37
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Kumar, Chandan & Karim, Azharul (2019) Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59 (3), pp. 379-394. This file was downloaded from: https://eprints.qut.edu.au/110867/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1080/10408398.2017.1373269

c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

This may be the author’s version of a work that was submitted/acceptedfor publication in the following source:

Kumar, Chandan & Karim, Azharul(2019)Microwave-convective drying of food materials: A critical review.Critical Reviews in Food Science and Nutrition, 59(3), pp. 379-394.

This file was downloaded from: https://eprints.qut.edu.au/110867/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under aCreative Commons Licence, you must assume that re-use is limited to personal use andthat permission from the copyright owner must be obtained for all other uses. If the docu-ment is available under a Creative Commons License (or other specified license) then referto the Licence for details of permitted re-use. It is a condition of access that users recog-nise and abide by the legal requirements associated with these rights. If you believe thatthis work infringes copyright please provide details by email to [email protected]

Notice: Please note that this document may not be the Version of Record(i.e. published version) of the work. Author manuscript versions (as Sub-mitted for peer review or as Accepted for publication after peer review) canbe identified by an absence of publisher branding and/or typeset appear-ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1080/10408398.2017.1373269

Page 2: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

1

110867Microwave‐ConvectiveDryingofFoodMaterials:ACriticalReview1

C.Kumara1,M.AKarima2

aChemistry, Physics and Mechanical Engineering, Queensland University of 3Technology, Brisbane, Australia 4

5

1. Abstract:6

Microwave convective drying (MCD) is gaining increasing interest due to its7

uniquevolumetricheatingcapabilityandabilitytosignificantlyreducedryingtimeand8

improvefoodquality.Themainobjectiveofthispaperistodiscuss,criticallyanalyze9

andevaluatetherecentadvancesinMCDandsuggestthefuturedirectionsinthisfield.10

The main focus of this paper is the mathematical modelling and experimental11

investigationsinmicrowaveconvectivedryingoffoodmaterials.Recentdevelopments12

inmthamaticalmodellingofMCDisdiscussedandexistingexperimentalsetupandtheir13

advantagesanddisadvantagesarediscussedandanalysed.Longdryingtimeisaconcern14

infoodindustries.ReductionsindryingtimebyapplyingMCDcomparedtoconvection15

drying are calculated and discussed. It was apparent that the proper integration of16

mathematicalmodellingandexperimentaltechniqueisthebestwaytomaximizethe17

advantages of this dryingmethod. Although there is a plethora of research is being18

carried out in this topic, there is still need for research to develop fundamental19

modellingtooptimizetheprocessparametersandscaleupthistechnologyforindustrial20

application.Overall,thereviewprovidesanin‐depthinsightintothelatestdevelopment21

ofMCDanditsmathematicalmodellingapproachesandwillhopefullyservetoinspire22

futureworkinthefield.23

24

Keywords: Food Drying, Microwave, Drying time, Modelling, Food quality,25

Experimentalsetup,Energyefficiency26

1Correspondingauthor:Tel+61415489441,Email:[email protected]

Page 3: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

2

2. Introduction:27

Energyefficiency,productqualityanddryingtimearethreemainconcernsinfood28

drying. Drying research evolved to optimize these three parameters. Based on the29

availabledryingtechnologies,dryingmethodscanbedividedintofourgenerations.First30

andsecondgenerationincludedifferentconvectivedryingmethods.Cabinet,kiln,belt,31

conveyordryerareconsideredas the firstgeneration,andsprayanddrumdrierare32

considered as second generation drying. Then the freeze and osmotic drying are33

consideredasthethirdgeneration.MicrowaveandRFrelateddryingarereferredtoas34

innovative and fourth generation drying technology (Malafronte et al., 2012; Vega‐35

Mercado,MarcelaGóngora‐Nieto,&Barbosa‐Cánovas,2001).Microwaverelateddrying36

is gaining increasing interest due to the following reasons: (a)volumetric heating:37

microwaveenergyheatsupvolumetricallyandpumpsmoisturetosurfacetheproduct38

thuscasehardeningoftheproductcouldbeeliminated(I.W.Turner,Puiggali,&Jomaa,39

1998); (b)increase drying rate:microwave increase diffusion of heat andmass thus40

significantly reduce thedrying time (Mujumdar,2004;M.Zhang,Tang,Mujumdar,&41

Wang,2006);(c)qualityimprovement:qualityofthedriedproductcanbeimprovedby42

combining microwave with other drying method(Dev, Geetha, Orsat, Gariépy, &43

Raghavan, 2011); (d) applying MW energy in a pulsedmanner to maximize drying44

efficiencywhen the process ismass transfer controlled; (e) Boundwatermolecules45

whicharedifficulttoremovecanalsobeexcitedbymicrowaves(Gunasekaran,1999).46

Inordertoimprovetheperformance,microwaveisgenerallycombinedwithhotair47

drying, freeze drying, vacuumdrying, spouted bed drying and osmotic drying. Since48

