50
A tutorial on the Pac-Bayesian Theory NIPS workshop -“(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights” by Fran¸coisLaviolette Laboratoire du GRAAL, Universit´ e Laval December 9th 2017 (Laboratoire du GRAAL, Universit´ e Laval) 1 / 41

by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

A tutorial on the Pac-Bayesian Theory

NIPS workshop - “(Almost) 50 shades of Bayesian Learning:PAC-Bayesian trends and insights”

by Francois Laviolette

Laboratoire du GRAAL, Universite Laval

December 9th 2017

(Laboratoire du GRAAL, Universite Laval) 1 / 41

Page 2: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 2 / 41

Page 3: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Definitions

Learning example

An example (x, y) ∈ X × Y is a description-label pair.

Data generating distribution

Each example is an observation from distribution D on X × Y.

Learning sample

S = { (x1, y1), (x2, y2), . . . , (xm, ym) } ∼ Dm

Predictors (or hypothesis)

h : X → Y, h ∈ HLearning algorithm

A(S) −→ h

Loss function

` : H×X×Y → R

Empirical loss

L `S(h) =1

m

m∑i=1

`(h, xi, yi)

Generalization loss

L `D(h) = E(x,y)∼D

`(h, x, y)

(Laboratoire du GRAAL, Universite Laval) 3 / 41

Page 4: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Majority Vote Classifiers

Consider a binary classification problem, where Y = {−1,+1}and the set H contains binary voters h : X → {−1,+1}

Weighted majority vote

To predict the label of x ∈ X , the classifier asks for the prevailing opinion

BQ(x) = sgn

(Eh∼Q

h(x)

)

Many learning algorithms output majority vote classifiers

AdaBoost, Random Forests, Bagging, ...

(Laboratoire du GRAAL, Universite Laval) 4 / 41

Page 5: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

A Surrogate Loss

Majority vote risk

RD(BQ) = Pr(x,y)∼D

(BQ(x) 6= y

)= E

(x,y)∼DI[

Eh∼Q

y·h(x) ≤ 0]

where I[a] = 1 if predicate a is true; I[a] = 0 otherwise.

Gibbs Risk / Linear Loss

The stochastic Gibbs classifier GQ(x) draws

h′ ∈ H according to Q and output h′(x).

RD(GQ) = E(x,y)∼D

Eh∼Q

I[h(x) 6= y

]= E

h∼QL `01D (h) ,

where `01(h, x, y) = I[h(x) 6= y

].

Factor twoIt is well-known that

RD(BQ) ≤≤≤ 2×RD(GQ)

-1 -0.5 0.5 1y ·h(x)

0.2

0.4

0.6

0.8

1

Eh∼Q

y·h(x)

(Laboratoire du GRAAL, Universite Laval) 5 / 41

Page 6: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

From the Factor 2 to the C-bound

From Markov’s inequality ( Pr (X ≥ a) ≤≤≤ EXa ), we obtain:

Factor 2 bound

RD(BQ) = Pr(x,y)∼D

(1− y·h(x) ≥ 1

)≤≤≤ E

(x,y)∼D

(1− y·h(x)

)= 2RD(GQ) .

-1 -0.5 0.5 1y ·h(x)

0.2

0.4

0.6

0.8

1

From Chebyshev’s inequality ( Pr (X −EX ≥ a) ≤≤≤ VarXa2+VarX ), we obtain:

The C-bound (Lacasse et al., 2006)

RD(BQ) ≤≤≤ CDQdef= 1−

(1− 2 ·RD(GQ)

)2

1− 2 · dDQ0 0.1 0.2 0.3 0.4 0.5

RD′(GQ )

0

0.1

0.2

0.3

0.4

0.5

dD

′Q

0.00

0.16

0.32

0.48

0.64

0.80

0.96

where dDQ is the expected disagreement:

dDQdef= E

(x,·)∼DE

hi∼QE

hj∼QI[hi(x) 6= hj(x)

]=

1

2

(1− E

(x,·)∼D

[Eh∼Q

h(x)

]2).

(Laboratoire du GRAAL, Universite Laval) 6 / 41

Page 7: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 7 / 41

Page 8: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

EQ[Φ] ≤ KL(Q‖P ) + lnEP [eΦ]

where KL(Q‖P ) = Eh∼Q

ln Q(h)P (h) is the Kullback-Leibler divergence.

