46
Page 1 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:43 PM ETANK FULL REPORT - Tangki Buffer 100MT ETank2000 Full 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 8 SHELL COURSE DESIGN PAGE 17 BOTTOM HEAD DESIGN PAGE 28 SEISMIC CALCULATIONS PAGE 35 ANCHOR BOLT DESIGN PAGE 41 CAPACITIES AND WEIGHTS PAGE 45 MAWP & MAWV SUMMARY PAGE 46

Buffer Tank 100Ton Cone

Embed Size (px)

DESCRIPTION

Calculation Report of 100Ton Bottom Cone Tank

Citation preview

Page 1: Buffer Tank 100Ton Cone

Page 1 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:43 PM

ETANK FULL REPORT - Tangki Buffer 100MTETank2000 Full 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 8

SHELL COURSE DESIGN PAGE 17

BOTTOM HEAD DESIGN PAGE 28

SEISMIC CALCULATIONS PAGE 35

ANCHOR BOLT DESIGN PAGE 41

CAPACITIES AND WEIGHTS PAGE 45

MAWP & MAWV SUMMARY PAGE 46

Page 2: Buffer Tank 100Ton Cone

Page 2 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:43 PM

ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Option s, Behavior Tab.--------------------------------------------------- ------------------- No 650 Appendix F Calcs when Tank P = 0 -> Defa ult : False -> This Tank : False Repad 650 Design Basis -> Default for Tank Roof Nozzles : t-Ba sis = Roof t-Calc -> This Tank : Use API Default 1/4 in. Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True

Page 3: Buffer Tank 100Ton Cone

Page 3 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

SUMMARY OF DESIGN DATA and REMARKS

Job : Tangki Buffer 100MTDate of Calcs. : 7/17/2012 , 05:04 PMMfg. or Insp. Date : 6/19/2012Designer : GandhiProject : Smart RefineryPlant : RungkutPlant Location : SurabayaSite : SurabayaDesign Basis : API-650 11th Edition, Addendu m 2, Nov 2009

--------------------------------------------------- -------------------- TANK NAMEPLATE INFORMATION

--------------------------------------------------- -------------------- Operating Ratio: 0.4- Design Standard:- API-650 11th Edition, Addendum 2, Nov 2009 -- (None) -- Roof : A-240 Type 304L: 0.236in. -- Shell (8): A-240 Type 304: 0.236in. -- Shell (7): A-240 Type 304: 0.236in. -- Shell (6): A-240 Type 304: 0.236in. -- Shell (5): A-240 Type 304: 0.236in. -- Shell (4): A-240 Type 304: 0.315in. -- Shell (3): A-240 Type 304: 0.315in. -- Shell (2): A-240 Type 304: 0.315in. -- Shell (1): A-240 Type 304: 0.315in. -- Bottom : A-240 Type 304L: 0.47in. -

--------------------------------------------------- -------------------

Design Internal Pressure = 1 PSI or 27.71 IN. H2ODesign External Pressure = 0 PSI or 0 IN. H2O

MAWP = 0.0996 PSI or 2.76 IN. H2OMAWV = 0 PSI or 0 IN. H2O

OD of Tank = 12.739 ftShell Height = 32 ftS.G. of Contents = 0.9Max. Liq. Level = 32 ft

Design Temperature = 104 °FTank Joint Efficiency = 0.7

Ground Snow Load = 0 lbf/ft^2Roof Live Load = 25 lbf/ft^2Design Roof Dead Load = 0 lbf/ft^2

Page 4: Buffer Tank 100Ton Cone

Page 4 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

Basic Wind Velocity = 20 mphWind Importance Factor = 1Using Seismic Method: API-650 11th Ed. - Site Speci fic Seismic Use Group: I Site Class: D Sa0 = 0.8 %g Sai = 0.8 %g Sac = 0.8 %g Av = 0.23 %g Q = 1 Importance Factor = 1 Rwi = 4 Rwc = 2

DESIGN NOTES

NOTE 1 : There are tank calculation warnings. Search for * * Warning * * notes. NOTE 2 : Tank is not subject to API-650 Appendix F.7

DESIGNER REMARKS

Tangki Buffer 100 Metric Ton SUS304 Bottom Cone

Page 5: Buffer Tank 100Ton Cone

Page 5 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)--------------------------------------------------- ---------------------Shell Width Material Sd St Weight CA# (ft) (psi) (psi) (lbf) (in)--------------------------------------------------- ---------------------8 4 A-240 Type 304 22,500 27,000 1,616 0.06257 4 A-240 Type 304 22,500 27,000 1,616 0.06256 4 A-240 Type 304 22,500 27,000 1,616 0.06255 4 A-240 Type 304 22,500 27,000 1,616 0.06254 4 A-240 Type 304 22,500 27,000 2,156 0.06253 4 A-240 Type 304 22,500 27,000 2,156 0.06252 4 A-240 Type 304 22,500 27,000 2,156 0.06251 4 A-240 Type 304 22,500 27,000 2,156 0.0625--------------------------------------------------- ---------------------Total Weight 15,088

Shell API 650 Summary (Bottom is 1)--------------------------------------------------- -------------------Shell t.design t.test t.external t.seismic t.required t.actual# (in.) (in.) (in.) (in.) (in.) (in.)--------------------------------------------------- -------------------8 0.073 0.0093 N.A. 0.0716 0.1875 0.2367 0.0806 0.0163 N.A. 0.0807 0.1875 0.2366 0.0882 0.0233 N.A. 0.0898 0.1875 0.2365 0.0958 0.0303 N.A. 0.0989 0.1875 0.2364 0.1033 0.0373 N.A. 0.108 0.1875 0.3153 0.1109 0.0444 N.A. 0.1171 0.1875 0.3152 0.1185 0.0514 N.A. 0.1261 0.1875 0.3151 0.126 0.0584 N.A. 0.1353 0.1875 0.315--------------------------------------------------- -------------------

Structurally Supported Conical Roof Plate Material = A-240 Type 304L, Struct. Material = A-240 Type 304L

t.required = 0.25 in. t.actual = 0.236 in. Roof Joint Efficiency = 0.7

Plate Weight = 1,287 lbf

Rafters: 21 Rafters at Rad. 0.8493 ft.: 3 X 3 X 1/4 ANG LE 0 Rafters at Rad. 1.6985 ft.: 3 X 3 X 1/4 ANG LE 0 Rafters at Rad. 2.5478 ft.: 3 X 3 X 1/4 ANG LE 0 Rafters at Rad. 3.397 ft.: 3 X 3 X 1/4 ANG LE 0 Rafters at Rad. 4.2463 ft.: 3 X 3 X 1/4 ANG LE 0 Rafters at Rad. 6.3695 ft.: 3 X 3 X 1/4 ANG LE

