53
1 Ocular Biomaterials By: Phil Kinsman and Omer Waseem

By: Phil Kinsman and Omer Waseem Ocular Biomaterialsibruce/courses/EE3BA3_2008/EE3BA… · The cornea's index of refraction is 1.38, so light travels 1/1.38≈0.72 times as fast as

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Ocular BiomaterialsBy: Phil Kinsman and Omer Waseem

  • 2

    What you're about to see...

    Anatomy and optics of the eye4 Bioengineering case studies:− Contact Lenses− Artificial Corneas− Implanted Lenses− Retinal implants

    Conclusion− What special challenges and benefits exist for

    biomaterial engineering for the eye?

  • 3

    The Eye – Front to Back

    Cornea− High refractive index− Protects eye

    PupilIrisLens / Ciliary BodyRetina

  • 4

    A flashback to lens physics

    1g

    � 1b

    = 1f

    gb

    = GB

  • 5

    What about refractive index?

    A measure of how slow light travels in a substance compared to a vacuumThe cornea's index of refraction is 1.38, so light travels 1/1.38≈0.72 times as fast as in air

  • 6

    The Eye – Front to Back

    CorneaPupil− Opening of the iris

    IrisLens / Ciliary BodyRetina

  • 7

    The Eye – Front to Back

    CorneaPupilIris− Sphincter to control

    how much light enters the pupil

    Lens / Ciliary BodyRetina

  • 8

    The Eye – Front to Back

    CorneaPupilIrisLens / Ciliary Body− Lens performs fine

    adjustments to focus− Ciliary muscles shape

    lensRetina

  • 9

    The Eye – Front to Back

    CorneaPupilIrisLens / Ciliary BodyRetina− Site of light detection− Converts light to

    signals passed down optic nerve

  • 10

    For Completeness...

    Aqueous Humour− Anterior cavity− Metabolic exchange− Some refraction

    Vitreous Humour− Posterior cavity− 99% water− Structural

  • 11

    Contact Lens

    • Concept dates back to 1508 by da Vinci

    • Corrective lens on top of cornea

    • Commonly used to cure myopia, hyperopia and astigmatism

    • Can be fashioned for cosmetic or sight enhancing purposes

  • 12

    Related Diseases

    • Myopia

    • Hyperopia

    • Astigmatism

  • 13

    Related Diseases

    • Myopia

    • Hyperopia

    • Astigmatism

  • 14

    Related Diseases

    • Myopia

    • Hyperopia

    • Astigmatism

  • 15

    Related Diseases

    • Myopia

    • Hyperopia

    • Astigmatism

  • 16

    Related Diseases

    • Myopia

    • Hyperopia

    • Astigmatism

  • 17

    Biocompatibility

    • Biocompatibility is the forefront of design consideration

    • Three major criteria:– Hydrophilic nature– Gas permeability– Biofilm resistance

  • 18

    Hydrophilic Nature

    • Tear layer forms between lens and cornea

    • Requires lens to be hydrophilic

    • Otherwise lens would not stay in place and stick to the cornea

    • Unpleasant

  • 19

    Gas permeability

    • Gas moves in (oxygen) and out (carbon dioxide) of cornea

    • Part of the gas exchange route

    • Must accommodate this permeability

    • Otherwise causes discomfort and strain

  • 20

    Biofilm Resistance

    • Tears also contain lipids, proteins and other biomaterials

    • Lens must not attract these substances

    • Otherwise vision is blurred and contact becomes uncomfortable

  • 21

    Types of Contact Lenses

    • Hard Contact Lenses

    • Rigid Gas Permeable Contact Lenses (RGP)

    • Soft Contact Lenses

  • 22

    Hard Contact Lenses

    – First type of contact lenses for commercial use– Initially made entirely of poly (methyl methacrylate)

    (PMMA) matrix.– Durable, strong and significantly impermeable– Not comfortable, could not be worn over 8 hours

  • 23

    RGP Contact Lenses• A modification of classical hard contacts• Copolymerization of methyl methacrylate (MMA) with

    methacryloxypropyl tris(trimethylsiloxy silane) (TRIS)• PMMA-TRIS for short• More permeable structure but its hydrophobic• Methacrylic acid (MAA) to make it less hydrophobic • Copolymerizing PMMA-TRIS with Fluoromethacrylates

    increased volume fraction for increased permeability• Enabled RGPs to be used without removal for up to 7 days

