanceR

AID

0R

AID

5

Read Speed Write Speed

Page 34: Bringing High-Performance Networking to HEP users

Slide: 34Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

34

Gridftp Throughput + Web100 RAID0 Disks:

960 Mbit/s read 800 Mbit/s write

Throughput Mbit/s:

See alternate 600/800 Mbit and zero Data Rate: 520 Mbit/s

Cwnd smooth No dup Ack / send stall /

timeouts

Page 35: Bringing High-Performance Networking to HEP users

Slide: 35Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

35

http data transfers HighSpeed TCP Same Hardware RAID0 Disks Bulk data moved by web servers Apachie web server

out of the box! prototype client - curl http library 1Mbyte TCP buffers 2Gbyte file Throughput ~720 Mbit/s Cwnd - some variation No dup Ack / send stall / timeouts

Page 36: Bringing High-Performance Networking to HEP users

Slide: 36Richard Hughes-Jones CHEP2004 Interlaken Sep 04 R. Hughes-Jones Manchester

36

Bbcp & GridFTP Throughput RAID5 - 4disks Manc – RAL 2Gbyte file transferred bbcp Mean 710 Mbit/s

GridFTP See many zeros

Mean ~710

Mean ~620

DataTAG altAIMD kernel in BaBar & ATLAS