Rafters Weight = 0 lbf

Page 6: Buffer Tank 100Ton Cone

Page 6 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

Girders: 0 Girders at Rad. 0.8493 ft.: 3 X 3 X 1/4 ANG LE 0 Girders at Rad. 1.6985 ft.: 3 X 3 X 1/4 ANG LE 0 Girders at Rad. 2.5478 ft.: 3 X 3 X 1/4 ANG LE 0 Girders at Rad. 3.397 ft.: 3 X 3 X 1/4 ANG LE 0 Girders at Rad. 4.2463 ft.: 3 X 3 X 1/4 ANG LE

Girders Weight = 0 lbf

Columns: 1 Column at Center: 3 X 3 X 1/4 ANGLE 0 Columns at Rad. 0.8493 ft.: 3 X 3 X 1/4 ANG LE 0 Columns at Rad. 1.6985 ft.: 3 X 3 X 1/4 ANG LE 0 Columns at Rad. 2.5478 ft.: 3 X 3 X 1/4 ANG LE 0 Columns at Rad. 3.397 ft.: 3 X 3 X 1/4 ANG LE 0 Columns at Rad. 4.2463 ft.: 3 X 3 X 1/4 ANG LE

Columns Weight = 0 lbf

Bottom Type: Conical Bottom Bottom Floor Material = A-240 Type 304L t.required = 0.2428 in. t.actual = 0.47 in. Bottom Joint Efficiency = 0.7

Total Weight of Bottom = 2,852 lbf

TOP END STIFFENER: L3x2x3/8, A-240 Type 304L, 252. lbfQTY (6) INTERMEDIATE STIFFENERS: A-240 Type 304L Stiffener #1: L1x1x1/8, 34. lbf, Elev. = 6.99 ft . Stiffener #2: L1x1x1/8, 34. lbf, Elev. = 13.98 f t. Stiffener #3: L1x1x1/8, 34. lbf, Elev. = 18.42 f t. Stiffener #4: L1x1x1/8, 34. lbf, Elev. = 21.81 f t. Stiffener #5: L1x1x1/8, 34. lbf, Elev. = 25.21 f t. Stiffener #6: L1x1x1/8, 34. lbf, Elev. = 28.6 ft .BOTTOM END STIFFENER: BAR 2x1/4, A-240 Type 304L, 7 2. lbf

Page 7: Buffer Tank 100Ton Cone

Page 7 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

SUPPORTED CONICAL ROOF (from Brownell & Young)

Roof Plate Material: A-240 Type 304L, Sd = 20,928 PSI, Fy = 24,856 PSI « (API-650 Table S-2a)Structural Material: A-240 Type 304L, Sd = 20,928 PSI, Fy = 24,856 PSI « (API-650 Table S-2a)

R = 6.3695 ft pt = 0.75 in/ft (Cone Roof Pitch)

Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degre es

Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*12.739^2/48 = 2.536 ft^2

Horizontal Projected Area of Roof (Per API-650 5. 2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*12.739 = 6.3695 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*6.3695^2 = 127.456 ft^2

S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dea d_Load = (8)(4/12) + 10.1102 + 0 = 12.7769 lbf/ft^2

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = 0*144 = 0 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 12.7769 + 25 + 0.4*0 = 37.777 lbf/ft^2

e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 12.7769 + 0 + 0.4*25 = 22.777 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Append ix R) = MAX(e.1b,e.2b) = 37.777 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 12.7769 + 25 + 0.4*0 = 37.777 lbf/ft^2

e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 12.7769 + 0 + 0.4*25 = 22.777 lbf/ft^2

Page 8: Buffer Tank 100Ton Cone

Page 8 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

U = Unbalanced Roof Design Load (per API-650 Appe ndix R) = MAX(e.1u,e.2u) = 37.777 lbf/ft^2

Lr_1 = MAX(T,U) = 37.777 lbf/ft^2

P = Max. Design Load = Lr_1 = 37.777 lbf/ft^2 = 0.2623 PSI

l = Maximum Rafter Spacing (Per API-650 5.10.4.4 ) = (t - ca) * SQRT(1.5 * Fy / P) = (0.236 - 0.0625)*SQRT(1.5*24,856/0.2623) = 65.41 in.

MINIMUM # OF RAFTERS

< FOR OUTER SHELL RING >

l = 65.41 in. since l < 84 in. (7 ft)

N_min = 2*PI*R/l = 2*PI*(6.3695)(12)/65.41 = 7.34

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #5

* * * NOTE * * *

* * Warning * * Girder Ring #5: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 4.2463 ft. Because Number of Girders is not Assigned.

< FOR GIRDER RING Outer Radius = 4.2463 ft > # of Girders (N) = 0

* * Warning * *Girder quantity is zero at Girder R ing Outer Radius = 4.2463 « ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #5

* * * NOTE * * *

* * Warning * * Girder Ring #5: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 4.2463 ft. Because Number of Girders is not Assigned.

< FOR GIRDER RING Outer Radius = 3.397 ft > # of Girders (N) = 0

Page 9: Buffer Tank 100Ton Cone

Page 9 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

* * Warning * *Girder quantity is zero at Girder R ing Outer Radius = 3.397 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #4

* * * NOTE * * *

* * Warning * * Girder Ring #4: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 3.397 ft. Because Number of Girders is not Assigned.

< FOR GIRDER RING Outer Radius = 2.5478 ft > # of Girders (N) = 0

* * Warning * *Girder quantity is zero at Girder R ing Outer Radius = 2.5478 « ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #3

* * * NOTE * * *

* * Warning * * Girder Ring #3: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 2.5478 ft. Because Number of Girders is not Assigned.

< FOR GIRDER RING Outer Radius = 1.6985 ft > # of Girders (N) = 0

* * Warning * *Girder quantity is zero at Girder R ing Outer Radius = 1.6985 « ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #2

* * * NOTE * * *

* * Warning * * Girder Ring #2: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 1.6985 ft. Because Number of Girders is not Assigned.

< FOR GIRDER RING Outer Radius = 0.8493 ft > # of Girders (N) = 0

* * Warning * *Girder quantity is zero at Girder R ing Outer Radius = 0.8493 « ft.

Page 10: Buffer Tank 100Ton Cone

Page 10 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #1

* * * NOTE * * *

* * Warning * * Girder Ring #1: Num Girders Not Set

Could Not Calculate Minimum Rafters at Radius = 0.8493 ft. Because Number of Girders is not Assigned.

t.required = MAX(t-Calc, 0.1875 + 0.0625) = MAX(0,0.25) = 0.25 in.

Page 11: Buffer Tank 100Ton Cone

Page 11 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

RAFTER DESIGN

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #5

* * * NOTE * * *

* * Warning * * Ring# 6: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 4.2 463 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #4

* * * NOTE * * *

* * Warning * * Ring# 5: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 3.3 97 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #3

* * * NOTE * * *

* * Warning * * Ring# 4: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 2.5 478 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #2

* * * NOTE * * *

* * Warning * * Ring# 3: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 1.6 985 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #1

* * * NOTE * * *

* * Warning * * Ring# 2: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 0.8 493 ft.

* * Warning * *Parameters Still Required: Num. Gir ders Not Set for Ring #1

Page 12: Buffer Tank 100Ton Cone

Page 12 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

* * * NOTE * * *

* * Warning * * Ring #1: Num Girders Not Set

Could Not Perform Rafter Design at Radius = 0.8 493 ft.