(Laboratoire du GRAAL, Universite Laval) 8 / 41

Page 9: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

(Laboratoire du GRAAL, Universite Laval) 9 / 41

Page 10: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

McAllester Bound

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

PrS∼Dm

(∀Q onH : 2(RS(GQ)−R(GQ))2 ≤ 1

m

[KL(Q‖P ) + ln

2√m

δ

])≥ 1−δ ,

or

PrS∼Dm

(∀Q onH : R(GQ) ≤ RS(GQ) +

√√√√[KL(Q‖P ) + ln 2√mδ

]2m

)≥ 1− δ ,

(Laboratoire du GRAAL, Universite Laval) 10 / 41

Page 11: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

Langford and Seeger Bound

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

PrS∼Dm

(∀Q onH :

kl(RS(GQ)‖R(GQ)) ≤ 1m

[KL(Q‖P ) + ln 2

√mδ

] ) ≥ 1− δ ,

where kl(q‖p) def= q ln q

p + (1− q) ln 1−q1−p .

(Laboratoire du GRAAL, Universite Laval) 11 / 41

Page 12: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Graphical illustration of the Langford/Seeger bound

0. 1 0. 2 0. 3 0. 4 0. 5

0. 1

0. 2

0. 3

0. 4

kl(0.1||R(Q))

R(Q)Borne Inf Borne Sup

(Laboratoire du GRAAL, Universite Laval) 12 / 41

Page 13: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

A General PAC-Bayesian Theorem

∆-function: “distance” between RS(GQ) et RD(GQ)

Convex function ∆ : [0, 1]× [0, 1]→ R.

General theorem (Begin et al. (2014b, 2016); Germain (2015))

For any distribution D on X × Y, for any set H of voters, for any distribution

P on H, for any δ∈(0, 1], and for any ∆-function, we have, with probability at

least 1−δ over the choice of S ∼ Dm,

∀Q on H : ∆(RS(GQ), RD(GQ)

)≤ 1

m

[KL(Q‖P ) + ln

I∆(m)

δ

],

where

I∆(m) = supr∈[0,1]

[m∑k=0

(mk

)rk(1−r)m−k︸ ︷︷ ︸Bin(k;m,r

) em∆( km, r)

].

(Laboratoire du GRAAL, Universite Laval) 13 / 41

Page 14: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Proof of the general theorem

General theorem

PrS∼Dm

(∀Q on H : ∆

(RS(GQ), RD(GQ)

)≤≤≤ 1

m

[KL(Q‖P ) + ln

I∆(m)

δ

])≥ 1−δ .

Proof ideas.

Change of Measure InequalityFor any P and Q on H, and for any measurable function φ : H → R, we have

Eh∼Q

φ(h) ≤ KL(Q‖P ) + ln(

Eh∼P

eφ(h)).

Markov’s inequality

Pr (X ≥ a) ≤≤≤ EXa

⇐⇒ Pr(X ≤ EX

δ

)≥≥≥ 1−δ .

Probability of observing k misclassifications among m examplesGiven a voter h, consider a binomial variable of m trials with success L `D(h):

PrS∼Dm

(L `S(h)= k

m

)=

(m

k

)(L `D(h)

)k(1− L `D(h)

)m−k= Bin

(k;m,L `D(h)

)(Laboratoire du GRAAL, Universite Laval) 14 / 41

Page 15: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

PrS∼Dm

(∀Q on H : ∆

(RS(GQ), RD(GQ)

)≤≤≤ 1

m

[KL(Q‖P ) + ln

I∆(m)

δ

])≥

1−δ . Proof.

m ·∆(

Eh∼QL `S(h), E

h∼QL `D(h)

)Jensen’s Inequality ≤ E

h∼Qm ·∆

(L `S(h),L `D(h)

)Change of measure ≤ KL(Q‖P ) + ln E

h∼Pem∆

(L `S(h),L `D(h)

)Markov’s Inequality ≤≤≤ 1−δ KL(Q‖P ) + ln

1

δE

S′∼DmEh∼P

em·∆(L `S′ (h),L `D(h))

Expectation swap = KL(Q‖P ) + ln1

δEh∼P

ES′∼Dm

em·∆(L `S′ (h),L `D(h))

Binomial law = KL(Q‖P ) + ln1

δEh∼P

m∑k=0

Bin(k;m,L `D(h)

)em·∆( k

m,L `D(h))

Supremum over risk ≤ KL(Q‖P ) + ln1

δsupr∈[0,1]

[m∑k=0

Bin(k;m, r

)em∆( k

m, r)

]

= KL(Q‖P ) + ln1

δI∆(m) .

(Laboratoire du GRAAL, Universite Laval) 15 / 41

Page 16: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

General theorem

PrS∼Dm

(∀Q on H : ∆

(RS(GQ), RD(GQ)

)≤≤≤ 1

m

[KL(Q‖P ) + ln

I∆(m)

δ

])≥ 1−δ .

