18
Broadband free-space characterization of metamaterials M. H. Belyamoun, O. Dubrunfaut, C. Pareige, Y. Zhu, S. Zouhdi, and F. Ossart Laboratoire de G´ enie ´ Electrique de Paris

Broadband free-space characterization of metamaterials

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Broadband free-space characterization of metamaterials

M. H. Belyamoun, O. Dubrunfaut, C. Pareige, Y. Zhu, S. Zouhdi, and F. Ossart

Laboratoire de Genie Electrique de Paris

Introduction

Metamaterials

Artificial periodic structures with exotic electromagnetic properties at themacroscopic scale.

a) Epsilon-negative rods.

b) Split Ring Resonator (negative permeability)

c) High Impedance Surface : Sievenpiper mushrooms.

a b c

2 / 18

Summary

1 Introduction

2 Numerical modelSRR homogenizationHIS homogenization

3 The free space characterization systemA focused systemThru Reflect Line calibrationTime domain analysis

4 Free space measurements of metamaterialsShifted metallic wire rodsHigh Impedance SurfaceSRR characterization

5 Conclusions and outlook

Numerical model SRR homogenization

Reference cell

The SRR acts as an LC resonator.

We want to compute the effective permeability : (~B = µeff~H).

Incident plane wave.

Long wavelength λ a

Perfect conductor : h = 0 inside the ring.4 / 18

Numerical model SRR homogenization

From the split-ring to a closed ring

Cell energy

|C|Hµeff H =

∫Aµ|∇ϕ|2 +

∫∂R

1− i

σωδ|∇Sϕ|2 −

1

Cω2I2

where ϕ stands for the magnetic potential.

5 / 18

Numerical model SRR homogenization

Polaritonic law for 2D-structures

h = h1 over A1 and h = h2 over A2

Faraday : iωΦ + V = 0 and Ampere : I = h1 − h2.

Magnetic field flux : |C|B = µ (|A1|h1 + |A2|h2) andΦ = µh1|A1|Capacitor in the air gap : I = iωCV .

A1

A2

µr

ωω1 ω2

A2

|C|

A1+A2

|C|µeff = µ

|A1|+ |A2||C|

(ωω2

)2

− 1(ωω1

)2

− 1

ω1 = (µC |A1|)−12

ω2 =√

1 + |A1|/|A2| ω1

6 / 18

Numerical model HIS homogenization

Effective impedance computation

a b

Symmetric HIS :

I Impedance extension from 1D → 2D

Asymmetric HIS :

a) Flux method∫C iω(εEiEj − µHiHj ) = |S|E ′js 1

ZijEis

b) Surface impedance method(−H1sy −H2sy

H1sx H2sx

)= −

(Yxx Yxy

Yyx Yyy

)(E1sx E2sx

E1sy E2sy

)7 / 18

The free space characterization system A focused system

The free-space characterization system

2 quad-ridged horn antennas (2-18 GHz), mounted on micrometric stages.

The beam is focused with Rexolite (εr = 2.54) lenses.

Agilent PNA 8364C : S-parameters measurement.

8 / 18

The free space characterization system A focused system

Gaussian beam

Gaussian beam.

We must have an incident planar wave on the sample to compute theeffective parameters.

Negligible diffraction if the sample dimension is 3 times the beam’s radius.

A focused bench is much smaller.9 / 18

The free space characterization system Thru Reflect Line calibration

Thru Reflect Line calibration

Thru

e e

Reflect

metal

e e

Line

10 / 18

The free space characterization system Thru Reflect Line calibration

S parameters of a plexiglas sample (e=5 mm)

2 4 6 8 10 12 14 16 180

0.5

1

1.5

Frequency[GHz]

Mag

nitu

de

S11

S21

2 4 6 8 10 12 14 16 18

−150

−100

−50

0

50

100

150

Frequency[GHz]

Pha

se°

S11

S21

11 / 18

The free space characterization system Time domain analysis

Time domain analysis

0 50 100 150 200 250 300 350 400−160

−140

−120

−100

−80

−60

−40

−20

0

tn

S11

[dB

]

Reflection onthe lens

Sample

reflection on the SMA connector

Wn

tn−p p

RectangularTriangularHanning

The calibrated S parameters are transfered to the time domain.

