35
Exploration ‘07 plus 5: A halfdecade of mineral exploration developments Ten years of passive airborne EM d l f i l l i development f or mineral exploration By Jean M. Legault and Paolo Berardelli Geotech Ltd., Aurora (Toronto), ON CA Presented at KEGS-PDAC Symposium, 3-March-2012, Toronto, ON 1

By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Exploration ‘07 plus 5: A half‐decade of mineral exploration developments

Ten years of passive airborne EM d l f i l l idevelopment for mineral exploration

By Jean M. Legault and Paolo Berardelli

Geotech Ltd., Aurora (Toronto), ON CA

Presented at KEGS-PDAC Symposium, 3-March-2012, Toronto, ON

1

Page 2: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Outline• Introduction

• Overview Geotech Passive AEM systems• Overview Geotech Passive AEM systems• AFMAG Development from 2001 to 2011

• Field Survey Examples• ZTEM vs. FW-ZTEM over Arizona porphyry targetp p y y g• ZTEM vs. AirMt over Nebo-Babel Ni-Cu-PGE

• Conclusions (what’s new for 2012 and beyond)

2

Conclusions (what s new for 2012 and beyond)

Page 3: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AFMAG ‐ Background

• AFMAG stands for “Audio Frequency Magnetics”, 1ST proposed by Ward (1959) as scalar (Hz=TxHx), redefined by Vozoff (1972) as complex vector, further developed by Labson et al

The ZTEM System

Ground AFMAG System

• Passive EM (Electromagnetic) technique – in same family as Audio‐Magneto‐tellurics (MT), but measures magnetic fields only (E‐fields not easily measured in air).

(Hz TxHx), redefined by Vozoff (1972) as complex vector, further developed by Labson et al (1985).

• The EM source is the natural field of Earth caused by Lightning Strikes– mainly equatorial thunderstorms and other electrical storms 1000’s of km away – create horizontal planar primary fields, available year-round.

(Ward,1959)

• ELF “Extra Low Frequency” range” between from 30 to 360Hz +/- 720Hz (provides for reasonably High Signal Strengths and Significant Penetration and Year Round Surveys)

• Basic Principle: Lateral resistivity contrasts cause horizontal EM fields to Tilt Vertically. Vertical secondary H-field vector called “Tipper” (aka Weiss-Parkinson Vector).

3

•. The relationship between vertical (Hz) & horizontal (Hx-Hy)-fields is:Hz(f)= Tx (f)*Hx(f)+ Ty(f)*Hy(f) Vozoff (1972)

Tipper vector (Tx, Ty) is determined using FFT processing of time-series.

Page 4: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AFMAG – Background• AFMAG first used in the late 1950’s by McPhar Geophysics  for mineral exploration in ground &

airborne surveys.

• In spite of its many positives, poor data quality and repeatability were major impediments to its application/acceptance in mineral exploration industry (Ref. Ward et al., 1968), i.e. scalar approximation was incorrect.

• Technique was essentially abandoned in 70’s 80’s 90’s as an exploration tool (replaced by

Mcphar AFMAG 1959

• Technique was essentially abandoned in 70 s-80 s-90 s as an exploration tool (replaced by upcoming inductive EM systems).

• Academic research in AFMAG continued (Ref. Labson et al., 1985) more efforts applied to VLF (Europe – Ex. Pedersen, 1998).

• Geotech re-embarked on AFMAG development in 2000, lead to ZTEM (Z-axis Tipper EM) system in 2005-06, first commercially available passive AEM system for mineral exploration in 30 years.

Mcphar H400 AFMAG 1973

ZTEM is Variant of AFMAG – only Hz receiver mobile, Hx-Hy fixed

• AirMt (Airborne Magnetic Tipper), first introduced by Geotech in2009, compares all 3 components of Magnetic Field at receiverand base, according to the following:

Geotech AFMAG 2002

y , ybase-station as per:

• The 3x3 matrix |W| can be re-written to obtain the complex scalar:called the “Amplification Parameter” AP which is rotationally invariant.