freezeandvacuumdryinginvolvehighercapitalandoperatingcost,convectiondrying49

ismostwidelycombinedwithmicrowave(Andrés,Bilbao,&Fito,2004).Moreover,the50

maindrawbacksofconvectivedryingarelongerdryingtimesandformationofacrust51

on the surface due to the elevated temperature. Microwaves can mitigate these52

problemsbyincreasingthediffusionrateandsupplyingenoughmoisturetothesurface.53

Thus,combiningmicrowavewithconvectiondryingcansignificantlyshortenthedrying54

timeandimproveproductqualityandenergyefficiency(M.Zhangetal.,2006).Internal55

heat generatedby themicrowave increasepressurewithin thepores anddrives the56

moisture to the surface. The convective air takes themoisture by evaporation, and57

sometimesevaporativecoolingoccursatthesurface(Kumar,Millar,&Karim,2016)..58

Page 4: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

3

There have been tremendous progress in experimental investigation and59

mathematical modelling of MCD in the last few decades. However, there is no60

comprehensive review of the recent advances in this field to analyze the progress61

systematically and prospect future direction. This paper presents a comprehensive62

reviewof the currentdevelopments inMCDof foodmaterials.Thiswork focuseson63

mathematicalmodellingofMCD,experimentalmethodsanddryingtimesavingsinMCD,64

First,areviewonMCDmethodwascriticallydiscussedbycategorizingtheliterature65

intotwobroaddivisions:(1)continuousmicrowave‐convectivedrying(CMCD)and,(2)66

intermittent microwave‐convective drying (IMCD). In this section, the drying time67

savingsandfoodqualityinMCDarediscussed.Thenthecurrentexperimentalprocess68

andtheiradvantagesandlimitationwerepresentedanddiscussed.Finally,anextensive69

review of the mathematical models available for MCD are critically analysed with70

relevantanalysisandreasoning.71

3. Principleofmicrowaveheating72

Microwavereferselectromagneticradiationinthefrequencyrangeof300MHz‐73

300GHz with a wavelength 1mm‐1m. Electromagnetic energy propagates through74

spacesbymeansoftime‐varyingelectricandmagnetic fields(HaoFeng,Yin,&Tang,75

2012).Microwavepenetrates thematerialuntilmoisture is locatedandheatsup the76

materialvolumetrically thus facilitateshigherdiffusionrateandpressuregradient to77

driveoffthemoisturefrominsideofthematerial(I.W.Turner&Jolly,1991).Thereare78

two main mechanisms of MW heating; dipolar reorientation and ionic conduction.79

Water molecules are dipolar in nature and try to follow the electric field which80

alternatesatveryhighfrequency.Foracommonlyusedmicrowavefrequencyof245081

MHz,theelectricfieldchangesdirections2.45billiontimesasecond,makingthedipoles82

movewithit(Kumar,2015).Suchrotationofmoleculesproducesfrictionandgenerate83

heatinsidethefoodmaterial(M.Zhang,Jiang,&Lim,2010).Foodmaterialsespecially84

fruits and vegetables contain about 80%of dipolarwater, therefore,microwave can85

generatesignificantvolumetricheat.Thesecondmajormechanismisionicconduction.86

Theions,particularlyinsaltyfoods,migrateundertheinfluenceofelectricfieldmigrate87

andgenerateheat.Figure1showsthetwoheatingmechanisminthefrequencyregion88

usedinindustryforheatinganddrying.89

Page 5: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

4

90

Figure1:Schematicdiagramdepictingthedipolarandioniclossmechanismsand91

their contributions to the dielectric properties as a function of frequency (Metaxas,92

1996b).93

4. Continuousmicrowave‐convectivedrying(CMCD)94

Anextensivecompilationof literatureregardingmicrowaveassistedconvective95

dryingof food ispresented in Table1. ThesecondcolumnofTable1represents the96

drying time savings for different studies when compared to convective drying. The97

percentageofdryingtimesavingswerecalculatedbydividingthereductionindrying98

timecomparedtoconvectivedryingwiththetotalconvectiondryingtime.Asubstantial99

dryingtimesavingwasreportedby(Sadeghi,MirzabeigiKesbi,&Mireei,2013),where100

theyreportedthattheconvectiondryingoflemonsliceat500Ctook1850min,whereas101

microwaveconvectivedryingwithspecificmicrowavepower2.04W/g tookonly44102

min.Thisisanenormoussavingindryingtime,accounting97%.Anotherconsiderable103

dryingtimesavingwasreportedbyMcMinnetal.(2003)whichisapproximately96%104

forlemonslicedryingusingMCD.OthersignificantdryingtimesavingsusingMCDwas105

reportedbyPrabhanjanetal.(1995)forcarrot(82%),Bantleetal.(2013)forclipfish106

(90%),Gowenetal.(2008)forsoybean(62.5%).Nevertheless,thedryingtimesavings107

maydifferwiththemicrowavepowerlevel.Thehigherthemicrowavepower,themore108

thedryingtimesavings.However,thehigherpowerlevelcandamageoroverheatthe109

product and eventually degrade the food quality. Therefore, the microwave power110