Corollary

[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl(RS(GQ), RD(GQ)

)≤≤≤ 1

m

[KL(Q‖P ) + ln 2

√mδ

], (Langford and Seeger

(2001))

(b) RD(GQ) ≤≤≤ RS(GQ) +

√1

2m

[KL(Q‖P ) + ln 2

√mδ

], (McAllester (1999b,

2003b))

(c) RD(GQ) ≤≤≤ 11−e−c

(c · RS(GQ) + 1

m

[KL(Q‖P ) + ln 1

δ

]), (Catoni (2007b))

(d) RD(GQ) ≤≤≤ RS(GQ) + 1λ

[KL(Q‖P ) + ln 1

δ+ f(λ,m)

]. (Alquier et al. (2015))

kl(q, p)def= q ln q

p+ (1− q) ln 1−q

1−p ≥ 2(q − p)2 ,

∆c(q, p)def= − ln[1− (1− e−c) · p]− c · q ,

∆λ(q, p)def= λ

m(p− q) .

(Laboratoire du GRAAL, Universite Laval) 16 / 41

Page 17: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing ∆(q, p) = kl(q, p).

• Indeed, in that case we have

ES∼Dm

Eh∼P

em∆(RS(h),R(h)) = Eh∼P

ES∼Dm

(RS(h)

R(h)

)mRS(h)( 1−RS(h)

1−R(h)

)m(1−RS(h))

= Eh∼P

∑mk=0 Pr

S∼Dm(RS(h)= k

m )(

kmR(h)

)k(1− k

m1−R(h)

)m−k= ∑m

k=0 (mk )(k/m)k(1−k/m)m−k , (1)

≤ 2√m.

• Note that, in Line (1) of the proof, PrS∼Dm

(RS(h) = k

m

)is replaced by the

probability mass function of the binomial.

• This is only true if the examples of S are drawn iid. (i.e., S ∼ Dm)

• So this result is no longuer valid in the non iid case, even if General Theorem is.

(Laboratoire du GRAAL, Universite Laval) 17 / 41

Page 18: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 18 / 41

Page 19: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History• Pre-pre-history: Variational Definition of KL-divergence

• Pre-history: PAC analysis of Bayesian estimators

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

• Applications in supervised learning

• SVMs & linear classifiers Langford and Shawe-Taylor (2002);McAllester (2003a); Germain et al. (2009a); . . .

• Theory Catoni (2007a); Audibert and Bousquet (2007a); Meir andZhang (2003); McAllester (2013); Germain et al. (2015, 2016a);London (2017); . . .

• supervised learning algorithms that are bound minimizersAmbroladze et al. (2007); Germain et al. (2009b, 2011)

• Regression Audibert (2004)• Transductive learning Derbeko et al. (2004); Audibert and Bousquet

(2007b); Begin et al. (2014a)• Domain adaptation Germain et al. (2013, 2016b)• Non-i.i.d. data Ralaivola et al. (2010); Lever et al. (2010); Seldin

et al. (2011); Alquier and Guedj (2016)

This allows applications to ranking, U-statistic of higher order,bandit,...(Laboratoire du GRAAL, Universite Laval) 19 / 41

Page 20: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History• Pre-pre-history: Variational Definition of KL-divergence

• Pre-history: PAC analysis of Bayesian estimators

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

• Applications in supervised learning• SVMs & linear classifiers Langford and Shawe-Taylor (2002);

McAllester (2003a); Germain et al. (2009a); . . .• Theory Catoni (2007a); Audibert and Bousquet (2007a); Meir and

Zhang (2003); McAllester (2013); Germain et al. (2015, 2016a);London (2017); . . .

• supervised learning algorithms that are bound minimizers Ambroladzeet al. (2007); Germain et al. (2009b, 2011)

• Regression Audibert (2004)• Transductive learning Derbeko et al. (2004); Audibert and Bousquet

(2007b); Begin et al. (2014a)• Domain adaptation Germain et al. (2013, 2016b)• Non-i.i.d. data Ralaivola et al. (2010); Lever et al. (2010); Seldin et al.