Geotech AFMAG 2002

Page 5: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Helicopter AFMAG ‐ 2002Geotech Passive Airborne EM Systems: >10 years of Development

AFMAG – 2001

VTEM – 2002

Helicopter TDEM

Helicopter AFMAG Prototype 

From Fountain (2008)

ZTEM ‐ 2006Fixed‐wing ZTEM ‐ 2011

AirMt2009

5

‐ 2009

Geotech currently has 10 passive AEM system in operation around the world (8‐ZTEM, 1‐FWZTEM,1‐AirMt)

Page 6: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AFMAG System Development

• Geotech revisited AFMAG starting in 2000 using modern technology, and digital signal processing tools. 

• Test results using the system as shown on the right, were encouraging, but showed that the receiver coils were not sensitive enough – i.e. too small, too few windings.too small, too few windings. 

It only had a rudimentary suspension system to damp out vibrational noise

AFMAG System in 2001

6

y

From Lo and Kuzmin (AEM 2008)

Page 7: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AFMAG Development

• With funding and support from INCO and MIM, Geotech obtained a OMET grant to significantly upgrade the airborne AFMAG system.

• New coils, suspension system, base stations, orientation sensors numerical simulation field trials data processingsensors, numerical simulation, field trials, data processing techniques and reporting were accomplished.

• Geotech undertook testing at Reid Mahaffy in 2002 and also patented the system.

AFMAG DAS System (2002)

7AFMAG Receiver Bird (2002)From Lo and Kuzmin (AEM 2008)

Page 8: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Reid Mahaffy Test Range circa 2002, comparison with early VTEM resultsVTEM results – line 20

Example of AFMAG Raw Data

Geoelectric section from VTEM

Z/X In‐Phase

Z/X Quad

ous-

Hel

jtat

ive

Dep

ther

ed X

IP

Note: How well AFMAG responds toknown Conductors, but data quality Poor .

Z/Y In‐Phase

Z/Y Quad

88AFMAG results – line 20

Karo

Rel

aFi

lte

q y

Z/X Karous‐Heljt

From Lo, Kuzmin and Morrison (2005)

Page 9: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AFMAG Development

• Following the results of 2002, Geotech took time to assess the data and modified the electronics and suspension of the airborne system.

• A tail and drag skirt assembly were added to the bird to give it greater stability in the air.

• As well a base station unit was built• As well, a base station unit was built.• A set of ground tests of the new and

redesigned equipment in the Sudbury area was successful.

• This was immediately followed by airborne

AFMAG Base-Station (2004)

trials over the Sudbury area in 2004• These results were presented to in OMET

(2005) & KEGS (2005), andat ASEG (2006)

9AFMAG Receiver Bird (2005)From Lo and Kuzmin (AEM 2008)

Page 10: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Base Station vs Local Receiver  (2004)

Tx Tipper using Hx-Hy in Receiver bird SIC Contact?Tx Tipper using Hx Hy at Fixed Base station

L1065

L1040 L1030

L1020

L1010

L1080

L1070

L1060L1050

0051

5800

0

515158000

456000 458000 460000 462000 464000 466000 468000 470000

46°3

4' 46°34'46°35'

-81°36' -81°34' -81°32' -81°30' -81°28' -81°26' -81°24'

Onwatin Fm1010>

<10201030>1050><1060

1065><107

<1040

5158

000 5158000

454000 456000 458000 460000 462000 464000 466000 468000 470000 472000

°34'

46°3

5'

4646°35'

-81°36' -81°34' -81°32' -81°30' -81°28' -81°26' -81°24' -81°22'

Tx Tipper using Hx-Hy at Fixed Base station

Onwatin Fm

SIC Contact?