Page 6: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

5

shouldbetakenintoconsiderationwhenapplyingCMCDdrying.Insummary,itcanbe111

concludedthatsubstantialreductioninthedryingtime(25–90%)havebeenachieved112

inMCDdryingwhencomparedwithconvectiondrying(Cinquanta,Albanese,Fratianni,113

LaFianza,&DiMatteo,2013;Izli&Isik,2014;Prabhanjanetal.,1995). However,as114

mentioned earlier, heat sensitive food materials like banana may char due to115

overheating. In thatcase, themicrowaveshouldbeappliedcarefully toavoidquality116

degradationinCMCD.117

Table1:Summeryofmicrowaveassistedconvectiveheatinganddryingoffoodmaterial118

Material Drying time saving

(Maximum)

Modelling of power

distribution

Reference

Apple N/A N/A (Marzec, Kowalska, & ZadroŻNa, 2010)

Apple cylinders N/A N/A (Andrés et al., 2004)

Apple cube 50% N/A (Chong, Figiel, Law, & Wojdyło, 2014)

Apple and

Mushroom

N/A N/A (Funebo & Ohlsson, 1998)

Beetroot 75% N/A (Figiel, 2010)

Carrot N/A Lamberts law (Sanga, Mujumdar, & Raghavan, 2002)

Carrot cubes 82% N/A (Prabhanjan et al., 1995)

Chinese jujube 61% N/A (Fang et al., 2011)

Clipfish 90% N/A (Bantle et al., 2013)

Cooked soybeans 62.5% N/A (Gowen et al., 2008)

Corn N/A N/A (Nair, Li, Gariepy, & Raghavan, 2011)

Cranberries N/A N/A (Sunjka, Rennie, Beaudry, & Raghavan,

2004)

Garlic N/A Lambert’s law (Abbasi Souraki & Mowla, 2008)

Garlic cloves 65% N/A (Sharma, Prasad, & Chahar, 2009)

Gel N/A Maxwell* (Pitchai, Birla, Subbiah, Jones, &

Thippareddi, 2012)

Green peeper N/A Empirical (H. Darvishi, M. H. Khoshtaghaza, G.

Najafi, & F. Nargesi, 2013)

Page 7: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

6

Material Drying time saving

(Maximum)

Modelling of power

distribution

Reference

Green pepper N/A Empirical (H. Darvishi, M. H. Khoshtaghaza, G.

Najafi, & F. Nargesi, 2013)

Lemon slice 97% Empirical (Sadeghi et al., 2013)

Mashed potato N/A Maxwell* (Chen et al., 2014)

Minced beef N/A Lambert’s Law* (Campañone & Zaritzky, 2005)

Moringa oleifera

pods (Drumsticks)

79% N/A (Dev et al., 2011)

Mushrooms N/A N/A (Argyropoulos, Heindl, & Müller, 2011)

Oyster mushroom 80% Empirical (Bhattacharya, Srivastav, & Mishra, 2013)

Pineapple N/A N/A (Botha, Oliveira, & Ahrné, 2011)

Pistachios N/A Empirical (Kouchakzadeh & Shafeei, 2010)

Potato N/A Maxwell’s Equation (Malafronte et al., 2012)

Potato 96% Lamberts law (McMinn et al., 2003)

Potato spheres N/A Maxwells (Gulati, Zhu, Datta, & Huang, 2015)

Pumpkin slices 76% N/A (Ilknur, 2007)

Swede, potato,

bread, and

concrete

N/A N/A (Holtz, Ahrné, Rittenauer, & Rasmuson,

2010)

Sour Cherries N/A N/A (Wojdyło, Figiel, Lech, Nowicka, &

Oszmiański, 2014)

Tomato N/A N/A (Swain, Samuel, Bal, & Kar, 2013)

Tomato slice 85% Empirical (Workneh & Oke, 2013)

Two-percent agar

gel

N/A Lambert’s and

Maxwell’s*

equations

(Yang & Gunasekaran, 2004)

Wheat seeds N/A Lambert’s Law (Hemis, Choudhary, & Watson, 2012)