(2011); Alquier and Guedj (2016)• sample compression setting Laviolette and Marchand (2005); Germain

et al. (2011)

(Laboratoire du GRAAL, Universite Laval) 20 / 41

Page 21: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

• Applications in supervised learning

• Density estimation Seldin and Tishby (2010); Higgs and Shawe-Taylor(2010)

(Laboratoire du GRAAL, Universite Laval) 21 / 41

Page 22: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

• Applications in supervised learning

• Density estimation Seldin and Tishby (2010); Higgs and Shawe-Taylor(2010)

• Martingales & reinforcement learning Fard and Pineau (2010); Seldinet al. (2011, 2012)

(Laboratoire du GRAAL, Universite Laval) 22 / 41

Page 23: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

History

• Pre-pre-history: Variational Definition of KL-divergence Donsker andVaradhan (1975)

• Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor andWilliamson (1997); Shawe-Taylor et al. (1998)

• Birth: First PAC-Bayesian theorems McAllester (1998, 1999a)

• Introduction of kl form Seeger (2002); Langford (2005)

• Applications in supervised learning

• Density estimation Seldin and Tishby (2010); Higgs and Shawe-Taylor(2010)

• Martingales & reinforcement learning Fard and Pineau (2010); Seldinet al. (2011, 2012)

• Sincere apologizes to everybody we could not fit on the slide...

(Laboratoire du GRAAL, Universite Laval) 23 / 41

Page 24: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 24 / 41

Page 25: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Algorithms derived from PAC-Bayesian Bounds

When given a PAC-Bayes bound, one can easily derive a learning algorithmthat will simply consist of finding the posterior Q that minimizes thebound.

Catoni’s bound

PrS∼Dm

∀Q onH :

R(GQ) ≤ 11−e−C

{1−exp

[−(C ·RS(GQ)

+ 1m

[KL(Q‖P ) + ln 1

δ

])]} ≥ 1 − δ.

Interestingly, minimizing the Catoni’s bound (when prior and posterior arerestricted to Gaussian) give rise to the SVM !In fact to an SVM where the Hinge loss is replaced by the sigmoid loss.

(Laboratoire du GRAAL, Universite Laval) 25 / 41

Page 26: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Algorithms derived from PAC-Bayesian Bounds(cont)

Not only SVM has been rediscover as a PAC-Bayes bound minimizer, wealso have:

• KL-Regularized Adaboost Germain et al. (2009b)

• Kernel Ridge Regression Germain et al. (2011)

• the proposed structured output algorithm of Cortes et al.(2007) Giguere et al. (2013)

New algorithms have been found: Ambroladze et al. (2007); Shawe-Taylor

and Hardoon (2009); Germain et al. (2011); Laviolette et al. (2011); Germain

et al. (2016b), . . .

(Laboratoire du GRAAL, Universite Laval) 26 / 41

Page 27: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 27 / 41

Page 28: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

What is a localized PAC-Bayesian bound ?

Basically, a PAC-Bayesian bound depends on two quantities:

L(Q) ≤ L(Q) +

√KL(Q‖P ) + ln ξ(m)

δ

2m.

• Hence, the bound expresses a tradeoff to be followed for findingsuitable choices of the posterior distribution Q.

• A tradeoff between “empirical accuracy” and “complexity”; thecomplexity being quantify by how far a posterior distributions is fromour prior knowledge.

• Thus, some “luckiness argument” is involved here.This can be good, but one might want to have some guarantees that, evenin unlucky situations, the bound does not degrade over some level.

(In general the KL-divergence can be very large ... even infinite)

(Laboratoire du GRAAL, Universite Laval) 28 / 41

Page 29: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds :a way to reduce the KL-complexity term

• If something can be done to ensure that the bound remains undercontrol it has to be based on the choice of the prior.

L(Q) . L(Q) +

√KL(Q‖P ) + ln ξ(m)

δ

2m.

• However, recall that the prior is not allowed to depend in any way onthe training set.

(Laboratoire du GRAAL, Universite Laval) 29 / 41

Page 30: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds :(1) Let us simply learn the prior !

• one may leave a part of the training set in order to learn the prior, andonly use the remaining part of it to calculate the PAC-Bayesian bound.

• A. Ambroladze, E. Parrado-Hernandez, and J. Shawe-Taylor. TighterPAC-Bayes bounds. In Advances in Neural Information ProcessingSystems 18, (2006) Pages 9-16.

• P. Germain, A. Lacasse, F. Laviolette and M. Marchand. PAC-Bayesianlearning of linear classifiers, in Proceedings of the 26nd InternationalConference on Machine Learning (ICML’09, Montreal, Canada.). ACMPress (2009), 382, Pages 453-460.

(Laboratoire du GRAAL, Universite Laval) 30 / 41

Page 31: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds: (2) distribution-dependent!

• Even if the prior can not be data dependent, it can depend on thedistribution D that generates the data.• How can this be possible ? D is supposed to be unknown !• Thus, P will have to remain unknown !• But may be we can manage to nevertheless estimate KL(Q‖P ).

This is all we need here.