  • 24

    Soft Contact LensesSoft Contact lenses:Also made of a polymer matrix (hydrogel) Very hydrophilic and absorbs waterAs water mass increases lens gains gas permeability at a costFirst hydrogel made of poly(hydroxyethylmethacrylate) (HEMA) matrix

  • 25

    Soft Contact Lenses

    It is also copolymerized with ethylene dimethacrylate (EDMA) or ethylene glycol monogethacrylate (EGDMA) to increase permeability

  • 26

    Soft Contact Lenses

    Silicon is added to hydrogel (siloxane lens) structures to increase permeability; however, silicon`s hydrophobic nature makes it undesirableSiloxane would rise to the surface and create a hydrophobic barrierResearch has shown that molding these lenses in a polar environment makes them more hydrophilic

  • 27

    Other Uses• Drug delivery:

    – Nano-particles are embedded within lens polymer matrix

    – Particles slowly defuse through the cornea

  • 28

    The Cornea

    Actually 5 layers: epithelium, Bowman's membrane, stroma, Descemet's membrane, endotheliumKey features: clarity, refractive properties, chemical properties

  • 29

    Common Problems with the Cornea

    Examples: lattice dystrophy, Fuch's dystrophy, map dot-fingerprint dystrophy, corneal dystrophy, keratoconus, iridocorneal endothelial syndrome, herpes zoster (more commonly known as shingles), ocular herpes, pterygium, Stevens-Johnson syndrome, corneal infectionsProblems requiring transplant include one or more of three conditions: scarring, clouding, deformation

  • 30

    Cornea Transplants

    Two major options:− transplant from

    human source− transplant of artificial

    corneaArtificial corneas are more interesting from a material engineering perspective

  • 31

    Artificial Corneas

    Dual-layered hydrogel structure− can swell up to 80%

    water contentPorous− easy integration to

    surrounding tissue

  • 32

    Hydrogels

    These materials are cross-linked hydrophobic polymersThis gives them the ability to absorb tremendous amounts of waterAlso, they provide pores for eye cells to occupy for bonding the implant to the eye

  • 33

    Implantable Contact Lens (ICL)• Implanted into the eye• Behind the iris and in

    front of the natural lens

    • Reversible alternative to laser surgery

  • 34

    Composition

    Composed of collagen, UV absorbing chromophore and poly-HEMAIt is hydrophilic and absorbs water for refraction as well as biocompatibilityCarries a negative ionic charge to repel protienswithin the eye (avoid biofilm formation)Attracts fibronectin to create a coating matrix to inhibit immune response

  • 35

    Implantable Intraocular Lens (IOL)

    • Similar to ICL except natural lens is completely removed and replaced with a collomer lens.

    • Used mainly for patients with cataract

    http://upload.wikimedia.org/wikipedia/commons/b/ba/Cataract_in_human_eye.png

  • 36

    Implantable Intraocular Lens (IOL)

    (Surgery procedure video)

  • 37

    A Closer Look at the Retina

    Optic nerve− central retinal artery

    and vein− carries visual

    information to brainFovea− contains only cones− also, ganglion and

    bipolar cells are displaced to periphery

  • 38

    How “seeing” Happens

    Light is detected by rods and cones, preprocessed by bipolar and ganglion cells, and transmitted to the brain through the optical nerve

  • 39

    Ailments of the Retina

    Age-related Macular Degeneration− leakage of fluid

    behind fovea− foveal cones die,

    causing vision loss in central field of view

    GlaucomaRetinitis Pigmentosa

  • 40

    Ailments of the Retina

    Age-related Macular DegenerationGlaucoma− eye pressure

    increases compressing axons of ganglion cells, eventually causing cell death

    Retinitis Pigmentosa

  • 41

    Ailments of the Retina

    Age-related Macular DegenerationGlaucomaRetinitis Pigmentosa− hereditary− rod degeneration in all

    but the fovea

  • 42

    What do all these have in common?

    Breakdown in the photoreceptor -> ganglion/bipolar -> optic nerve pathway

  • 43

    What do all these have in common?

    Breakdown in the photoreceptor -> ganglion/bipolar -> optic nerve pathwayCan this behavior be emulated in a digital system?

  • 44

    What do all these have in common?