*‐heatingonly(nomasstransfer);N/A‐Notavailable119

Microwaveassisteddryingalsoapplied tonon‐foodmaterial likewood(Lehne,120

Barton,&Langrish,1999),kaolin(Kowalski,Musielak,&Banaszak,2010),brick(I.W.121

Turner&Jolly,1991),agglomeratedsand(Hassini,Peczalski,&Gelet,2013)andfound122

Page 8: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

7

tobehelpfulintermsofenergyefficiencyandproductquality.Regardingqualityofnon‐123

foodmaterials,MCDdriedproductsresultedinsuperiorqualitywhencomparedtohot124

airdrying(Argyropoulosetal.,2011;Cinquantaetal.,2013).Jindaratetal.(2011)also125

foundthatusingmicrowaveenergyindryingofanon‐hygroscopicporouspackedbed126

reduceddryingtimebyfivetimeswhencomparedtoconvectivedryingmethod.From127

theabovediscussion,itcanbesaidthatMCDisapotentialoptiontoachieveabetter128

qualityofdriedfoodandareductionindryingtime.129

The third columnofTable1 indicates the availability ofmodellingworkof the130

relevantstudyandtypesofmodel,i.e.whethertheyappliedLambert’slaworMaxwell’s131

equationformicrowavepowerabsorption.Moredetailsofthemodellingworkincluding132

Lambert’sLawandMaxwell’sequationarediscussed in themodellingsectionof this133

paperpresentedinsection7.134

However,supplyingcontinuousmicrowaveenergytoheatsensitivemateriallike135

foodmaycauseunevenheatingoroverheatingorevencreatehotspotsandcoldspots136

(Kumar, Joardder, Karim, Millar, & Amin, 2014). Heat and mass transfer should be137

carefullybalancedtoavoidsuchoverheating(Gunasekaran,1999).Thisproblemcould138

beovercomebyapplyingmicrowaveenergyintermittently.Intermittencyalsoallows139

limiting the temperature rise and moisture redistribution which improves product140

qualityandenergyefficiency(Soysal,Ayhan,Eştürk,&Arıkan,2009a).141

5. IntermittentMicrowave‐ConvectiveDrying(IMCD)142

Table 2 summarizes the studies relevant to Intermittent Microwave‐Convective143

Drying (IMCD). Intermittentapplicationofmicrowaveenergy in convectivedrying is144

more advantageous than continuous application and can overcome the problems of145

overheatingandunevenheating.Thishasbeendemonstratedindifferentstudiesshown146

on Table 2. For instance, Soysal et al. (2009a) reported that IMCD of red pepper147

producedbettersensoryattributes,appearance,color,textureandoverallliking,than148

MCD and commercial drying. Soysal et al. (2009b) compared IMCD and convective149

dryingfororeganoandfoundthattheIMCDwas4.7–11.2timesmoreenergyefficient150

comparedtoconvectivedryingandwasabletoprovidebetterqualitydriedfood.151

152

Page 9: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

8

Table2:Summary of intermittent microwave assisted convective heating and drying of food material 153

Material Modelling of power

distribution

Single phase or

multiphase models Reference

Bananas N/A N/A (Ahrné, Pereira, Staack, &

Floberg, 2007)

Carrots, mushrooms N/A N/A (Orsat, Yang, Changrue, &

Raghavan, 2007)

Carrot Slices N/A N/A (D. Zhao et al., 2014)

2% agar gel Lambert’s Law* Single Phase (Yang & Gunasekaran,

2001)

Dill leaves Empirical N/A (Esturk & Soysal, 2010)

2% agar gel N/A* N/A* (Gunasekaran & Yang,

2007a)

Mashed potato Maxwell’s* Single Phase (Gunasekaran & Yang,

2007b)

Oregano N/A N/A (Soysal et al., 2009b)

Pineapple N/A N/A (Botha, Oliveira, & Ahrné,

2012)

Red pepper N/A N/A (Soysal et al., 2009a)

Sage(Salvia

officinalis) Leaves N/A N/A

(Esturk, 2012; Esturk,

Arslan, Soysal, Uremis, &

Ayhan, 2011)

Apple Labmert’s Law Single Phase (Kumar, Joardder, Farrell,

Millar, & Karim, 2015)

Apple Labmert’s Law Multipahse (Kumar, Joardder, Farrell,

& Karim, 2016)

AdvantagesofIMCDintermsofimprovingenergyefficiencyandproductquality,154

andsignificantlyreducingdryingtimehavebeenfoundinmanyotherproductssuchas155

Oregano(Soysaletal.,2009b),Pineapple(Bothaetal.,2012),RedPepper(Soysaletal.,156

2009a),SageLeaves(Esturk,2012;Esturketal.,2011),Bananas(Ahrnéetal.,2007),157

andCarrotsandMushrooms(Orsatetal.,2007).158

Page 10: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

9

ThesecondandthirdcolumnofTable2presentsanoverviewofmodellingstudies159

regardingIMCD.Itcanbeseenfromthetablethatthereareverylimitedstudyregarding160

modellingofIMCD,whichhasbeendiscussedmoredetailsinsection7.161

6. ExperimentsinMCDdrying162

ThissectiondiscussestheexperimentalproceduresusedinliteratureforMCD.163

The limitation and strength of the experimental facilities are analysed and164

recommendations for future experimental setup and challenges in scaling up MCD165