This has been proposed in• A. Ambroladze, E. Parrado-Hernandez, and J. Shawe-Taylor. Tighter

PAC-Bayes bounds. In Advances in Neural Information Processing Systems

18, (2006) Pages 9-16.

The chosen prior was: wp = E(x,y)∼D(yφφφ(x)) .

• O. Catoni. A PAC-Bayesian approach to adaptive classification. Preprint

n.840, Laboratoire de Probabilites et Modeles Aleatoires, Universites Paris 6

and Paris 7, 2003.

• G. Lever, F. Laviolette, J. Shawe-Taylor. Distribution-Dependent PAC-Bayes

Priors. Proceedings of the 21st International Conference on Algorithmic

Learning Theory (ALT 2010), 119-133.

(Laboratoire du GRAAL, Universite Laval) 31 / 41

Page 32: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds :(2) Distribution-Dependent PAC-Bayes Priors (cont)

• in particular, Lever et al propose a distribution dependent prior of theform:

P (h) =1

Zexp(−γR(h)) ,

for some a priori chosen hyper-parameter gamma.

• Such distribution dependent priors are designed to put more weighton accurate hypothesis and exponentially decrease the weight as theaccuracies are decreasing. (A “wise” choice).

• Then, we can bound the KL-term under the restriction that theposterior is of the form

Q(h) =1

Z ′exp(−γRS(h)) .

Again a suitable form for a posterior (and which this time is a knownquantity).

(Laboratoire du GRAAL, Universite Laval) 32 / 41

Page 33: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds :(2) Distribution-Dependent PAC-Bayes Priors (cont)

The KL-term is bounded as follows:

KL(Q‖P ) ≤ γ√m

√ln

2ξ(m)

δ+

γ2

4m.

The trick: we apply a second PAC-bayesian bound and applied it to theKL-term.

This gives rise to a very tight localized PAC-Bayesian bound:

Lever et al. (2010)

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

PrS∼Dm

(∀Q onH : kl(RS(GQ), R(GQ)) ≤

1

m

[γ√m

√ln

2ξ(m)

δ/2+

γ2

4m+ ln

ξ(m)

δ/2

])≥ 1− δ .

(Laboratoire du GRAAL, Universite Laval) 33 / 41

Page 34: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Localized PAC-Bayesian bounds :(3) Let us do magic and let us simply make the KL-term disappear

Consider any auto-complemented set H of hypothesis. We say that Q isaligned on P iff for all h ∈ H, we have

Q(h) +Q(−h) = P (h) + P (−h) .

Note: we can construct any (almost any if H is uncountable)majority vote with aligned posteriors.In other words, for any posterior Q, there is a posterior Q′, aligned on Psuch that BQ(x) = BQ′(x) .

So, same classification capacity if one restrict itself to aligned posterior.But then, the KL-term vanishes from the PAC-Bayesian bound !!!

MAGIC !!!

(Laboratoire du GRAAL, Universite Laval) 34 / 41

Page 35: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Theorem

If ∆(p, q) = kl(p, q) or 2(q − p)2, then

PrS∼Dm

(∀Q on H : ∆

(RS(GQ), RD(GQ)

)≤ 1

m

[lnI∆(m)

δ

])≥ 1−δ .

Proof.

m ·∆(

Eh∼Q

L `S(h), Eh∼Q

L `D(h))

Jensen’s inequality ≤ Eh∼Q

m ·∆(L `S(h),L `D(h)

)Jensen’s inequality = E

h∼Qln

(em∆

(L `S(h),L `D(h)

))≤ ln E

h∼Qem·∆

(L `S(h),L `D(h)

)Change of measure ≤ ln E

h∼Pem·∆

(L `S(h),L `D(h)

)Markov’s Inequality ≤≤≤1−δ ln

1

δE

S′∼DmE

h∼Pem·∆(L `

S′ (h),L `D(h))

Expectation swap = ln1

δE

h∼PE

S′∼Dmem·∆(L `

S′ (h),L `D(h))

Binomial law = ln1

δE

h∼P

m∑k=0

Bin(k;m,L `D(h)

)em·∆( k

m,L `D(h))

Supremum over risk ≤ ln1

δsup

r∈[0,1]

m∑k=0

Bin(k;m, r

)em∆( k

m, r)

= ln1

δI∆(m)

(Laboratoire du GRAAL, Universite Laval) 35 / 41

Page 36: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Absence of KL for Aligned Posteriors

Let H = H1 ∪H2 with H1 ∩H2 = ∅ such that for each h ∈ H1 : −h ∈ H2.

