43
[email protected] MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §4.3 Exp & Log Derivatives

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

Embed Size (px)

DESCRIPTION

Chabot Mathematics. §4.3 Exp & Log Derivatives. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected]. 4.2. Review §. Any QUESTIONS About §4.2 → Logarithmic Functions Any QUESTIONS About HomeWork §4.2 → HW-19. §4.3 Learning Goals. - PowerPoint PPT Presentation

Citation preview

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§4.3 Exp & Log

Derivatives

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 3

Bruce Mayer, PE Chabot College Mathematics

§4.3 Learning Goals

Differentiate exponential and logarithmic functions

Examine applications involving exponential and logarithmic derivatives

Employ logarithmic differentiation

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 4

Bruce Mayer, PE Chabot College Mathematics

Derivative of ex

For any Real Number, x

Thus the ex fcn has the unusual property that the derivative of the fcn is the ORIGINAL fcn• The proof of this is quite complicated. For

our purposes we treat this as a formula– For a good proof (in Appendix) see:

D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp. 325-331

xx eedx

d

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 5

Bruce Mayer, PE Chabot College Mathematics

Derivative of ex

Using the “repeating” nature of d(ex)/dx

Meaning of Above: for any x-value, say x = 1.9, All of these y-related quantities are equal at e1.9 = 6.686• The y CoOrd:• The Slope:• The ConCavity:

xxxxx eedx

d

dx

dyee

dx

dyey

'''

6.686 1.9,

686.69.1 xdxdy

686.69.122 xdxyd

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 6

Bruce Mayer, PE Chabot College Mathematics

Example ex Derivative

Differentiate: Using Rules

• Product• Power• ex

xey x 1

xedx

dy

dx

d x 1

xexedx

dy xx 1)1(2

1 2/1

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 7

Bruce Mayer, PE Chabot College Mathematics

Chain Rule for eu(x)

If u(x) is a differentiable function of x then

Using the ex derivative property

dx

xdue

xdu

de

dx

d xuxu

dx

xdue

dx

xdue

xdu

d xuxu

xuedx

duee

dx

d uuu 'Or

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 8

Bruce Mayer, PE Chabot College Mathematics

Example Tangent Line

Find the equation of the tangent line at x = 0 for the function:

SOLUTION: Use the Point-Slope Line Eqn,

y-yAP = m(x-xAP), with• Anchor Point, (xAP,yAP):

• Slope at the Anchor Point:

xxexf 2

1 ,0 ,00 ,0 002

ef

00 xdxdfm

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 9

Bruce Mayer, PE Chabot College Mathematics

Example Tangent Line

Find Slope at x = 0

Let: Then:

Thus:

And by Chain Rule

12and 2 xxxdx

du

dx

dee

du

d uu

xxu 2

uxx ee 2

12122

2

xexem

dx

du

du

ede

dx

dm

xxu

uxx

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 10

Bruce Mayer, PE Chabot College Mathematics

Example Tangent Line

Then m at x = 0

Using m and the Anchor-Point in the Pt-Slope Eqn

Convert Line-Eqnto Slope-Intercept form

11110200

0

22

eedx

dm

x

xx

APAP xxmyy

1 xy

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 11

Bruce Mayer, PE Chabot College Mathematics

Example Tangent Line

Tangent Line at (0,1) Graphically

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 12

Bruce Mayer, PE Chabot College Mathematics

Derivative of ln(x) = loge(x)

For any POSITIVEReal Number, x

Thus the ln(x) fcn has the unusual property that derivative Does NOT produce another Log• The proof of this is quite complicated. For

our purposes we treat this as a formula– For a good proof (in Appendix) see:

D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp. 325-331

x

xdx

d 1ln

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 13

Bruce Mayer, PE Chabot College Mathematics

Example ln Derivative

Find the Derivative of: Using Rules

• Quotient• Power• ln(x)

x

x

dx

d

dx

dy

ln1

2

2ln1

ln2

x

xxx

xxxfy ln12

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 14

Bruce Mayer, PE Chabot College Mathematics

Chain Rule for ln(u(x))

If u(x)> 0 is a differentiable function of x then

Using the ln(x) derivative property

dx

xduxu

xdu

dxu

dx

d lnln

dx

xdu

xudx

xduxu

xdu

d

1ln

xuudx

du

uu

dx

d'

11lnOr

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 15

Bruce Mayer, PE Chabot College Mathematics

Derivative of ax & loga(x)

For Base a with a>0 and a≠1, then for ALL x:

For Base a with a>0 and a≠1, then for ALL x>0:

Prove Both on White/Black Board

xx aaadx

dln

ax

xdx

da ln

1log

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 16

Bruce Mayer, PE Chabot College Mathematics

Example Revenue RoC

The total number of hits (in thousands) to a website t months after the beginning of 1996 is modeled by

The Model for the weekly advertising revenue in ¢ per hit:

Use the Math Models to determine the daily revenue change at the beginning of the year 2005

4ln200 ttH

ttr 1.025

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 17

Bruce Mayer, PE Chabot College Mathematics

Example Revenue RoC

SOLUTION: The rate of change in Total Revenue,

R(t), is the Derivative of the Product of revenue per hit and total hits:

)1.025()4ln(200 ttdt

dtrtH

dt

dtR

dt

d

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 18

Bruce Mayer, PE Chabot College Mathematics

Example Revenue RoC

Thus

Next find t in months for 1996→2005

Then the rate derivative at t = 108 mon

A units analysis

)4ln(204

205000'

tt

ttR

dt

tdR

mon 108yr 1

mon 12yrs 19962005 t

)4108ln(204108

)108(205000

108

dt

dR

mon

kCent

mon

HitCentkHits

t

rH

t

R

dt

dR

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 19

Bruce Mayer, PE Chabot College Mathematics

Example Revenue RoC

The units on H are kHits, and units on r are ¢/Hit. The units on time were months so the derivative has units k¢/mon. Convert to $/mon:

STATE: at the beginning of 2005 the website was making about $690.13 LESS each month that passed.

mon

$ 13.690

kCent

$ 10

mon

kCent 013.69

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 20

Bruce Mayer, PE Chabot College Mathematics

Helpful Hint Log Diff

Logarithmic Differentiation Some derivatives are easier to calculate

by • first take the natural logarithm of the

expression• Next judiciously use the log rules• then take the derivative of both sides of the

equation• finally solve for the derivative term

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 21

Bruce Mayer, PE Chabot College Mathematics

Example Using Log Diff

Using logarithmic differentiation to find the df/dx for:

SOLUTION: Computing the derivative directly would

involve the repeated use of the product rule (not impossible, but very tedious)

Instead, use properties of logarithms to first expand the expression

3 223 13)( xexxf x

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 22

Bruce Mayer, PE Chabot College Mathematics

Example Using Log Diff

Let y = f(x) → Then take the natural logarithm of both

sides:

Use the Power & Log Rules

Now Take the Derivative of Both Sides

3 223 13 xexyxf x

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 23

Bruce Mayer, PE Chabot College Mathematics

Example Using Log Diff

By the Chain Rule

Then

Or

• This is a form of Implicit Differentiation; Need to algebraically Isolate dy/dx

xxxdx

dy

y2

1

1

3

11

312

dx

dy

ydx

dyy

dy

dy

dx

dy

dy

dy

dx

d

1lnlnln

1ln

3

12ln33ln

1ln 2xxx

dx

d

dx

dy

yy

dx

d

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 24

Bruce Mayer, PE Chabot College Mathematics

Example Using Log Diff

Solving for dy/dx

Recall

Thus

• This result would have much more difficult to obtain without the use of the Log transform and implicit differentiation

33

21

32x

x

xy

dx

dy

33

21

313'

23 223

x

x

xxex

dx

xdfxf x

xxxdx

dy

y2

1

1

3

11

312

dx

xdf

dx

dyxfyxexy x and13 3 223

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 25

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard Work

Problems From §4.3• P76 → Per Capita Growth• P90 → Newtons Law of (convective)

Cooling– Requires a Biot Number* of Less than 0.1

Bi → INternal Thermal ResistanceEXternal Thermal Resistance

*B. V. Karlekar, R. M. Desmond, Engineering Heat Transfer, St. Paul,

MN, West Publishing Co., 1977, pp. 103-110

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 26

Bruce Mayer, PE Chabot College Mathematics

All Done for Today

ForPHYS4AStudents

From RigidBody Motion-Mechanics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 27

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

Appendix

srsrsr 22

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 28

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 29

Bruce Mayer, PE Chabot College Mathematics

Summary of Log Rules

For any positive numbers M, N, and a with a ≠ 1, and whole number p

log log log ;a a aM

M NN

log log ;pa aM p M

log .ka a k

log ( ) log log ;a a aMN M N Product Rule

Power Rule

Quotient Rule

Base-to-Power Rule

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 30

Bruce Mayer, PE Chabot College Mathematics

Change of Base Rule

Let a, b, and c be positive real numbers with a ≠ 1 and b ≠ 1. Then logbx can be converted to a different base as follows:

logb x loga x

loga b

log x

logb

ln x

lnb

(base a) (base 10) (base e)

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 31

Bruce Mayer, PE Chabot College Mathematics

Derive Change of Base Rule

Any number >1 can be used for b, but since most calculators have ln and log functions we usually change between base-e and base-10

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 32

Bruce Mayer, PE Chabot College Mathematics

Prove d(ex)/dx =ex

– D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp. 325-331

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 33

Bruce Mayer, PE Chabot College Mathematics

Prove d(ex)/dx =ex

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 34

Bruce Mayer, PE Chabot College Mathematics

D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp. 325-331

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 35

Bruce Mayer, PE Chabot College MathematicsProve: xx aaadx

dln

axx

dx

da ln

1log

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 36

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 37

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 38

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 39

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 40

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 41

Bruce Mayer, PE Chabot College Mathematics

[email protected] • MTH15_Lec-20_sec_4-3_EXP-n-LOG_Derivatives.pptx 42

Bruce Mayer, PE Chabot College Mathematics