21
Thermodynamic optimisation of an openair solar thermal Brayton cycle with fixed temperature constraints by E. Jansen 27301576 25 July 2014

by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Thermodynamic optimisation of an open‐air solar thermal Brayton cycle with fixed 

temperature constraintsby

E. Jansen27301576

25 July 2014

Page 2: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Process followed

1. Introduction2. Literature review3. Problem definition4. Numerical model5. Results6. Conclusions

Page 3: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Introduction

• Currently, the majority of the world’s energy supplyis generated from fossil fuels. Unfortunately fossilfuel supply is decreasing, while demand increasesdaily.

• Renewable energy systems are viable solutions whenconsidering future electricity generation.

• Of these systems, solar systems are well worthinvestigating as solar radiation is readily available ona frequent basis, all across the globe.

Page 4: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Literature review

1. Thermal power cycles‐ Brayton cycle with regeneration

2. Types of solar collectors‐ Parabolic dish collector with modifiedcavity receiver at focal point

Page 5: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Literature review

3. Thermodynamics‐ Second law of thermodynamics‐ Entropy and entropy generation

minimisation‐ Exergy and exergy destruction

4. Irreversibilities and Losses‐Impossible for a system to go back to

its original form.

Page 6: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Heat in

Work in

Work in

Problem definition: Physical model

The double open‐air solar thermal Brayton cycle

Page 7: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Comparison of cycles

The single vs. the double open‐air solar thermal Brayton cycle

DoubleSingle

Page 8: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Problem definition

The objective functionGouy‐Stodola theorem: The entropy generation in a system will be proportional to thelost available work for that same system. For this reason, the sum of all the generatedentropy rates in the system can be used to illustrate the maximum net power output.

where

1 ∗∗ ln

, , , , ,

Transfer by shaft and boundary workTransfer by 

heatExergy destruction

Page 9: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Problem definition

Component parameters:The regenerators The receiver

(a/b)reg Dhreg Lreg (a/b)rec Dhrec Lrec

Page 10: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Numerical model

1. Parameters influencing procedure Regenerator and receiver dimensions Choice of temperature for compressor inlet and receiver outlet in primary cycle

Turbine choice

Page 11: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Numerical model

2.  Program structure

Determine operational mass flow rate

Determine regenerator efficiencies using ε‐NTU method

Determine all temperatures and pressures in the cycle

Determine Entropy generation rates for all components

Determine Objective Function

Set system parameters

Assume regenerator inlet and outlet temperatures

Page 12: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Results

1. Objective function (a.k.a. second law net power output)2. Net absorbed heat3. Efficiency4. Irreversibilities

Page 13: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Results: Objective function

0

10

20

30

40

50

60

70

80

90

100

0.38 0.41 0.44 0.47 0.5

Second

 law net pow

er outpu

t (kW

)

Mass flow rate (kg/s)

One regenerator

Two regenerators

(a.k.a. second law net power output)

≈ 26 %≈ 19%

Page 14: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Results: Net absorbed heat

0

50

100

150

200

250

300

350

400

450

500

0.38 0.41 0.44 0.47 0.5

Net absorbe

d he

at (kW)

Mass flow rate (kg/s)

One regenerator

Two regenerators

≈ 31 % ≈ 33 %

Page 15: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Results: Efficiency

0

5

10

15

20

25

30

35

40

45

0.38 0.4 0.42 0.44 0.46 0.48 0.5

First law

 efficien

cy (%

)

Mass flow rate (kg/s)

One regenerator

Two regenerators

≈ 50 %

≈ 69 %

Page 16: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Results: Irreversibilities (comparison)

2

2.5

3

3.5

4

0.38 0.4 0.42 0.44 0.46 0.48 0.5

C w= I ex

ternal/Iinternal

Mass flow rate (kg/s)

One regenerator

Two regenerators

Page 17: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Conclusions

• Brayton cycle with regeneration deemed best choice for theproblem at hand

• Parabolic dish collector with modified cavity receiversuggested for Brayton cycles with regeneration in solarthermal power systems

• For the double cycle, it was found that more than 15kW ofpower can be generated at an efficiency of 29% when themass flow rate is around 0.4 kg/s.

• The single cycle produces roughly 68kW at an efficiency of15% at the same mass flow rate as the double regeneratorcycle

Page 18: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Conclusions

Heat in

Work in

Work in

Max = 1 200 K

Page 19: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Conclusions• Regenerator 2 increases efficiency in double cycle by

decreasing the net absorbed heat needed for powergeneration.

• Single cycle has higher net absorbed heat, thus highersecond law power output, thus higher generation ofentropy and more irreversibilities. This leads to a lessefficient cycle.

• The component parameters are also larger in the singlecycle than in the double cycle.

• Due to the scalable nature of the open‐air solar thermal Brayton cycle, the double cycle seems the best choice as the cycle can be scaled up to generate a similar amount of power as the single cycle already generates, however it will do so at a higher efficiency than the single cycle.

Page 20: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Thank you

Any questions?

Page 21: by E. Jansen 27301576 - University of Pretoria · 7/25/2014  · Conclusions • Brayton cycle with regeneration deemed best choice for the problemathand • Parabolic dish collector

Possible questions

1. What is the relation between convection,conduction and radiation heat loss in themodified cavity receiver.

2. What is the influence of wind on the amount ofheat that can be generated by such a cycle?

3. What other ways are there to improveabsorption of the receiver?

4. How will energy supply be enforced in overcastand bad weather days?