Eh∼P

em·2(RS(h)−R(h))2

=

∫h∈H1

dP (h)em·2(RS(h)−R(h))2

+

∫h∈H2

dP (h)em·2(RS(h)−R(h))2

=

∫h∈H1

dP (h)em·2(RS(h)−R(h))2

+

∫h∈H1

dP (−h)em·2((1−RS(h))−(1−R(h)))2

=

∫h∈H1

dP (h)em·2(RS(h)−R(h))2

+

∫h∈H1

dP (−h)em·2(RS(h)−R(h))2

=

∫h∈H1

(dP (h) + dP (−h)) em·2(RS(h)−R(h))2

=

∫h∈H1

(dQ(h) + dQ(−h)) em·2(RS(h)−R(h))2

...

= Eh∼Q

em·2(RS(h)−R(h))2

.

(Laboratoire du GRAAL, Universite Laval) 36 / 41

Page 37: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Outline of the Tutorial

• Definitions and notations

• some PAC-bayesian bounds

• An historical overview

• Algorithms derived from PAC-Bayesian bound

• Localized PAC-Bayesian bounds

• The transductive setting

(Laboratoire du GRAAL, Universite Laval) 37 / 41

Page 38: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Transductive Learning

Assumption

Examples are drawn without replacement from a finite set Z of size N .

S = { (x1, y1), (x2, y2), . . . , (xm, ym) } ⊂ ZU = { (xm+1, ·), (xm+2, ·), . . . , (xN , ·) } = Z \ S

(Laboratoire du GRAAL, Universite Laval) 38 / 41

Page 39: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Transductive learning

Assumption

Examples are drawn without replacement from a finite set Z of size N .

S = { (x1, y1), (x2, y2), . . . , (xm, ym) } ⊂ ZU = { (xm+1, ·), (xm+2, ·), . . . , (xN , ·) } = Z \ S

Inductive learning: m draws with replacement according to D ⇒ Binomial law.

Transductive learning: m draws without replacement in Z⇒Hypergeometric law.

Theorem (Begin et al. (2014b))

For any set Z of N examples, [...] with probability at least 1−δ over the choice of

m examples among Z,

∀Q on H : ∆(RS(GQ), RZ(GQ)

)≤ 1

m

[KL(Q‖P ) + ln

T∆(m,N)

δ

],

where

T∆(m,N)def= max

K=0...N

min[n,K]∑k=max[0,K+n−N ]

(Kk)(N−Kn−k )(Nm)

em∆( km ,KN )

.(Laboratoire du GRAAL, Universite Laval) 39 / 41

Page 40: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Theorem

PrS∼[Z]m

(∀Q on H : ∆

(RS(GQ), RZ(GQ)

)≤ 1

m

[KL(Q‖P ) + ln

T∆(m,N)

δ

])≥ 1−δ .

Proof.m ·∆

(Eh∼QL `S(h), E

h∼QL `Z(h)

)Jensen’s inequality ≤ E

h∼Qm ·∆

(L `S(h), L `Z(h)

)Change of measure ≤ KL(Q‖P ) + ln E

h∼Pem∆

(L `S(h),L `Z(h)

)Markov’s inequality ≤1−δ KL(Q‖P ) + ln

1

δE

S′∼[Z]mEh∼P

em·∆(L `S′ (h),L `Z(h))

Expectations swap = KL(Q‖P ) + ln1

δEh∼P

ES′∼[Z]m

em·∆(L `S′ (h),L `Z(h))

Hypergeometric law === KL(Q‖P ) + ln1

δEh∼P

∑k

(N·L`Z (h)

k )(N−N·L`Z (h)

n−k )

(Nm)em·∆( k

m,L `Z(h))

Supremum over risk ≤ KL(Q‖P ) + ln1

δmax

K=0...N

[∑k

(Kk )(N−Kn−k )(Nm)

em∆( km,KN

)

]= KL(Q‖P ) + ln

1

δT∆(m,N) .

(Laboratoire du GRAAL, Universite Laval) 40 / 41

Page 41: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Aknowledgements

A big thank’s to Mario Marchand that initiated me to PAC-Bayes theoryand that have been my main PAC-Bayes collaborator since then.

Thank’s also to all Graal’s members(actual, past and future ones).Namely for some of the present slides.

Thank’s also to John Shawe-Taylor, Liva Ralaivola, David McAllester, GuyLever, Yevgeny Seldin, Iliya Tolstikhin and John Langford for more thaninsightful discussions about the subject that often lead to nicecollaborations.

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 42: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Pierre Alquier and Benjamin Guedj. Simpler pac-bayesian bounds forhostile data. http://arXiv:1610.07193v1, 2016.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties ofvariational approximations of Gibbs posteriors. ArXiv e-prints, 2015.URL http://arxiv.org/abs/1506.04091.