Page 13: Buffer Tank 100Ton Cone

Page 13 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

GIRDER DESIGN

* * * NOTE * * *

* * Warning * *Ring #4: Num. Girders Not yet Assig ned.

* * Warning * *Ring #4: Num. Girders Not yet Assig ned.

Could Not Perform Girder Design at Radius = 3.3 97 ft.

* * * NOTE * * *

* * Warning * *Ring #3: Num. Girders Not yet Assig ned.

* * Warning * *Ring #3: Num. Girders Not yet Assig ned.

Could Not Perform Girder Design at Radius = 2.5 478 ft.

* * * NOTE * * *

* * Warning * *Ring #2: Num. Girders Not yet Assig ned.

* * Warning * *Ring #2: Num. Girders Not yet Assig ned.

Could Not Perform Girder Design at Radius = 1.6 985 ft.

* * * NOTE * * *

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

Could Not Perform Girder Design at Radius = 0.8 493 ft.

* * * NOTE * * *

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

Could Not Perform Girder Design at Radius = 0.8 493 ft.

Page 14: Buffer Tank 100Ton Cone

Page 14 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

COLUMN DESIGN

* * * NOTE * * *

* * Warning * *Ring #6: Num. Rafters Not yet Assig ned.

* * Warning * *Ring #6: Num. Rafters Not yet Assig ned.

Could Not Perform Column Design at Radius = 6.3 695 ft.

* * * NOTE * * *

* * Warning * *Ring #5: Num. Girders Not yet Assig ned.

* * Warning * *Ring #5: Num. Girders Not yet Assig ned.

Could Not Perform Column Design at Radius = 4.2 463 ft.

* * * NOTE * * *

* * Warning * *Ring #4: Num. Girders Not yet Assig ned.

* * Warning * *Ring #4: Num. Girders Not yet Assig ned.

Could Not Perform Column Design at Radius = 3.3 97 ft.

* * * NOTE * * *

* * Warning * *Ring #3: Num. Girders Not yet Assig ned.

* * Warning * *Ring #3: Num. Girders Not yet Assig ned.

Could Not Perform Column Design at Radius = 2.5 478 ft.

* * * NOTE * * *

* * Warning * *Ring #2: Num. Girders Not yet Assig ned.

* * Warning * *Ring #2: Num. Girders Not yet Assig ned.

Could Not Perform Column Design at Radius = 1.6 985 ft.

* * * NOTE * * *

Page 15: Buffer Tank 100Ton Cone

Page 15 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

* * Warning * *Ring #1: Num. Girders Not yet Assig ned.

Could Not Perform Column Design at Radius = 0.8 493 ft.

Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(12.739)^2/COS() = 18,389 in^2

ROOF WEIGHT

Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS( Theta) = (0.2975)(0.236)(PI/4)(152.868 - 0.23 6)^2/COS(3.5763) = 1,287 lbf (New) = 946 lbf (Corroded)

Weight of Roof Plates supported by shell = 391 lbf (New) = 287 lbf (Corroded)

Weight of Rafters = 0 lbf (New) Weight of Girders = 0 lbf (New) Weight of Columns = 0 lbf (New)

Total Weight of Roof = 1,287 lbf (New) = 946 lbf (Corroded)

<Actual Participating Area of Roof-to-Shell Junctur e>

(From API-650 Figure F-2) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Cours e) = 0.6 * SQRT[76.198 * (0.236 - 0.0625)] = 2.1816 in.

(From API-650 Figure F-2) Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0.3 * SQRT[1,225 * (0.236 - 0.0625)] = MIN(4.3742, 12) = 4.3742 in.

Top End Stiffener: L3x2x3/8 Aa = (Cross-sectional Area of Top End Stiffener) = 1.73 in^2

Using API-650 Fig. F-2, Detail d End Stiffener D etail

Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 2.1816 * (0.236 - 0.0625) = 0.379 in^2

Page 16: Buffer Tank 100Ton Cone

Page 16 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 4.3742 * (0.236 - 0.0625) = 0.759 in^2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 1.73 + 0.759 + 0.379 = 2.868 in^2

< Uplift on Tank > (per API-650 F.1.2)

For conical or dish bottom tank with structural roof, Net_Uplift = Minus Corroded weight of shell and corroded roof weight. = -12,618 lbf

Since Tank does not have flat bottom, Uplift Case per API-650 1.1.1 does not apply.

< API-650 App. F >

Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(24,856,29,800,24,856) = 24,856 psi

A_min_a = Min. Participating Area due to full De sign Pressure. (per API-650 F.5.1, and Fig. F-2)

= [OD^2(P - 8*t)]/[0.962*24,856*TAN(Theta) ] = [12.739^2(27.71 - 8*0.236)]/[0.962*24,85 6*0.0625] = 2.804 in^2

P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0.962*24,856*TAN(Theta)]/OD^2 + 8* t_h = 2.868 * [0.962*24,856*0.0625]/12.739^2 + 8*0.1735 = 1.0031 PSI or 27.8 IN. H2O

P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2.5 PSI or 69.28 IN. H2O

P_max_internal = MIN(P_F51, P_Std) = MIN(27.8, 69.28) = 1.0031 PSI or 27.8 IN. H2O

* * * NOTE * * * P_max_external Not Calculated: Parameters Still Required.

Page 17: Buffer Tank 100Ton Cone

Page 17 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

SHELL COURSE DESIGN (Bottom Course is #1)

VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0.5 = (6*12.739*(0.315-0.0625))^0.5 = 4.3931 H = Max Liquid Level =32 ft L / H <= 2

Course # 1 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 32 + 2.31*1/0.9 = 34.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(34.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.126 in.

hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 134.4107 ft.

Pmax_1 = (hMax_1 - H) * 0.433 * G = (134.4107 - 32) * 0.433 * 0.9 = 39.9095 PSI

Pmax_int_shell = Pmax_1

Pmax_int_shell = 39.9095 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 32 + 2.31*1/1 = 34.31ft

t.test = 2.6*12.739*(34.31 - 1)/(27,000*0.7) = 0 .0584 in.

Course # 2 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

Page 18: Buffer Tank 100Ton Cone

Page 18 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 28 + 2.31*1/0.9 = 30.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(30.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1185 in.

hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 134.4107 ft.

Pmax_2 = (hMax_2 - H) * 0.433 * G = (134.4107 - 28) * 0.433 * 0.9 = 41.4683 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(39.9095, 41.4683)

Pmax_int_shell = 39.9095 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 28 + 2.31*1/1 = 30.31ft

t.test = 2.6*12.739*(30.31 - 1)/(27,000*0.7) = 0 .0514 in.

Course # 3 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 24 + 2.31*1/0.9 = 26.57ft

Page 19: Buffer Tank 100Ton Cone

Page 19 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(26.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1109 in.

hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 134.4107 ft.