    Breakdown in the photoreceptor -> ganglion/bipolar -> optic nerve pathwayCan this behavior be emulated in a digital system?Maybe, but putting a chip in your eye isn't so easy

  • 45

    Desirable Implant Characteristics

    flexible, smooth, light-weightedbio-compatible with long-term stabilityfeasible and safe fixation to retinal surface

  • 46

    Polyimides

  • 47

    Polyimides

  • 48

    Polyimides

    This stacking scheme is what gives polyimides their strength and chemical resilienceMore importantly it is possible to dope the polyimide substrate with silicon to develop a digital system on itThe system is encapsulate in Polydimethylsioxane− well-known biocompatible properties, inert,

    transparent− provides mechanical protection during implantation

  • 49

    Fixation

    The implant is held on the retina by the restorative force of the polyimide cableA complete vitrectomy is necessary for implantation (more about this later)

  • 50

    Special Issues With the EyeProblems− Surgically sensitive organ− Fluid-maintained structure (pressure sensitive)− Non-stationary

    Benefits− Low immune response− Significant gain− Wide range of biomaterials available for sure

  • 51

    Referenceshttp://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/refrn/u14l6a.htmlhttp://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/refrn/u14l6b.htmlhttp://ephysics.physics.ucla.edu/optics/html/eye.htmhttp://www.nyee.edu/pdf/solomonaqhumor.pdfhttp://www.queensophthalmology.ca/theye.asphttp://en.wikipedia.org/wiki/Ciliary_muscleTortora et al. Principles of Anatomy and Physiologyhttp://webvision.med.utah.edu/sretina.htmlHossain, Parwez et al. Science, medicine, and the future; Artificial means for restoring visionXing, Wang et al. Research Progress of Epiretinal Prosthesis Based on Electrical Stimulation.http://pslc.ws/macrog/imide.htm

  • 52

    ReferencesSchanze, Thomas et al. An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prosthesis.http://www.stlukeseye.com/anatomy/Cornea.asphttp://www.nei.nih.gov/health/cornealdisease/http://www.nrc-cnrc.gc.ca/multimedia/picture/manufacturing/nrc-icpet_artif_corneas_e.htmlhttp://www.photonics.com/content/news/2006/September/20/84453.aspxhttp://www.myoops.org/twocw/mit/NR/rdonlyres/Biological-Engineering/20-462JSpring-2003/4F188B64-BCAC-4D1F-A096-B47FB5663813/0/BE462lect07.dochttp://www.eyetopics.com/articles/18/1/The-History-of-Contact-Lenses.htmlhttp://www.allaboutvision.com/contacts/contact_lenses.htmhttp://www.rush.edu/rumc/page-1098987322226.html

  • 53

    Referenceshttp://www.eng.buffalo.edu/Courses/ce435/2001ZGu/Contact_Lens/ContactLensReport.htm

    http://www.bausch.com/en_US/ecp/resources/image_library/full_img/photo276.jpg

    http://www.bausch.com/en_US/ecp/resources/image_library/full_img/photo236.jpg

    http://www.youtube.com/watch?v=TvmENasDFMw

    http://www.a-star.edu.sg/explosion/iss10/sore_eyes.htm

    http://www.visianinfo.com/html/collamer.html

    Lloyd, Andrew W. et al. “Ocular biomaterials and implants”, Biomaterials, Issue 22 pages 769-785.

    Ocular BiomaterialsWhat you're about to see...The Eye – Front to BackA flashback to lens physicsWhat about refractive index?The Eye – Front to BackThe Eye – Front to BackThe Eye – Front to BackThe Eye – Front to BackFor Completeness...Contact LensRelated DiseasesRelated DiseasesRelated DiseasesRelated DiseasesRelated DiseasesBiocompatibilityHydrophilic NatureGas permeabilityBiofilm ResistanceTypes of Contact LensesHard Contact LensesRGP Contact LensesSoft Contact LensesSoft Contact LensesSoft Contact LensesOther UsesThe CorneaCommon Problems with the CorneaCornea TransplantsArtificial CorneasHydrogelsImplantable Contact Lens (ICL)CompositionImplantable Intraocular Lens (IOL)Implantable Intraocular Lens (IOL)A Closer Look at the RetinaHow “seeing” HappensAilments of the RetinaAilments of the RetinaAilments of the RetinaWhat do all these have in common?What do all these have in common?What do all these have in common?Desirable Implant CharacteristicsPolyimidesPolyimidesPolyimidesFixationSpecial Issues With the EyeReferencesReferencesReferences