-450.3-379.0-307.7

L1090

L1140

L1040

L1030

L1020

L1010

L10

L1100

L1130

L1120

L1110

LL1170

L1160

L1150

5152

000

5154

000

5156

00

51520005154000

156000

6°31

'46

°32'

46°3

3'

46°46°32'

46°33'

-900

00

7-

004-

1010><1020

1030>

><10701080><10901100>

1110><11201130><11401150>

<1160<1040

2000

5154

000

5156

000

51525154000

5156000

'46

°32'

46°3

3'46

°

46°32'46°33'

6°34'

005-

Onwatin Fm

-1305.8-1234.5-1163.2-1091.9-1020.6-949.3-878.0-806.7-735.4-664.2-592.9-521.6

L1090

L1140

L1065

L1080

L1070

L1060

L1050

L1100

L1130 L1120

L1110

L1190

L1180170

L1170

L1160

L1150L1230

L1220

L1210

L1200

L1191

051

4800

051

5000

05

55148000

515000000

46°2

9'46

°30'

46

46°29'46°30'

31'

- 9 0 0

00 9 -

009-

007-

- 4 00

Trillabelle

1050><10601065><10701080><1090

1100>1110><11201130><11401150>

0

<1160

1170><11801190><11911200><12101220>

<1230

5148

000

5150

000

5152

51480005150000

2000

46°2

9'46

°30'

46°3

1

46°29'46°30'

46°31'00

52

-

00

02

-

00

51

-

00

01

-

00

Trillabelle

1000 0 1000 2000 3000 4000

metreWGS 84 / UTM zone 17N

OMET; GEOTECH Ltd

-1591.0-1519.7-1448.4-1377.1

meters

L1190

L1180

L1170

L1230

L1220

L1210

L1200L1191

5146

000 5146000

456000 458000 460000 462000 464000 466000 468000 470000

46°2

8' 46°28'

-81°34' -81°32' -81°30' -81°28' -81°26' -81°24' -81°22'

01170><11801190><1191

1200><12101220><1230

5146

000 5146000

454000 456000 458000 460000 462000 464000 466000 468000 470000 47200046°2

7'46

°28' 46°28'

-81°36' -81°34' -81°32' -81°30' -81°28' -81°26' -81°24' -81°22'

Survey trials show that use of base-station leads to improvement in Signal/Noise yet not all anomalous responses (i.e. SIC) relating to geology are defined. From Lo, Kuzmin and Morrison (2005)

Vermilion lake AFMAG test flight250 Hz

KH-filtered In-Phase - 250 hertz Hz(bird)/Hx(bird) KH-filtered In-Phase 250 hertz Hz(bird)/Hx(base)

Page 11: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Lessons from AFMAG Field trials

• The system developed for the OMET subsidized project was a very workable system …. but …. Need to....

• Improve the suspension system as the Signal to Noise ratio is 10X better on the ground. 

• Increase size of sensor ‐ improves signal to noise.

• Maximize distance between aircraft & receiver, by using long tow cable ‐ fixed‐wing “stinger” sensor concept proves unworkable.

• Use base station data for horizontal fields instead of airborne receiver – results in acceptable and interpretable data.

• Added benefits include the ability to increase the size of the base‐station magnetometers and place them far from man made culture in order to improve their signal to noiseplace them far from man‐made culture, in order to improve their signal to noise

• R&D development eventually leads to conception of ZTEM system in 2006

11From Lo and Kuzmin (AEM 2008)

Page 12: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM – 2006

• Onboard Hz‐Hx‐Hy receiver coils in AFMAG bird replaced by combination of:) l i l ti l i il & b) fi d b t tia) larger single vertical aircoil & b) fixed base station receiver coils. 

• New configuration called “ZTEM” (Z‐axis Tipper EM) system.

• Early ZTEM airborne coil was 7.4 m (same size now)

• Early ZTEM had base station coils same size as airborne coil at 7.4 metres diameter

• This proved impractical and smaller base stations were built.

System in 2006

From Lo and Kuzmin (AEM 2008)

Page 13: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM base station ‐ 2007

• Base station was now smaller – about 3.5 metres squaremetres square,

• Braced to be perpendicular to each other

• Internal suspension system

• Air‐core loops

• Yet, difficult to transport and set‐up easily

• Still currently in use

ZTEM base-station - 2007From Lo and Kuzmin (AEM 2008)

Page 14: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM base station (2009)

• ZTEM started to use the AirMt receiver coil as its ZTEM base station in 2009

• Still about 3 0 metres square• Still about 3.0 metres square

• Easily deployed (using helicopter) & mobile, minimum set up time are important advantages.