experimentalfacilityaresuggested.166

The main components of an MCD drying test facility are: 1 variable power167

microwavegenerator(magnetron),2.waveguide,3.microwavecavityand4.Aheating168

source forhotair supply (Tulasidas,1995).Microwavegeneratorcanbeavarietyof169

devices such asmagnetrons, klystrons, power grid tubes, travelingwave tubes, and170

gyrotrons,butthemostcommonlyusedsourceisthemagnetron,whichismoreefficient,171

reliable, and available at lower cost than other sources (National Research Council,172

1994).Microwavegeneratedinmagnetronisguidedthroughwaveguidestothecavity173

wherethematerialsareplaced.At thesametimehotairneedstobesuppliedtothe174

cavitytocombinewiththeconvectivedrying.TheMCDdryingsetupscanbeclassified175

intotwomaincategoriesbasedonthecavitytype:singlemodecavityandmultimode176

cavity(Chandrasekaranetal.,2011).177

6.1 Experimentalprocesswithsinglemodecavity178

Singlemodecavitiesareusedwhenprecisefocusatagivenlocationisneeded.179

Forthesecavities,thetransverseelectric(TEorH)wavesandtransversemagnetic(TM180

orE)wavesarecommonlyusedwhicharedesignedeitherrectangularorcircularcross181

section.Theelectric intensity inthedirectionofpropagation iszero fortheTEwave182

whereasfortheTMwave,themagneticintensityinthedirectionofpropagationiszero183

(Chandrasekaran, Ramanathan, & Basak, 2012). Single mode applicators are used184

extensivelywheretheloadconditionscanbekeptconstant(andthusrepeatedtuningis185

not required). These conditions are present in heating a fluid stream, for example,186

whereby the fluid flowsthroughtheapplicatorsuchthat itspropertiesarerelatively187

constant.188

Page 11: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

10

AbasicsinglemodeapplicatorsetuphasbeenshowninFigure2.Thewaveguide189

circulator(as inFigure2) isa three‐portdevice ideallyhavingnopowerattenuation190

capability.Becausecirculatorsarenotdesignedtoabsorbpower,aseparate“dummy”191

loadisconnectedtothecirculatorandusedtoabsorbreversepowerthatmayotherwise192

damagethemagnetron(Gerling,2000).193

194

Figure2:Basicsinglemodeapplicatorsetup(Gerling,2000)195

Impedancematchingisusuallyachievedusingthreemanualstubtuners,which196

are used to alter the capacitance of the waveguide system (Gerling, 2000). As an197

example,twostrawberriesofslightlydifferentshapewouldrequiredifferentstubtuner198

settings (position and penetration depth) for optimum impedance matching.199

Furthermore, the same strawberry at different drying stages (and thus different200

moisture contents)may require a drastic change in stub tuner settings to keep the201

strawberrymatchedwith the load. Failure tomatch two impedances results inpoor202

microwavepowercouplingwiththeload.203

Therearemanyotherstudiesthatusedspeciallydesignedsinglemodeapplicator204

intheirstudy(Holtz,Ahrné,Karlsson,Rittenauer,&Rasmuson,2009;Holtzetal.,2010;205

Malafronteetal.,2012).Thedryingequipment(asshowninFigure3)comprisedofa206

straightaluminiumwaveguide (8643mm) fittedwithanair‐cooledmagnetron (2.45207

GHz,2M244‐M16,Panasonic,Cwmbran,U.K.).Thedryingcavitywassituatedinsidethe208

waveguide.Betweenthemagnetronandwaveguideathree‐stubtuner(stainlesssteel)209

Page 12: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

11

wereincorporated,andthefarendofthewaveguidewasadjustable,enablingthelength210

ofthewaveguidetobeadjusted.211

212

Figure3.Microwaveconvectivedryingequipment.Schematicimageand213dimensionsofthedryer(applicator)(Malafronteetal.,2012)214

Jindaratetal.(2011)analysedenergyefficiencyofmicrowaveconvectivedrying215

usingaTE10modemicrowaveconvectivedryerforporouspackedbed.Figure4shows216

the experimental setup using a rectangular waveguide with dimension of 110mm217

⤬55mm. The isolator was used to trap microwave reflection from sample to save218

magnetron.The temperatureatvariouspointofsamplewasmeasuredby fiberoptic219

probes.220

Page 13: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

12

221

222

Figure4.Schematicofexperimentalfacility:(a)equipmentsetup;(b)223microwavemeasuringsystem.(Jindarat,Rattanadecho,&Vongpradubchai,2011)224