A window is applied to eliminate the parasite reflections.

Gibbs phenomenon limits the selectivity of the filter.

12 / 18

The free space characterization system Time domain analysis

Influence of the filter type (Plexiglas, e = 5 mm)

2 4 6 8 10 12 14 16 180

0.5

1

1.5

Frequency [GHz]

Mag

S11

S21

Hanning

2 4 6 8 10 12 14 16 180

0.5

1

1.5Mag

Frequency[GHz]

Mag

S11

S21

Window

13 / 18

Free space measurements of metamaterials Shifted metallic wire rods

Shifted metallic wire rods

Characterization in an anechoicchamber.

Time domain with a Hammingwindow.

2 4 6 8 10 12 14 16 18−80

−70

−60

−50

−40

−30

−20

−10

0

10

Fréquences[GHz]

Mag

nitu

de [d

B]

S11

filtrage

S11

anéchoïque

S21

filtrage

S21

anéchoïque

14 / 18

Free space measurements of metamaterials High Impedance Surface

HIS characterization

Epoxy εr = 4, 4h = 2.4 mm

Sievenpiper

Zeff = jωL1−LCω2

2 4 6 8 10 12 14 16 18−2

−1

0

1

2

3

4

Frequency [GHz]

Ze

ff [Ω

]

Z’Z’’

D [mm] g [mm] Measured [GHz] Analytical [GHz]10 4 9,84 9,47 2 10 9,36 2 10,85 10,86

10 5 11,75 11,2

15 / 18

Free space measurements of metamaterials High Impedance Surface

Comparison with the simulations

8 10 12 14 16 18−200

−150

−100

−50

0

50

100

150

200

frequency(GHz)

Pha

se o

f coe

ffici

ent o

f ref

lect

ion

°

Numerical CSTNumerical Poynting fluxNumerical <E>/<H>Measure

Method Frequency [GHz] Sample (D,g)(10,4) (10,5) (7,2) (6,2)

Measurements Resonance 10,35 11,74 10 10,84Bandwidth 9,3-11,37 10,33-12,77 8-11,25 7,06-12,34

〈E〉/〈H〉 Resonance 9,9 11,74 10,3 11,9Bandwidth 8,8-10,8 10,3-12,7 8,9-11,7 10,25-13,75

Poynting flux Resonance 9,4 11,5 10,8 12Bandwidth 8,3-10,3 10,2-12,4 9,3-12,2 10,6-13,75

CST Resonance 9,54 11,23 10,1 11,82Bandwidth 8,56-10,42 10-12,17 8,7-11,42 9,97-13,76

16 / 18

Free space measurements of metamaterials SRR characterization

SRR characterization : rint = 1 mm, rext = 2, 5 mm

d (mm) Resonance frequency [GHz]Measured Analytical Homogenization

0,8 9,4 9,37 9,470,9 9,6 9,94 10,051 10,32 10,47 10,59

6 7 8 9 10 11 12 13 14 15−35

−30

−25

−20

−15

−10

−5

0

Frequency [GHz]

Mag

nitu

de [d

B]

S11

S21

6 7 8 9 10 11 12 13 14 15−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency [GHz]

Ph

ase

°

S11

S21

17 / 18

Conclusions and outlook

Conclusions and outlook

Homogenization of SRR and HIS.

Realization of a compact characterization system.

The S-parameters are filtered in the time domain.

Computation εeff (split-ring).

Homogenization of SRR based structures.

Homogenization of metallic wireds arrays.

Gated Reflect Line calibration.

18 / 18