Pmax_3 = (hMax_3 - H) * 0.433 * G = (134.4107 - 24) * 0.433 * 0.9 = 43.0271 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(39.9095, 43.0271)

Pmax_int_shell = 39.9095 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 24 + 2.31*1/1 = 26.31ft

t.test = 2.6*12.739*(26.31 - 1)/(27,000*0.7) = 0 .0444 in.

Course # 4 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 20 + 2.31*1/0.9 = 22.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(22.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1033 in.

hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 134.4107 ft.

Pmax_4 = (hMax_4 - H) * 0.433 * G = (134.4107 - 20) * 0.433 * 0.9 = 44.5859 PSI

Page 20: Buffer Tank 100Ton Cone

Page 20 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(39.9095, 44.5859)

Pmax_int_shell = 39.9095 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 20 + 2.31*1/1 = 22.31ft

t.test = 2.6*12.739*(22.31 - 1)/(27,000*0.7) = 0 .0373 in.

Course # 5 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 16 + 2.31*1/0.9 = 18.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(18.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0958 in.

hMax_5 = E*Sd*(t_5 - CA_5)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 92.6703 ft.

Pmax_5 = (hMax_5 - H) * 0.433 * G = (92.6703 - 16) * 0.433 * 0.9 = 29.8784 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(39.9095, 29.8784)

Pmax_int_shell = 29.8784 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 16 + 2.31*1/1 = 18.31ft

Page 21: Buffer Tank 100Ton Cone

Page 21 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

t.test = 2.6*12.739*(18.31 - 1)/(27,000*0.7) = 0 .0303 in.

Course # 6 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 12 + 2.31*1/0.9 = 14.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(14.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0882 in.

hMax_6 = E*Sd*(t_6 - CA_6)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 92.6703 ft.

Pmax_6 = (hMax_6 - H) * 0.433 * G = (92.6703 - 12) * 0.433 * 0.9 = 31.4372 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(29.8784, 31.4372)

Pmax_int_shell = 29.8784 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 12 + 2.31*1/1 = 14.31ft

t.test = 2.6*12.739*(14.31 - 1)/(27,000*0.7) = 0 .0233 in.

Course # 7 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

Page 22: Buffer Tank 100Ton Cone

Page 22 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 8 + 2.31*1/0.9 = 10.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(10.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0806 in.

hMax_7 = E*Sd*(t_7 - CA_7)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 92.6703 ft.

Pmax_7 = (hMax_7 - H) * 0.433 * G = (92.6703 - 8) * 0.433 * 0.9 = 32.996 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_7) = Min(29.8784, 32.996)

Pmax_int_shell = 29.8784 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 8 + 2.31*1/1 = 10.31ft

t.test = 2.6*12.739*(10.31 - 1)/(27,000*0.7) = 0 .0163 in.

Course # 8 Material: A-240 Type 304; Width = 4 ft.

Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7

API-650 ONE FOOT METHOD

Sd = 22,500 PSI (allowable design stress per A PI-650 App. S Table S-2a) St = 27,000 PSI (allowable test stress)

DESIGN CONDITION G = 0.9 (per API-650)

< Design Condition G = 0.9 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 4 + 2.31*1/0.9 = 6.57ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API -650 S.3.2) = 2.6*12.739*(6.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.073 in.

Page 23: Buffer Tank 100Ton Cone

Page 23 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

hMax_8 = E*Sd*(t_8 - CA_8)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12 .739 * 0.9) + 1 = 92.6703 ft.

Pmax_8 = (hMax_8 - H) * 0.433 * G = (92.6703 - 4) * 0.433 * 0.9 = 34.5548 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_8) = Min(29.8784, 34.5548)

Pmax_int_shell = 29.8784 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 4 + 2.31*1/1 = 6.31ft

t.test = 2.6*12.739*(6.31 - 1)/(27,000*0.7) = 0. 0093 in.

Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5

Transforming Courses (1) to (8)

Wtr(1) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(2) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(3) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(4) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(5) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(6) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(7) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(8) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 23.7736 ft

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7 ) V (Wind Speed) = 20 mph Ve = vf = Velocity Factor = (vs/120)^2 = (20/120 )^2 = 0.0278 Design PV = 0 PSI, OR 0 In. H2O

<TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0.27 in^3,

For Structural Roof and OD <= 35 ft, Minimum Required Angle is 2 x 2 x 3/16 in. Actual Z = 0.807 in^3 Using L3x2x3/8, Wc = 2.5488

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thi nnest, instead of top shell course.

Page 24: Buffer Tank 100Ton Cone

Page 24 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:44 PM

* * * NOTE: Not subtracting corrosion allowance pe r user setting.

ME = 27,976,000/28,000,000 = 0.9991

Hu = Maximum Height of Unstiffened Shell = {ME*600,000*t_thinnest*SQRT[t_thinnest/ OD]^3} / Ve) = {0.9991*600,000*0.236*SQRT[0.236/12.739 ]^3} / 0.0278 = 12,843 ft

Wtr = Transposed Width of each Shell Cour se = Width*[ t_top / t_course ]^2.5

Transforming Courses (1) to (8)

Wtr(1) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(2) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(3) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(4) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 ft Wtr(5) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(6) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(7) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(8) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 23.7736 ft

L_0 = Hts/# of Stiffeners + 1 = 23.7736/7 = 3.4 ft.

Number of Intermediate Wind Girders Sufficie nt Since Hu >= L_0

Zi (Req. Wind Gird. Z) = (0.0001)(Ve)(L0)(OD^2) = (0.0001)(0.0278)(3.4)(12.739^2) = 0 in^ 3

Actual Zi = 0.0964 in^3 using QTY (6): L1x1x1/8

SHELL COURSE #1 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.126, 0, 0.1353) = 0.1353 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 = 2,156 lbf (New) = 1,729 lbf (Corroded)

Page 25: Buffer Tank 100Ton Cone

Page 25 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

SHELL COURSE #2 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1185, 0, 0.1261) = 0.1261 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 = 2,156 lbf (New) = 1,729 lbf (Corroded)

SHELL COURSE #3 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1109, 0, 0.1171) = 0.1171 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 = 2,156 lbf (New) = 1,729 lbf (Corroded)

SHELL COURSE #4 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1033, 0, 0.108) = 0.108 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.315 in.

Page 26: Buffer Tank 100Ton Cone

Page 26 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 = 2,156 lbf (New) = 1,729 lbf (Corroded)

SHELL COURSE #5 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0958, 0, 0.0989) = 0.0989 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 = 1,616 lbf (New) = 1,189 lbf (Corroded)

SHELL COURSE #6 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0882, 0, 0.0898) = 0.0898 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 = 1,616 lbf (New) = 1,189 lbf (Corroded)

SHELL COURSE #7 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0806, 0, 0.0807) = 0.0807 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

Page 27: Buffer Tank 100Ton Cone

Page 27 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 = 1,616 lbf (New) = 1,189 lbf (Corroded)

SHELL COURSE #8 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.073, 0, 0.0716) = 0.073 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1 .1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1 875 in. t.actual = 0.236 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 = 1,616 lbf (New) = 1,189 lbf (Corroded)

Page 28: Buffer Tank 100Ton Cone

Page 28 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

CONICAL BOTTOM HEADMaterial : A-240 Type 304L

pt = 6 in/ft (Bottom Cone Pitch)

TAN(Theta) = pt/12 = 0.5Theta = 26.5651 degrees (angle of cone to th e horizontal)Alpha = 63.4349 degrees (1/2 the included apex ang le of cone)

R2 = 6*OD/SIN(Theta) = 170.91 in.Rc = R3 = OD/2 = 76.43 in.