Inconclusionofsingleofcavitydiscussion,itcanbesaidthattheexperimental225

setupwithasinglemodelcavityaremainlydesignedforstudyingthephysicsinvolved226

ratherthanbeingoptimizedforadryingprocess.Inthesesetups,couplingmicrowave227

powertoaloadrequirestherespectivecompleximpedancesbetweentheloadandthe228

microwavepowersourcetobematched.Thisisthegreatestdisadvantageofasingle229

mode applicator, since the complex impedance of the load changes with geometry,230

chemical composition and temperature (Gerling, 2000). Precision control or target231

heatingcanbeachievedwithsinglemodeapplicator.However,multimodeapplicatoris232

beingwidelyusedintheindustrialsystem.233

6.2 Experimentalprocesswithmultimodemodecavity234

Multimode microwave applicators are closed volume, totally surrounded by235

conductingwallsandhavealargecavitytopermitmorethanonemode(pattern)ofthe236

electric field (Funebo & Ohlsson, 1998). Unlike single mode applicators, multimode237

applicators are less sensitive to product position or geometry (Chandrasekaran,238

Page 14: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

13

Ramanathan,&Basak,2013).Figure5showsamultimodecavitywithhotairinletand239

outlet fordryingofpumpkin (Wang,Wang,&Yu,2007).Manydrying researchused240

modifiedhouseholdmicrowaveovenasmultimodeapplicator.Wangetal.(2007)used241

alaboratorymicrowaveovenwithanoutletattheupperleftsideoftheoventoallow242

exhaustofmoistairasshowninFigure5.Onedish,containingthesample,wasplaced243

atthecenterofaturntablefittedinside(bottom)themicrowavecavity.Moistureloss244

wasrecordedat5minintervalsduringdrying,measuredbytakingoutandweighingthe245

dishonthedigitalbalance(JY1000,1000±0.01g).However,takingthesampleoutmay246

causesomeerrorinmoisturemeasurement.Themajorlimitationofthisstudywasthat247

therewasno temperaturemeasurement of the sample. Therefore, itwas difficult to248

monitortheoverheatingofthesamples.249

250

251

Figure5:Multimode applicatorwithmode stirrer and turntable(Wang et al.,2522007).253

Figure 6 shows a modified microwave (900 W, 2450MHz), having an inside254

chamberwithdimensionsof(345x335x220)whichwasusedtodryOregano(Soysalet255

al.,2009b;Soysaletal.,2009a).Tworectangularopening(10x8cm2)wasmadeonthe256

Page 15: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

14

backandtopwalltosupplyandexithotairrespectively.Theheatedairwasforcedinto257

thedryingchamberbya radial fan (100W,180m3/h).Apotentiometerwasused to258

controlthespeedofthefan.Continuousmonitoringoftheweightwasdonewithadigital259

balance(SartoriusTE3102S,Germany,3100±0.01g)thatwasplacedundertherotating260

glasstray(diameter:314mm,mass:1150g).Aprogrammable logiccontroller(PLC)261

systemwasusedtocontroltheintermittencetime,thefanandtheglassturntable.The262

temperature of the air inside the air duct was measured using a PT100 platinum263

resistancetemperaturesensor.Theglassturntableonwhichthematerialwasplaced264

continuously turned (5 rpm) during the drying procedure to obtain a uniform265

distributionofthemicrowaveenergyinthematerial,andtoassurehomogenizeddrying.266

Thisdryingsystemisimpressivebecauseitisequippedwithtemperature,moisture,and267

airvelocitymeasurementsystem.However,onelimitationcouldbetheunevenairflow268

distributioninthedryingchamber.Astheairentersatthebottomandexitatthetop,269

this may result in uneven airflow or poor airflow distribution over the product.270

Moreover,thetemperaturedistributioncanbeuneveninmicrowavesoitisbetterto271

usethermalimagingcamerainmultimodecavityratherthanpointmeasurementusing272

thermocouple.273

274

Figure 6: Experimental microwave–convective drying system: 1. microwave275drying chamber; 2, rotating glass tray; 3, tray rotating rod; 4, digital balance; 5, PID276controlunitandsolid‐staterelay;6,airentrance;7,wiremesh;8,moistairexitopening;2779,temperaturesensor;10,airduct;11,electricheaters;12,fan;13,fanspeedadjuster;27814,digitalwattmeter;15,PLCcontrolunit(Soysaletal.,2009b;Soysaletal.,2009a).279