• Currently used when more than on base‐station emplacement required (large surveys with >20km distances)

Page 15: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Helicopter ZTEM System ConfigurationZTEM (Z-axis Tipper Electromagnetic)

Geotech Passive AEM Systems

Key System Parameters•Natural magnetic (AFMAG EM) field measurement (30‐720Hz)• Fixed Base Station• Airborne Z axis loop sensor that acquires vertical magnetic field datadata.• Receiver loop‐tilt correction via use of onboard GPS sensors• Rx loop diameter: 7.2 m• Rx height: 50-100 m nominal

Data Acquired• Measures Tzx (in-line) and Tzy (cross-line) Tipper vectors (via FFT of time-series)• Magnetics: Caesium Sensor• Production: 150-600km dayProduction: 150 600km dayApplicationsResistivity Mapping – Mineral IndustryPorphyry CopperGeothermalHydrocarbonHydrocarbon

ZTEM Base Station(Hx‐Hy horizontal)

ZTEM is the deepest penetrating airborne EM system, proven to below 1‐2km Depths, with demonstrated success for mapping Porphyry Coppers and other large mineralized systems.

Page 16: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

GPS Antenna

FW (Fixed Wing)-ZTEM

Key System Parameters

Geotech Passive AEM Systems

Magnetic Sensor

Cradle + Winch for EM Sensor

•Natural magnetic (AFMAG EM) field measurement (30-720Hz)• Fixed Base Station• Airborne Z axis loop sensor that acquires vertical magnetic field data (Retractable vs Sling-load)• Receiver loop-tilt correction via use of onboard GPS sensors &

~80m ~100m

FW-ZTEM Fixed-Wing System Configuration

Receiver loop tilt correction via use of onboard GPS sensors & inclinometers•Rx loop dimensions: 3m x 4m•Rx height: 50-100 m nominal

D A i dData Acquired•Measures Tzx (in-line) and Tzy (cross-line) Tippers•Magnetics: Cs Sensor •Optional Grav-gradiometry, Spectrometry.•Production: ~1000km/day projected

EM Receiver Coil (3 x 4m) Attitude Sensors + GPS antenna

~60m

Production: 1000km/day projectedApplicationsLow Cost Regional Resistivity MappingPorphyry CopperHydrocarbonGeothermalGeothermal

Fixed‐Wing ZTEM is equivalent system for more regional geologic mapping using a longer range/ endurance platform. Designed to be deployed with add’l sensors for complete multi‐parameter characterization

Page 17: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

FW‐ vs Heli‐ZTEM Tests, ‘11

Tzx In‐Phase ‐ Observed

Tzx In Phase CalculatedTzx In‐Phase ‐ Calculated

Tzx Quadrature ‐ Observed

Blind Porphyry‐Copper Target

Tzx Quadrature‐ CalculatedPowerline

Potassic‐AlteredCore of Porphyry

Helicopter ZTEM, July-2010Phyllic/PropylliticAltered Halo surroundsPorphyry Copper Helicopter ZTEM, July 2010

Notice close fit between observed and modeled data, and resulting resistivity model from 2D inversion, highlighting alteration phases over buried Porphyry, Safford Az

Page 18: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

FW‐ vs Heli‐ZTEM Tests, ‘11

Tzx In‐Phase ‐ Observed

Tzx In‐Phase ‐ Calculated

Tzx Quadrature ‐ Observed

T Q d t C l l t dPowerlineBlind Porphyry‐Copper Target

Tzx Quadrature‐ Calculated

Potassic‐AlteredCore of Porphyry

Fixed Wing ZTEM, Feb-2011Phyllic/PropylliticAltered Halo surroundsPorphyry Copper

Notice close fit between previous Heli‐ZTEM & FW‐ZTEM data and 2D inversions prove that FW‐ZTEM can be cost‐effective alternative for regional reconnaissance surveys. 