Wc = 0.6*SQRT[Rc(t - CA)] (Bottom Shell Course) = 0.6*SQRT[(76.43)(0.315 - 0.0625)] = 2.64 in. (per API-620 Section 5.12.4.2, Eq.25)

Wh = 0.6*SQRT[R2(t - CA)] (Bottom Plate) = 0.6[(170.91)(0.47 - 0.0625)] = 5.0072 in. (per API-620 Section 5.12.4.2 Eq. 24)

Aa = (Cross-sectional Area of Bottom End Stiffener) = 0.5 in^2 using BAR 2x1/4

At = PI*OD^2/4*144 = PI*12.739^2/4*144 = 18,354 in^2 (Cross-Sectional Area of Bottom at Shell)

<Weight of Bottom Plate>

Bottom_Area = 36*PI*(OD-t)^2/COS(Theta) = 36*PI*(12.739-0.47)^2/COS(0.4636) = 20,394 in^2

Weight = Density * t.actual * Bottom_Area = 0.2975 * 0.47 * 20,394 = 2,852 lbf (New) = 2,472 lbf (Corroded)

Page 29: Buffer Tank 100Ton Cone

Page 29 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

< API-620, Unless Otherwise Noted >

<Actual Bottom to Shell Participating Area>

A = Actual Part. Area of Bottom-to-Shell Junctur e (per API-620) = Aa + Wc*(t_shell - CA) + Wh*(t_bottom - CA) = 1.428 + (2.64)(0.2525) + (5.0072)(0.4075) = 4.135 in^2

< Internal Pressure @ Bottom-Head Edge; h = 32 ft. >

W = (Bottom Plates + Dead Load + Fixed Load + Hy dro Weight) = 2,852 + 0 + 0 + 4,062 = 6,914 lbf

W/At = (6,914 / 18,354) = 0.3767 PSI

P = P_Entered + P_Liquid = 1 + 12.4704 = 13.4704 PSI or 373.31 IN. H20

<Meridional and Latitudinal Forces>

T1 = R3/[2*COS(Alpha)]*(P + W/At) = 76.43/[2*COS(63.4349)]*(13.4704 + 0.3767) = 1,183 lbf/in

T2 = R3/COS(Alpha)*(P + W/At) = 76.43/COS(63.4349)*(13.4704 + 0.3767) = 2,367 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 2,367 lb./in.

Sts = 18,750 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 2,367/(18,750*0.7) + 0 .0625 = 0.2428 in.

t-Calc = 0.2428 in.

Since t.actual > T620, Back-Calculating Pmax using t.actual as target , and T620 routine... Entry Condition: P_x = 13.4714, t-620 = 0.2428 Exit Condition: P_x = 30.915, t-620 = 0.47

NOTE: Tank Limited to 2.5 PSI (per API-650)

P_max_int = 2.5PSI, or 69.28 IN. H2O (limited by Bottom Plate, without Liquid H ead)

<Minimum Participating Area>

T2s = P*R3 = (13.4704)(76.43) = 1,030 lbf/in

Page 30: Buffer Tank 100Ton Cone

Page 30 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (2,367)(5.0072)+(1,030)(2.64)-(1,183)(76.43) (SIN(63.4349)) = -66,321 lbf

A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = -Q/Scs = -66,321/15,000 = 4.421 in^2

Since Actual Area is Less than A_min,

Back-Calculating PmaxQ using Actual Area (A-62 0) as target... Entry Condition: P_x = 1, A-620 = 4.421 Exit Condition: P_x = 12.57, A-620 = 4.135

* * Warning * *Internal Design Pressure is Greater than Pmax, (Due to Btm. End Stiffener Area)

P_max_int_Q = 0.0996 PSI (limited by Actual Participating Area, without Liquid Head)

P_max_int = MIN(P_max_int, P_max_int_Q) = 0.0996PSI, or 2.76 IN. H2O

< External Pressure - Empty >

W = (Bottom Plates) = 2,852 lbf W/At = (2,852 / 18,354) = 0.1554 PSI P = PV_Entered = 0 PSI or 0 IN. H20

<Meridional and Latitudinal Forces>

T1 = R3/[2*COS(Alpha)]*(P + W/At) = 76.43/[2*COS(63.4349)]*(0 + 0.1554) = 13.28 lbf/in

T2 = R3/COS(Alpha)*(P + W/At) = 76.43/COS(63.4349)*(0 + 0.1554) = 26.56 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 26.6 lb./in.

Sts = 18,750 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 26.6/(18,750*0.7) + 0. 0625 = 0.0645 in.

t-Calc = 0.0645 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0 PSI, t-620 = 0.0645 Exit Condition: V_x = -7.468, t-620 = 0.47

Page 31: Buffer Tank 100Ton Cone

Page 31 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

P_max_ext= -1 PSI (due to Bottom Plate)

<Minimum Participating Area>

T2s = P*R3 = (0)(76.43) = 0 lbf/in

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (26.56)(5.0072)+(0)(2.64)-(13.28)(76.43)(SIN (63.4349)) = -775 lbf

A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = -Q/Scs = -775/15,000 = 0.052 in^2

Back-Calculating PmaxQ using Actual Area (A-62 0) as target... Entry Condition: P_x = -1, A-620 = 0.052 Exit Condition: P_x = -14.699, A-620 = 3.709

P_max_ext_Q= -1 PSI (due to Act. Participating Area)

P_max_ext = MAX(P_max_ext,P_max_ext_Q) = -1PSI, or -27.71 IN. H2O

t-Calc = MAX(t_internal, t_external) = MAX(0.2428,0.0645) = 0.2428 in.

<API-650 Section V.7.2.1> Pr = Max Bottom Load = Max(ABS(T1), ABS(T2)) = 26.56 = 26.56 lbf/ft^2 t_Cone = OD/SIN(Theta)*SQRT[Pr/(0.248*E)] = 12.739/SIN(26.5651)*SQRT[26.56/(0.248*2 7,976,000)] = 0.0557 in.

t_Cone = MAX(t-Calc, t_Cone) = MAX(0.2428, 0.0557) = 0.2428 in.

<Per API-620> Ac = (Required Part. Area of Bottom-to-Shell Ju ncture) = MAX(4.421,0.052) = 4.421 in^2

A = Actual Part. Area of Bottom-to-Shell Junctur e = 4.135 in^2

Bottom End Stiffener:

Using BAR 2x1/4 Area = 1.428 in^2 I = 0.61 in^4 * * Warning * * Btm. End Stiffener Area Req'd = 0.286 in^2 A_stiff_required - A_stiff_actual = -1.142in^2

* * Warning * *Bottom Stiffener Area Req'd = 0.286 in^2.