Page 16: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

15

UpritandMishra (2003)usedamodifiedprogrammabledomesticmicrowave280

oven(IBM,ModelElectron),withamaximumoutputof625Wat2450MHzandcavity281

(dryingchamber)dimensionsof300x240x210mmasshowninFigure7forsoy‐fortified282

paneerdrying.Moisturelossinthesamplewasmeasuredbyon‐lineweightrecording283

at 3 min interval. The temperature and relative humidity of the exhaust air were284

measuredperiodicallyusingadigitalhygrometer(ALMEMO,Germany).Thematerialis285

assumedtoreachequilibriummoisturecontentwhenthematerialacquiredaconstant286

weight.Theypaidspecialattentiontoavoidcharringoftheproductwhichisdifficult287

withoutmeasuringthetemperatureoftheproduct.Becausemicrowaveheatingisfast288

and volumetric, their visual inspection may not be sufficient to predict the289

commencementofcharring.290

291

Figure7.Schematicofmicrowaveconvectivedryer(Uprit&Mishra,2003)292

293

Andrés et al. (2004) performed experiments in a specially designed hot air–294

microwaveovenequippedwithcontinuousmicrowaveenergy(Figure8).Theyvaried295

microwavepowerandairtemperaturewithconstantairvelocityat1m/s.296

Page 17: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

16

297

Figure8.Schematicillustrationofthecombinedhotair–microwavedrying298equipment(Andrésetal.,2004).299

Ahrnéetal.(2007)Thedryingexperimentswereperformedinadryer(Figure300

9)speciallydesignedintheframeworkoftheEuropeanUnionprojectICA4‐CT‐2002‐301

10034byP.O.RismanincollaborationwithSIKandconstructedbyTIVOXmachineAB302

(TIVOXMaskinAB,Sweden).Itcanbeoperatedwithatemperatureof40‐800Candair303

velocity of 0.3‐0.8m/s. The product temperature was measured by fiber‐optic304

temperaturesensors (ReFLexTM,Neoptix,Canada)placed in four samples locatedat305

differentpositionsofthedryer.Thefiberoptictemperatureprobesgivetemperatureat306

a point which may sometimes deceive in microwave heating experiments since307

microwavegeneratesunevenheatingwithhotspotandcoldspotinthesample.Instead308

of point measurement, Kowalski, Musielak et al. (2010) used a thermal imager to309

measure2Dsurfacetemperature(Figure10)whichcanprovidemoredetailinformation310

ofsurfacetemperatureofthesample.311

312

Figure9.Schematicrepresentationofthemicrowaveconvectivedryer.(Ahrné313etal.,2007)314

Page 18: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

17

Kowalski,Musielaketal.(2010)usedamicrowaveovenwithcavitydimensions315

300x400x450 which can supply maximum power of 600W. They found that316

temperaturewashigherinthemiddleofthesample.Intheirsetup,airwith220Cwas317

suppliedwithinstalledmechanicalventilationsystem.However,fromFigure10,itisnot318

clearwheretheventilationsystemwasplacedandhowefficientlyitworked.Airflowis319

importantbecausereducedairflowmayresultsmoistureaccumulationatthesurfaceof320

thesamplewhichreducesdryingrateanddegradessampletextureforfoodapplication.321

322

Figure10.Theexperimentalset‐up:(a)microwave‐convectivedryerand(b)323determinationofthetemperaturedistribution324

Incontrast,Fuetal.(2005)developeddryertooperateatanairvelocityof1‐325

3m/stoprovidesufficientairflowtothedryingchamber(Figure11).Theairwasdrawn326

withanaxialfanthroughcuttingventonthemicrowavewall.However,oneshouldmake327

surethat themicrowave leakageis lessthantheallowable limit(5mW/cm2)through328

thatvent.329

Page 19: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

18

330

Figure 11.Apparatus for convective and microwave finish drying (Fu et al.,3312005)332

Temperatureandmoisturearethetwomainparametersneedtobemeasured333

accuratelyduringthedryingprocess.Theefficacyofanexperimentalsetupdependson334

howaccurately these twoparameterscanbemeasured.Additionally, theairvelocity335

distributionplaysanimportantroleindryingratebecauseitaffectstheheatandmass336

transfercoefficientwhichisessentialformodelling.337

The major problem with multimode applicators is non‐uniformity of the338

microwavefieldintheloadwhichcausesnon‐uniformheatdistribution.Thisproblem339

canbeminimisedbyprovidingamodestirrer(rotatingmetalbladedfan)orturntable340

(Schiffmann, 1995). The effect of mode stirrers in a multimode microwave heating341

applicatorareinvestigatedbyKurniawanetal.(2015)using3DCOMSOLMultiphysics342

Simulation.Theyhavefoundthatthetemperaturedistributionismoreuniformforthe343

casewithmodestirrerscomparedtothatobtainedwithoutmodestirrers.Implementing344

intermittency inmicrowave application is another technique to reduce non‐uniform345

heatingofsample.346

In summary, the experimental facilities for a MCD should be equipped with347

continuous weight monitoring, temperature monitoring such as thermal imaging348

camera,andhaveuniformairflowdistributioninthechamber.Inaddition,thesafetyof349

thesetupisanothercriticalissue.Becausethemicrowaveleakagecancausedamageto350

human cell and tissues and cause cataracts. Therefore, the design of vent or any351