Page 19: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AirMt (Airborne Magnetic Tensor)

Geotech Passive AEM Systems

Helicopter AirMt System ConfigurationKey System Parameters•Natural magnetic (AFMAG EM) field measurement (45-720Hz +/-30Hz)• 3-axis loop sensor with identical base station

N R i l tilt ti (GPS f iti i l )• No Receiver loop-tilt correction necessary (GPS for positioning only)•In-Phase and Quadrature transfer functions•Peak responses over lateral varying resistivity structure•Rx loop dimensions: 3m x 3m•Rx height: 50 m nominalg

Data Acquired• Measures rotationally invariant Amplitude Parameter (AP)• Magnetics: Cs Sensor•Production: 120 500km/day•Production: 120-500km/dayApplicationsResistivity Mapping – Mineral IndustryPorphyry CopperHydrocarbonGeothermal

AirMt Sensor as Base Station

AirMt is innovative next step in passive AEM design, features improved signal/noise (3x) & increased depth‐penetration vs ZTEM ‐ In R&D/design‐testing.

Page 20: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AirMt‐ZTEM system Comparison

• Natural magnetic (AFMAG EM) field measurement (45-720Hz)3 i l i h id i l b

• Natural magnetic (AFMAG EM) field measurement (30-720Hz)Z i i h 2 3 i b

AirMt ZTEM

• 3-axis loop sensor with identical base station

• No Receiver loop-tilt correction necessary (GPS for positioning only) –improves S/N

• Z-axis sensor with 2 or 3-axis base-station (AirMt coils)

• Receiver loop-tilt correction via use of onboard GPS sensors – reduces S/N

• Measures Tzx (in-line) and Tzy (cross-• Measures rotationally invariant

Amplitude Parameter (AP)• In-Phase and Quadrature transfer

functions• Peak responses over lateral variations

Measures Tzx (in line) and Tzy (crossline) Tipper vectors

• In-Phase and Quadrature transfer functions

• Cross-over responses over lateral variations in resistivity structure• Peak responses over lateral variations

in resistivity structure• Interpretation in plan directly from raw

data • Resistivity cross-sections via 2D-3D

variations in resistivity structure• Interpretation in plan using DT or

Phase-Rotation of Tippers • Resistivity cross-sections via 2D-3D

inversioninversion

Page 21: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AirMt 2D Synthetic Modeling ZTEM 2D Synthetic Modeling

The body is a 5 ohm-m brick and 435 m deep in a 1000 ohm-m half-space host. The body is 600 m wide

The body is a 5 ohm-m brick and 435 m deep in a 1000 ohm-m half-space host The body is 600 m wide

and 420 m thick. space host. The body is 600 m wide and 435 m thick.

21

Page 22: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AirMt 2D Synthetic Modeling ZTEM 2D Synthetic Modeling

The body is a 1000 ohm-m brick and 435 m deep in a 100 ohm-m half-space host. The body is 600 m wide and 420 m thick.

The body is a 1000 ohm-m brick and 435 m deep in a 100 ohm-m half-space host. The body is 600 m wide and 420 m thick.

22

Page 23: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Case History Example:ZTEM & AirMt survey results over the Nebo‐Babel Ni‐Cu‐PGE Deposit West Musgrave WA (2010)Deposit, West Musgrave, WA (2010).

• Discovered in 2000 using surface geochemistry• Drill intersections include 106m at 2.4% Ni, 2.67% Cu & 0.2g/t PGE• Resource of 1Mt Ni + 1Mt Cu+Co contained• Hosted in tube like gabbro norite that intrude ortho gneissic country rocks• Hosted in tube-like gabbro-norite that intrude ortho-gneissic country rocks

and offset along north-south Jameson Fault• Babel is large, low grade disseminated deposit, subcrop-600m• Nebo is smaller, but higher grade MS pods, shallow buried-600m?