Page 32: Buffer Tank 100Ton Cone

Page 32 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

NOTE: ADDITIONAL STIFFNESS PROVIDED BY LEGS WELDED AT BOTTOM-TO-SHELL JUNCTURE, OR BRACING AGAINST BOTTOM HEAD HAS NOT BEEN FACTORED IN.

< BOTTOM DESIGN SUMMARY >

Head Area = 20,394 in^2 Head Volume = 541.2223 ft^3 Plate Weight = 2,852 lbf Entered Dead Load = 0 lbf/ft^2 Fixed Load = 0 lbf Liquid Weight = 4,062 LBF

t.required = 0.2428 in. t.actual = 0.47 in.

P_max_internal = 0.0996 PSI P_max_external = -1 PSI

Page 33: Buffer Tank 100Ton Cone

Page 33 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -12,618 lbf Anchorage NOT required for internal pressure.

WIND MOMENT (Per API-650 SECTION 5.11)

vs = Wind Velocity = 20 mph vf = Velocity Factor = (vs/120)^2 = (20/120)^2 = 0.0278

Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0.0278 = 0.8333 lbf/ft^2

API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8* t_h) P_F41 = WCtoPSI(0.962*24,856*2.868*0.0625/12.7 39^2 + 8*0.1735) = 1.0031 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 1.0058 PSI 1.6*P_F41 = 1.605 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F 41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(0.8333,87.1142) = 0.8333 lbf/ft^2

Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*12.739^2/48 = 2.536 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*12.739 = 6.3695 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*6.3695^2 = 127.456 ft^2

M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (0.8333)(127.456)(6.3695) = 677 ft-lb f

Xs (Moment Arm of Wind Force on Shell) = H/2 = (32)/2 = 16 ft

As (Projected Area of Shell) = H*(OD + t_ins / 6) = (32)(12.739 + 4/6) = 428.9814 ft^2

M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0.0278)(18)(428.9814)(16) = 3,43 2 ft-lbf

Page 34: Buffer Tank 100Ton Cone

Page 34 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

Mw (Wind moment) = M_roof + M_shell = 677 + 3,432 = 4,109 ft-lbf

W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2 ) = 11,672 + 287 - 1*(PI/4)(144)(12.739^2) = 4,618 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

Not Applicable, because Tank bottom is not flat and resting on a foundation.

RESISTANCE TO SLIDING (per API-650 5.11.4) Not Applicable, because Tank bottom is not flat and resting on a foundation.

<Anchorage Requirement>Anchorage NOT required since Criteria 1, Criteria 2 , and SlidingARE acceptable.

Page 35: Buffer Tank 100Ton Cone

Page 35 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2

< Site Specific Method >

WEIGHTSWs = Weight of Shell (Incl. Shell Stiffeners & Insu l.) = 19,031 lbfWf = Weight of Floor (Incl. Annular Ring) = 2,852 lbfWr = Weight Fixed Roof, framing and 10% of Design L ive Load & Insul. = 1,947 lbf

SEISMIC VARIABLESSUG = Seismic Use Group (Importance factor depends on SUG) = ISite Class = DSa0 = 5% damped, design spectral response accelerat ion parameter at zero period based on site-specific procedu res = 0.008 Decimal %gSai = 5% damped, site specific MCE response spectra at the calculated impulsive period including site soil effects = 0.008 Decimal %gSac = 5% damped, site specific MCE response spectra at the calculated convective period including site soil effects = 0.008 Decimal %gAv = Vertical Earthquake Acceleration Coefficient = 0.0023 Decimal %gQ = Scaling factor from the MCE to design level spe ctral accelerations = 1I = Importance factor defined by Seismic Use Group = 1Rwi = Force reduction factor for the impulsive mode using allowable stress design methods. = 4Rwc = Force reduction factor for the convective mod e using allowable stress design methods. = 2Ci = Coefficient for impulsive period of tank syste m (Fig E-1) = 13.68tu = Equivalent uniform thickness of tank shell = 0.2755 in.Density = Density of tank product. SG*62.4 = 56.16 lbf/ft^3E = Elastic modulus of tank material (bottom shell course) = 27,976,000 PSI

Page 36: Buffer Tank 100Ton Cone

Page 36 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

E.4.5 STRUCTURAL PERIOD OF VIBRATIONE.4.5.1 Impulsive Natural PeriodTi = (1/27.8)*(Ci*H)/((tu/D)^0.5)*(Density^0.5/E^0. 5) = (1/27.8)*(13.68*32/((0.2755/12.739)^0.5)*(56.1 6^0.5/27,976,000^0.5) = 0.15 sec.E.4.5.2 Convective (Sloshing) PeriodKs = 0.578/SQRT(TANH(3.68*H/D)) = 0.578/SQRT(TANH(3.68/0.398)) = 0.578Tc = Ks*SQRT(D) = 0.578*SQRT(12.739) = 2.06 sec.E.4.6.1 Spectral Acceleration CoefficientsAi = Impulsive spectral acceleration parameter = Q*I/Rwi*Sai = 1*1/4*0.008 = 0.002 decimal %gK = Coefficient to adjust spectral acceleration fro m 5% - 0.5% damping = 1.5Ac = Convective spectral acceleration parameter = Q*K*I/Rwc*Sac = 1*1.5*1/2*0.008 = 0.006 decimal %g

E.6.1.1 EFFECTIVE WEIGHT OF PRODUCTD/H = Ratio of Tank Diameter to Design Liquid Level = 0.398Wp = Total Weight of Tank Contents based on S.G. = 233,626 lbfWi = Effective Impulsive Portion of the Liquid Weig ht = [1 - 0.218*D/H]*Wp = [1 - 0.218*0.398]*233,626 = 213,356 lbfWc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0.23*D/H*TANH(3.67*H/D)*Wp = 0.23*0.398*TANH(3.67/0.398)*233,626 = 21,386 lbfWeff = Effective Weight Contributing to Seismic Res ponse = Wi + Wc = 234,742 lbfWrs = Roof Load Acting on Shell, including 10% of L ive Load = 594.8738 lbf

E.6.1 DESIGN LOADSVi = Design base shear due to impulsive component f rom effective weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0.002*(19,031 + 1,947 + 2,852 + 213,356) = 474 lbfVc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0.006*21,386 = 128 lbfV = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(474^2 + 128^2) = 491 lbf

Page 37: Buffer Tank 100Ton Cone

Page 37 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORC ESXs = Height from Bottom to the Shell's Center of Gr avity = 15.066 ftRCG = Height from Top of Shell to Roof Center of Gr avity = 0.1 ftXr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 32 + 0.1 = 32.1 ft