Amiran Ambroladze, Emilio Parrado-Hernandez, and John Shawe-Taylor.Tighter PAC-Bayes bounds. In Advances in Neural InformationProcessing Systems (NIPS), 2007.

J.-Y. Audibert. Theorie Statistique de l?Apprentissage : une approchePAC-Bayesienne. these de doctorat de l?Universite Paris VI, 2004.

Jean-Yves Audibert and Olivier Bousquet. Combining PAC-Bayesian andgeneric chaining bounds. Journal of Machine Learning Research, 2007a.

Jean-Yves Audibert and Olivier Bousquet. Combining pac-bayesian andgeneric chaining bounds. Journal of Machine Learning Research, 8:863–889, 2007b.

Luc Begin, Pascal Germain, Francois Laviolette, and Jean-Francis Roy.PAC-Bayesian Theory for Transductive Learning. In Samuel Kaski andJukka Corander, editors, Proceedings of the Seventeenth International

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 43: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Conference on Artificial Intelligence and Statistics, volume 33 ofProceedings of Machine Learning Research, pages 105–113, Reykjavik,Iceland, 22–25 Apr 2014a. PMLR. URLhttp://proceedings.mlr.press/v33/begin14.html.

Luc Begin, Pascal Germain, Francois Laviolette, and Jean-Francis Roy.PAC-Bayesian theory for transductive learning. In AISTATS, 2014b.

Luc Begin, Pascal Germain, Francois Laviolette, and Jean-Francis Roy.PAC-Bayesian bounds based on the Renyi divergence. In AISTATS,2016.

Olivier Catoni. PAC-Bayesian supervised classification: Thethermodynamics of statistical learning. IMS Lecture Notes MonographSeries, 56, 2007a.

Olivier Catoni. PAC-Bayesian supervised classification: thethermodynamics of statistical learning, volume 56. Inst. ofMathematical Statistic, 2007b.

Philip Derbeko, Ran El-Yaniv, and Ron Meir. Explicit learning curves fortransduction and application to clustering and compression algorithms.Journal of Artificial Intelligence Research, 22, 2004.

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 44: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Monroe D. Donsker and S.R. Srinivasa Varadhan. Asymptotic evaluationof certain Markov process expectations for large time. Communicationson Pure and Applied Mathematics, 28, 1975.

Mahdi Milani Fard and Joelle Pineau. PAC-Bayesian model selection forreinforcement learning. In Advances in Neural Information ProcessingSystems (NIPS), 2010.

Pascal Germain. GAl’nAl’ralisations de la thAl’orie PAC-bayAl’sienne pourl’apprentissage inductif, l’apprentissage transductif et l’adaptation dedomaine. PhD thesis, Universite Laval, 2015. URLhttp://www.theses.ulaval.ca/2015/31774/.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, and MarioMarchand. PAC-Bayesian learning of linear classifiers. In Proceedings ofthe International Conference on Machine Learning (ICML), 2009a.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand,and Sara Shanian. From pac-bayes bounds to kl regularization. InY. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, andA. Culotta, editors, Advances in Neural Information Processing Systems22, pages 603–610. 2009b. URL http:

//books.nips.cc/papers/files/nips22/NIPS2009_0456.pdf.(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 45: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Pascal Germain, Alexandre Lacoste, Francois Laviolette, Mario Marchand,and Sara Shanian. A pac-bayes sample-compression approach to kernelmethods. In ICML, pages 297–304, 2011.

Pascal Germain, Amaury Habrard, Francois Laviolette, and EmilieMorvant. A PAC-Bayesian approach for domain adaptation withspecialization to linear classifiers. In ICML, 2013.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand,and Jean-Francis Roy. Risk bounds for the majority vote: From apac-bayesian analysis to a learning algorithm. J. Mach. Learn. Res., 16(1):787–860, January 2015. ISSN 1532-4435. URLhttp://dl.acm.org/citation.cfm?id=2789272.2831140.

Pascal Germain, Francis Bach, Alexandre Lacoste, and SimonLacoste-Julien. Pac-bayesian theory meets bayesian inference. In D. D.Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,Advances in Neural Information Processing Systems 29, pages1884–1892. Curran Associates, Inc., 2016a. URLhttp://papers.nips.cc/paper/

6569-pac-bayesian-theory-meets-bayesian-inference.pdf.

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 46: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

Pascal Germain, Amaury Habrard, Francois Laviolette, and Emilie Morvant.A new pac-bayesian perspective on domain adaptation. In Proceedingsof the 33nd International Conference on Machine Learning, ICML 2016,New York City, NY, USA, June 19-24, 2016, pages 859–868, 2016b.URL http://jmlr.org/proceedings/papers/v48/germain16.html.