Nebo‐Babel Property Location

AirMt Survey

Jameson WA

ZTEM and AirMt surveys (Oct-2010) consisted of 541 & 574km:•17 x 10km NS flight lines @ 400m spacing•31x 12km EW flight lines @ 200m spacing• Tzx & Tzy Tippers (ZTEM) and

ZTEM Survey(10x 12km area)

y(10 x 12 km area)

23

AP (AirMt) - both In-phase & Quadrature•5-6 frequencies in 25-600Hz bandwidth•Total field magnetics

(Results shown courtesy of BHP Billiton)

0 10km

Page 24: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Nebo‐Babel GeologyNebo and Babel are hosted in 2 separate gabbro‐norite intrusivesin orthogneiss host rocksin orthogneiss host‐rocks(~ 5km x 1km x 0.5km)

Fault‐offset along the north South Jameson FaultBabel is larger but low grade 

0m

400m

0m

400m

g gdisseminated, subcrops, plunges west, open at depth (base at 600m)

Nebo is smaller but has massive 400m

800m

400m

800m

c

sulphide pods, buried, open at depth (base inferred at 600m)

N b B b l fNebo‐Babel features strong magnetic, electromagnetic, and gravity anomalies highlight the massive and disseminated mineralization in the deposit

24

(after Seate, et al., 2007). 

Page 25: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM Flight Path over Nebo‐Babel Geology(modified after Seat et al., 2007)

Nebo‐Babel Survey

12km length east‐west lines

31 Lines at 200mth north‐sou

th 

31 Lines at 200m

10km

 leng

lines

2517 Lines at 400mZTEM and AirMt flown in both survey directions 

Page 26: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Total Magnetic Intensity ‐ Reduced to Pole (RTP)Nebo‐Babel Survey Data

NS Linear Magnetic L

NE Linear Magnetic Lowover Jameson Fault

highsover late mafic dolerites

GEOLOGY~~~ Jameson Fault

Drill hole locationsDeposit Outlines

Partial ring‐like magnetic high‐low over Babel(sulfides in perimeter) Magnetic high over 

Nebo (Fe in gb norite)

260 2.0kmAeromagnetics highlight regional & local geology, structures 

Nebo (Fe in gb‐norite)

Page 27: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM 75Hz In‐Phase Total Phase Rotation (IP TPR)