E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENTXi = Height to Center of Action of the Lateral Seis mic force related to the Impulsive Liquid Force for Ringwall Moment = (0.5 - 0.094*D/H)*H = (0.5 - 0.094*0.398)*32 = 14.8 ftXc = Height to Center of Action of the Lateral Seis mic force related to the Convective Liquid Force for Ringwall Momen t = (1-(COSH(3.67*H/D)-1)/((3.67*H/D)*SINH(3.67*H/ D)))*H = (1-(COSH(9.2211)-1)/((9.2211)*SINH(9.2211)))*3 2 = 28.53 ft

E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOM ENTXis = Height to Center of Action of the Lateral Sei smic force related to the Impulsive Liquid Force for the Slab Momen t = [0.5 + 0.06*D/H]*H = [0.5 + 0.06*0.398]*32 = 16.76 ftXcs = Height to Center of Action of the Lateral Sei smic force related to the Convective Liquid Force for the Slab Mome nt = (1-(COSH(3.67*H/D)-1.937)/((3.67*H/D)*SINH(3. 67*H/D)))*H = (1-(COSH(9.2211)-1.937)/((9.2211)*SINH(9.2211 )))*32 = 28.53 ft

E.6.1.4 Dynamic Liquid Hoop Forces0.75 * D = 9.5543D/H = 0.398SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT- ft ft lbf/in lbf/in l bf lbf/in lbf/inShell #1 4 31 0.41 0 13 63 5411 5385Shell #2 4 27 0.41 0 11 92 4732 4710Shell #3 4 23 0.41 0.001 10 22 4057 4038Shell #4 4 19 0.41 0.004 8 52 3382 3366Shell #5 4 15 0.41 0.011 6 81 3934 3916Shell #6 4 11 0.41 0.036 5 11 2952 2938Shell #7 4 7 0.38 0.114 3 41 1970 1960Shell #8 4 3 0.21 0.361 1 70 983 977

Page 38: Buffer Tank 100Ton Cone

Page 38 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

E.6.1.5 Overturning MomentMrw = Ringwall moment—Portion of the total overturn ing moment that acts at the base of the tank shell perimeterMrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0 .5 = ((0.002*(213,356*14.8+19,031*15.066+1,947*32. 1))^2 + (0.006*21,386*28.53)^2)^0.5 = 7,912 lbf-ftMs = Slab moment (used for slab and pile cap design )Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^ 0.5 = ((0.002*(213,356*16.76+19,031*15.066+1,947*32. 1))^2 + (0.006*21,386*28.53)^2)^0.5 = 8,662 lbf-ft

E.6.2 RESISTANCE TO DESIGN LOADSE.6.2.1.1 Self-AnchoredFy = Minimum yield strength of bottom plate = 24,856 psiGe = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0.4*Av) = 0.9*(1 - 0.4*0.0023) = 0.8991.28*H*D*Ge = 469 lbf/ft

wa = Force resisting uplift in annular region = 7.9*ta*(Fy*H*Ge)^0.5 <= 1.28*H*D*Ge = 7.9*0.4075*(24,856*32*0.899)^0.5 = 2,722 lbf/ft

wa = 469 lbf/ft (reduced to 1.28*H*D*Ge because that is the max allowable per E.6.2.1.1)

wt = Shell and roof weight acting at base of shell = (Wrs + Ws)/(PI*D) = (594.8738 + 19,031)/(PI*12.739) = 490.3925 lbf/ft

wint = Uplift Load due to design pressure acting at base of shell = 0.4*P*144*(PI*D^2/4)/(PI*D) = 0.4*1*144*(PI*12.739^2/4)/(PI*12.739) = 183.4416 lbf/ft

E.6.2.1.1.1 Anchorage RatioJ = Mrw/(D^2*[wt*(1-0.4*Av)+wa-0.4*wint]) = 7,912/(12.739^2*[490.3925*(1-0.4*0.0023)+469-0. 4*183.4416]) = 0.0551The tank is self anchored.

E.6.2.2 Maximum Longitudinal Shell-Membrane Compres sive StressE.6.2.2.1 Shell Compression in Self-Anchored Tanksts1 = Thickness of bottom shell course minus C.A. = 0.2525 in.SigC = Maximum longitudinal shell compression stres s = (Wt*(1+0.4*Av) + 1.273*Mrw/D^2)/(12*ts1) = (490.3925*(1+0.4*0.0023) + 1.273*7,912/12.73 9^2)/(12*0.2525) = 182 psi

Page 39: Buffer Tank 100Ton Cone

Page 39 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

E.6.2.2.3 Allowable Longitudinal Shell-Membrane Com pression StressFty = Minimum specified yield strength of shell cou rse = 29,800 psiG*H*D^2/ts1^2 = 73,306Fc = Allowable longitudinal shell-membrane compress ive stress = 10^6*ts1/(2.5*D) + 600*(G*H)^0.5 = 10^6*0.2525/(2.5*12.739) + 600*(0.9*32)^0.5 = 11,148 psiShell Membrane Compressive Stress OK

E.6.2.4 Hoop StressesShell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK Membrane StressShell #1 5411 29993. 18774. 18774. 0.1353 YesShell #2 4732 29993. 18774. 18774. 0.1261 YesShell #3 4057 29993. 18774. 18774. 0.1171 YesShell #4 3382 29993. 18774. 18774. 0.108 YesShell #5 3934 29993. 18774. 18774. 0.0989 YesShell #6 2952 29993. 18774. 18774. 0.0898 YesShell #7 1970 29993. 18774. 18774. 0.0807 YesShell #8 983 29993. 18774. 18774. 0.0716 Yes

Shell Membrane Hoop Stress OK? True

Tank Adequate with No Anchors? True

E.6.2.1.2 Mechanically-AnchoredNumber of Anchors = 80Max Spacing = 10 ftActual Spacing = 0.5 ftMinimum # Anchors = 4Wab = Design Uplift Load on Anchors per unit circum ferential length = (1.273*Mrw)/D^2 - wt*(1-0.4*Av) + wint = (1.273*7,912)/12.739^2 - 490.3925*(1-0.4*0.00 23) + 183.4416 = -244 lbf/ftPab = Anchor seismic design load = Wab*PI*D/Na = -244*PI*12.739/80 = -122 lbfPa = Anchorage chair design load = 3 * Pab = 3*-122 = -366 lbf

E.6.2.2.2 Shell Compression in Mechanically-Anchore d TanksSigC_anchored = Maximum longitudinal shell compress ion stress = (Wt*(1+0.4*Av) + 1.273*Mrw/D^2)/(12*ts1) = (490.3925*(1+0.4*0.0023) + 1.273*7,912/12.73 9^2)/(12*0.2525) = 182 psiFc = longitudinal shell-membrane compression stress = 11,148 psiShell Membrane Compressive Stress OK

Shell Membrane Hoop Stress OK? True

Tank Adequate with Anchors? True

Page 40: Buffer Tank 100Ton Cone

Page 40 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

E.7 Detailing RequirementsE.7.1 AnchorageSUG = ISds = 0 decimal %gE.7.1.1 Self AnchoredAnnular plates not required per this section.