Sebastien Giguere, Francois Laviolette, Mario Marchand, and KhadidjaSylla. Risk bounds and learning algorithms for the regression approachto structured output prediction. In Proceedings of the 30th InternationalConference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21June 2013, pages 107–114, 2013. URLhttp://jmlr.org/proceedings/papers/v28/giguere13.html.

Matthew Higgs and John Shawe-Taylor. A PAC-Bayes bound for tailoreddensity estimation. In Proceedings of the International Conference onAlgorithmic Learning Theory (ALT), 2010.

John Langford. Tutorial on practical prediction theory for classification.Journal of Machine Learning Research, 6:273–306, 2005.

John Langford and Matthias Seeger. Bounds for averaging classifiers.Technical report, Carnegie Mellon, Departement of Computer Science,2001.

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 47: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

John Langford and John Shawe-Taylor. PAC-Bayes & margins. InAdvances in Neural Information Processing Systems (NIPS), 2002.

Francois Laviolette and Mario Marchand. PAC-Bayes risk bounds forsample-compressed Gibbs classifiers. Proc. of the 22nth InternationalConference on Machine Learning (ICML), pages 481–488, 2005.

Francois Laviolette, Mario Marchand, and Jean-Francis Roy. Frompac-bayes bounds to quadratic programs for majority votes. In ICML,pages 649–656, 2011.

Guy Lever, Francois Laviolette, and John Shawe-Taylor.Distribution-dependent PAC-Bayes priors. In Proceedings of theInternational Conference on Algorithmic Learning Theory (ALT), 2010.

Ben London. A pac-bayesian analysis of randomized learning withapplication to stochastic gradient descent. In I. Guyon, U. V. Luxburg,S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,editors, Advances in Neural Information Processing Systems 30, pages2935–2944. Curran Associates, Inc., 2017. URLhttp://papers.nips.cc/paper/

6886-a-pac-bayesian-analysis-of-randomized-learning-with-application-to-stochastic-gradient-descent.

pdf.(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 48: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

David McAllester. Some PAC-Bayesian theorems. In Proceedings of theInternational Conference on Computational Learning Theory (COLT),1998.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37,1999a.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3), 1999b.

David McAllester. PAC-Bayesian stochastic model selection. MachineLearning, 51(1), 2003a.

David McAllester. PAC-Bayesian stochastic model selection. MachineLearning, 51(1), 2003b.

David McAllester. A pac-bayesian tutorial with a dropout bound. http://arXiv:1307.2118v1, 2013.

Ron Meir and Tong Zhang. Generalization error bounds for bayesianmixture algorithms. Journal of Machine Learning Research, 4:839–860,2003.

Liva Ralaivola, Marie Szafranski, and Guillaume Stempfel. ChromaticPAC-Bayes bounds for non-IID data: Applications to ranking and

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 49: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

stationary β-mixing processes. Journal of Machine Learning Research,2010.

Matthias Seeger. PAC-Bayesian generalization error bounds for Gaussianprocess classification. Journal of Machine Learning Research, 2002.

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian analysis of co-clusteringand beyond. Journal of Machine Learning Research, 11, 2010.

Yevgeny Seldin, Peter Auer, Francois Laviolette, John Shawe-Taylor, andRonald Ortner. PAC-Bayesian analysis of contextual bandits. InAdvances in Neural Information Processing Systems (NIPS), 2011.

Yevgeny Seldin, Francois Laviolette, Nicolo Cesa-Bianchi, JohnShawe-Taylor, and Peter Auer. PAC-Bayesian inequalities formartingales. IEEE Transactions on Information Theory, 2012. Accepted.Preprint available at http://arxiv.org/abs/1110.6886.

John Shawe-Taylor and David Hardoon. Pac-bayes analysis of maximumentropy classification. In Proceedings on the International Conference onArtificial Intelligence and Statistics (AISTATS), 2009.

John Shawe-Taylor and Robert C. Williamson. A PAC analysis of aBayesian estimator. In Proceedings of the International Conference onComputational Learning Theory (COLT), 1997.

(Laboratoire du GRAAL, Universite Laval) 41 / 41

Page 50: by Fran˘cois Laviolette - GitHub Pages...A tutorial on the Pac-Bayesian Theory NIPS workshop -\(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights" by Fran˘cois

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and MartinAnthony. Structural risk minimization over data-dependent hierarchies.IEEE Transactions on Information Theory, 44(5), 1998.

(Laboratoire du GRAAL, Universite Laval) 41 / 41