L1430

NS Linear C d

NE Linear 

Nebo‐Babel Survey Data

Conductorover Jameson Fault

conductors along dolorite‐orthogneiss contact

ConductiveGEOLOGY

~~~ Jameson FaultDrill hole locations

Deposit Outlines

L14

Partially offset ring‐like conductive high over Babel (sulfides 

Conductive high over Nebo (MS sulfide lenses)

Unknown unexplained (

27

430

0 2.0km

ZTEM TPR highlights Nebo‐Babel, known Geology and Other features

(in perimeter) conductive features (fault 

structures or paleochannels in ob?)

Page 28: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

AirMt 75Hz In‐Phase Amplitude Parameter (IP AP)

L1

Nebo‐Babel Survey Data

1430 NS Linear Conductorover Jameson Fault

NE Linear conductors along dolorite‐th iorthogneiss 

contact

GEOLOGY~~~ Jameson Fault

Drill hole locationsDeposit OutlinesL1430

Partially offset ring‐like conductive hi h B b l

Conductive high over Nebo (MS sulfide lenses)

280

AirMt AP results closely resemble ZTEM – yet both independant

high over Babel (sulfides in perimeter)

Unknown unexplained conductive features (fault structures or paleochannels in ob?)

0 2.0km

Page 29: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

ZTEM In-Phase Tzx (in-line)BABEL DEPOSIT Nebo‐Babel Data( )

ZTEM Quadrature Tzx (in-line)

ZTEM In‐phase Tzx (in‐line)displays well‐defined normalcross‐overs at all frequencies but building in amplitude from high to low ‐ indicates partial buried conductive body

L1430

UTM Y (metres)0 1km

BABEL DEPOSIT

buried conductive body.

The reversing Quadrature cross‐overs at lower frequencies might indicate a lower conductivity at depth or limited vertical extent.

ZTEM In-Phase Tzy (cross-line)BABEL DEPOSIT

ZTEM Tzy (cross‐line) resultsare weaker than Tzx (in‐line) – might suggests that the responses are not strongly 3D along 

ZTEM Quadrature Tzy (cross-line)

UTM Y (metres)0 1km

p g y gprofile

(unlikely to be the case, given its short strike‐length and presence/ influence of NS Jameson Fault)

29

BABEL DEPOSIT

Page 30: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

BABEL DEPOSIT

Cont…

i h di l ll d fi d i i

AirMt In-Phase AP

AirMt In‐phase displays well‐defined positive peak response at all frequencies, building in amplitude from high to mid frequencies ‐indicates partial buried, depth‐limited conductor

The flat to weak negative peak Quadrature response at lower frequencies might indicate

AirMt Quadrature APUTM Y (metres)

0 1km

response at lower frequencies might indicate lower conductivity at depth.

No indication of dimensionalityin AirMt response.

Page 31: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

2D ZTEM Inversion

BABEL DEPOSIT

450m

L1430

ApproximateOutline of Intrusion

U i G h

Nebo‐Babel Inversions

0.03 error for NRMS <1.0 1000mUsing GeotechAv2dtopo inversioncode developed by P. Wannamaker (2009 & 2011) based on 2D finite‐element code of de Lugao

2D ZTEM shows increasein conductivity at baseof intrusion – good fits

2D AirMt Inversion

0.21 error for NRMS <1.0

element code of  de Lugao & Wannamaker (1996).

2D AirMT shows weakeranomaly, overestimatesdepth to base – bad fits

3D ZTEM Inversion

h

depth to base  bad fits

3D AirMt Inversion

TechnoImaging3D integral equationmethod of Hursán& Zhdanov (2002)and RRCG methodof Zhdanov (2002)

3D ZTEM shows increasein conductivity at baseof intrusion – agrees

with 2D ZTEM

31

0 500m

VIEWS LOOKING WEST

of Zhdanov (2002)

3D AirMt shows increasein conductivity at baseof intrusion – agreeswith 2D+3D ZTEM butdisplays best contrasts

Page 32: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Conclusions – Passive AEM Development

It h b th 10 i G t h b k d th d l t f i b• It has now been more than 10 years since Geotech embarked on the development of airborne AFMAG technology:

i. Lightweight, heli-slingable prototype in 2001

ii. Fully damped, attitude-corrected receiver with modern A/D acquisition & DP processing in 2002

iii. Larger air-coil with GPS attitude-sensors and fixed base-station ZTEM in 2006

iv. Multi-axis receiver and innovative AP parameter of AirMt system in 2009

v. Aerodynamic, retractable sensor of FW-ZTEM in 2011

32

Page 33: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Conclusion – 10 years of AEM (continued)

What’s new in 2012 for Geotech passive AEM:

i. Smaller, portable, low noise base-station ferrite-core sensors – possible multiple site deployment for on-site & remote monitoring.

2.5m

3.5m

N bl ZTEM b iN (f d) ld (b k d)

2.5m

ii. Ground MT measurements on-site (Core Geophysics)

New portable ZTEM base‐station sensors(Quebec 2011)

New (foreground) vs old (background) ZTEM base‐station sensors (Nevada 2011)

33

( p y )- will allow more accurate apriori model and more robust interpretation using 2D & 3D joint-inversion.

Page 34: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

Conclusion – 10 years of AEM (continued)

• What’s in the future for Geotech passive AEM:

i. Unlikely that lower frequencies (<25Hz) are obtainable from airborne sensors, because “airflow” noise dominates lower spectrum - noise increases by 100x.Longer averaging may only get a few more Hz of data.

ii B t ddi hi h f i b 1kH d db d i t i l ibl ti l lii. But adding higher frequencies above 1kHz deadband is certainly possible – particularly if focus on high amplitude events instead of averaging.

iii. Redesign of AirMt sensor – more aerodynamic, smaller, possible multi-component extraction (i e combined AirMt AP parameter & ZTEM tipper dataextraction (i.e., combined AirMt AP parameter & ZTEM tipper datafrom same sensor/measurement).

34

Page 35: By Jean M. Legault and Paolo Berardelli - GEOTECH years of passive AEM_KEGS... · 2015-02-26 · Outline • Introduction • Overview Geotech Passive AEM systemsOverview Geotech

10 years of Passive AEM Development 

THANK YOU

Our thanks to TechnoImaging (Salt Lake, Utah) for Nebo‐Babel 3D inversions.

35