E.7.6 Sliding Resistancemu = 0.4 Friction coefficientV = 491 lbfVs = Resistance to sliding = mu*(Ws + Wr + Wf + Wp)*(1 - 0.4*Av) = 0.4*(19,031+1,947+2,852+233,626)*(1-0.4*0.0023 ) = 102,888 lbf

E.7.7 Local Shear TransferVmax = 2*V/(PI*D) = 2*491/(PI*12.739) = 24.5373 lbf/ft

Page 41: Buffer Tank 100Ton Cone

Page 41 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

ANCHOR BOLT DESIGN

Bolt Material : A-36 Sy = 36,000 PSI

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 12.739 ft P (design pressure) = 27.71 INCHES H2O Pt (test pressure per F.4.4) = P = 27.71 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0.236 in. Mw (Wind Moment) = 4,109 ft-lbf Mrw (Seismic Ringwall Moment) = 7,912 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell)

For Tank with Structural Supported Roof, W1 = Corroded Shell + Shell Insulation = 11,672 + 3,415 = 15,087 lbf W2 = Corroded Shell + Shell Insulation + Corrode d Roof Plates Supported by Shell + Roof Dead Load Support ed by Shell = 11,672 + 3,415 + 287 * [1 + 18,389*2.6667/(144 * 946)] = 15,477 lbf W3 = New Shell + Shell Insulation = 15,088 + 3,415 = 18,503 lbf

Uplift Cases 1 to 3 are N.A.

Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5.208 = 0.8333/5.208 = 0.16 IN. H2O PWS = vF * 18 = 0.0278 * 18 = 0.5 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 0.5*(12.739+4/6)*32^2/2 = 3,432 ft-lbf U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2 = 0.16*12.739^2*4.08+[4*3,432/12.739]-15,47 7 = -14,294 lbf bt = U / N = -179 lbf

Sd = 0.8 * 36,000 = 28,800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 42: Buffer Tank 100Ton Cone

Page 42 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0.4*Av) U = [4 * 7,912 / 12.739] - 15,477*(1-0.4*0.00 23) = -12,979 lbf bt = U / N = -162 lbf

Sd = 0.8 * 36,000 = 28,800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Uplift Cases 6 and 7 are N.A.

Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 0 in^2

d = Bolt Diameter = 1.5 in. n = Threads per inch = 6 A_s = Actual Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.5 - 1.3 / 6)^2 = 1.2935 in^2

Exclusive of Corrosion, Bolt Diameter Req'd = 0.065 in. (per ANSI B1.1)

Actual Bolt Diameter = 1.500 in.

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>No Anchorage Required.Anchorage Meets Spacing Requirements.

ANCHOR BOLT CHAIRS NOT SPECIFIED.

Page 43: Buffer Tank 100Ton Cone

Page 43 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

TABLE 1: NOZZLES & MANWAYS

--------------------------------------------------- -------------------NAME TYPE SIZE FLANGE SCH. ELEV. WEIGH REPA D REPAD REPAD REPAD FACING ON t Do W CA SHELL or L (in) (ft) lbf (in ) (in) (in) (in)--------------------------------------------------- -------------------A SHNZ 24 RFSO 80 10 3 0.18 7 49.5 60 0--------------------------------------------------- -------------------

Page 44: Buffer Tank 100Ton Cone

Page 44 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

< Nozzle A Reinforcement Requirements > (Per API-650 Section 3.7.2 and other references be low)

NOZZLE Description : 24in. 80 RFSO

MOUNTED ON SHELL COURSE 3 ; Elevation = 10 ft.

COURSE PARAMETERS: t_cr = 0.1171 in. (Course t-Calc) t_c = 0.2525 in. (Course t less C.A.) t_Basis = 0.1171 in.

(SHELL NOZZLE REF. API-650 TABLE 5-6, AND FOOTNOT E A OF TABLE 5-7)

t_rpr (Repad Required Thickness) t_rpr = NOMINAL(A_rpr / D)

A_rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

Required Area = t_Basis * D = 0.1171 * 24.25 = 2.84 in^2

Available Shell Area = (t_c - t_Basis) * D = (0.2525 - 0.1171) * 24.25 = 3.283 in^2

Available Nozzle Neck Area = [4 * (t_n-ca) + t_c ] * (t_n-ca) * « MIN(Sd_n/Sd_s, 1) = [4 * (0) + 0.2525] * (0) * 20,000/22,500 = 0 in^2

A_rpr = 2.84 - 3.283 - 0 = -0.443 in^2

Since A_rpr <= 0, t_rpr = 0

No Reinforcement Pad required.

Page 45: Buffer Tank 100Ton Cone

Page 45 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 30,288 gal Design Capacity (to Max Liquid Level) : 30,259 gal Minimum Capacity (to Min Liquid Level) : 946 gal NetWorking Capacity (Design - Min.) : 29,313 gal

New Condition Corroded ------------------------------------------------- ---------- Shell 15,088 lbf 11,672 lbf Roof Plates 1,287 lbf 946 lbf Rafters 0 lbf 0 lbf Girders 0 lbf 0 lbf Columns 0 lbf 0 lbf Bottom 2,852 lbf 2,472 lbf Stiffeners 528 lbf 528 lbf Nozzle Wgt 3 lbf 3 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 3,756 lbf 3,756 lbf ------------------------------------------------- ---------- Total 23,514 lbf 19,377 lbf

Weight of Tank, Empty : 23,514 lbfWeight of Tank, Full of Product (SG=0.9): 2 55,517 lbfWeight of Tank, Full of Water : 280,793 lbfNet Working Weight, Full of Product : 248,194 lbfNet Working Weight, Full of Water : 272,657 lbf

Foundation Area Req'd : 127 ft^2

Foundation Loading, Empty : 185.15 lbf/ft^2Foundation Loading, Full of Product (SG=0.9) : 2,012 lbf/ft^2Foundation Loading, Full of Water : 2,211 lbf/ft^2

SURFACE AREASRoof 128 ft^2Shell 1,281 ft^2Bottom 143 ft^2

Wind Moment 4,109 ft-lbfSeismic Moment 8,662 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

Page 46: Buffer Tank 100Ton Cone

Page 46 of 46Kan de Ali - Tangki Buffer 100MT

TANK REPORT: Printed - 7/17/2012 5:04:45 PM

MAWP & MAWV SUMMARY FOR Tangki Buffer 100MT

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 A pp. F.1.3 & F.7)

MAWP = Maximum Calculated Internal Pressure (d ue to shell) = 2.5 PSI or 69.28 IN. H2O

MAWP = Maximum Calculated Internal Pressure (d ue to roof) = 1.0031 PSI or 27.8 IN. H2O

MAWP = Maximum Calculated Internal Pressure (d ue to bottom) = 0.0996 PSI or 2.76 IN. H2O

TANK MAWP = 0.0996 PSI or 2.76 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V .1)

MAWV = Maximum Calculated External Pressure (d ue to shell) = -0.9726 PSI or -26.95 IN. H2O

MAWV = Maximum Calculated External Pressure (d ue to roof) = 0 PSI or 0 IN. H2O

MAWV = N.A. (not calculated due to columns)

TANK MAWV = 0 PSI or 0 IN. H2O