Page 20: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

19

perforationshouldbecarefullyhandledwhiledesigningandmanufacturingmicrowave352

assisteddryer.353

7. MathematicalModellingofMCD354

Mathematicalmodels can be used to predict the internal temperature that is355

difficult to measure and control the microwave power to avoid overheating. As356

discussedinsection3thatmicrowavegeneratevolumetricheatinsidethesampleand357

thisheatgenerationneedstobeaddedinenergyequationwhenmodellingMCDprocess.358

Thus the theoretical investigationofMCD consists of twoparts. The first part is the359

calculationofmicrowavepowerabsorptionthatconvertedintoheatandthesecondpart360

issolvingtheconjugateheatandmasstransferfordrying.Thissectiondiscussesboth361

microwavepowerabsorptionandheatandmasstransferduringMCDdrying.362

7.1 ModellingofMWpowerabsorption363

InMCDmodel,heatgenerationanalysisiscrucialforaccurateestimationofthe364

temperature of the sample. Volumetric heat generation depends on the dielectric365

propertiesofthematerial,andthefrequencyandintensityoftheappliedmicrowave.366

There is plethora of studies regarding calculation of power distribution or heat367

generationduetomicrowave.Inthepreviousstudieselectromagneticfieldinsidethe368

product was assumed to be (i)uniform; (ii) exponentially decayed; (iii)decayed369

followingempiricalrelations;(iv)decayedfollowingLambert’srelationand(v)decayed370

calculated by solving electric field equations (Maxwell’s equations). Among them,371

Lambert’sLawandMaxwell’sequationsaremostcommonlyusedinmicrowaveassisted372

drying.373

374

7.1.1 Lambert’sLaw:375

Microwaveenergydistribution in foodproductswithbasic geometries (slabs,376

spheres, and cylinders) is calculated by using Lambert’s Law. Especially in drying,377

applicationofthislawismorecommon(AbbasiSouraki&Mowla,2008;J.R.Arballo,378

Campanone,&Mascheroni,2012;Hemisetal.,2012;Khraisheh,Cooper,&Magee,1997;379

Mihoubi & Bellagi, 2009; Salagnac, Glouannec, & Lecharpentier, 2004; Zhou, Puri,380

Anantheswaran,&Yeh,1995).381

Page 21: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

20

Lambert’s Law considers exponential attenuation of microwave absorption382

withintheproduct,viathefollowingrelationship.383

x)(-20expP=xP (1)

Here, the incident power at the surface (W), α is he attenuation constant384

(1/m), and x represents the distance from surface (m). The measurement of 0P is385

generallyobtainedviaexperimentation.386

Theattenuationconstant, isgivenbythefollowingequations387

2

1'

''1

'2

2

1

(2)

where isthewavelengthofmicrowaveinfreespace( cm24.12 at2450MHz388

andairtemperature200C)andε'andε"arethedielectricconstantanddielectricloss,389

respectively.390

Thevolumetricheatgeneration, micQ (W/m3)inEquation(3)isthencalculated391

by:392

V

PQ mic

mic , (3)

where,Visthevolumeofapplesample(m3).393

However,Lambert’sLawdoesnotaccuratelypredicttheheatingsituationand394

electricfielddistribution(Chandrasekaranetal.,2012;V.Rakesh,Datta,Amin,&Hall,395

2009).Recently,Kumaretal.(2015)developedmathematicalmodelforIMCDdrying396

usingLambert’slawandhighlightedthelimitationsofLambert’slaw.Theymentioned397

thatthemicrowaveabsorptionshouldreducewithdecreasingmoisturecontent,butthe398

Lambert’s Law fails to take this into account, giving highest power at the surface399

irrespectiveofmoisturecontent.400

Duringthe1970sand1980smostofthepowerabsorptioncalculationwasbased401

onLambert’slaw.However,duringtheearly1990s,theoreticalfoundationofcombined402

electromagneticandthermaltransportusingMaxwell’sequationshasbeenestablished.403

Chandrasekaran, Ramanathan et al. (2012) reviewed the comparison between404

Page 22: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

21

Lambert’slawandMaxwell’sequation;theyreportedthatMaxwell’sequationgiveexact405

andmoreaccuratesolutionformicrowavepropagationinsamples.406

7.1.2 Maxwell’sEquations407

Maxwell’sequationsareasetofpartialdifferentialequationsofelectrodynamics408

whichrepresentafundamentalunificationofelectricandmagneticfieldsforpredicting409

electromagneticwavepropagation.Physicistandengineersusecomputersrangingfrom410

simpledesktopmachinestomassivelyparallelsupercomputingarraysforsolvingthese411

equationstoinvestigatewaveguiding,radiation,scattering,andheating(H.Zhao,1997).412

Maxwell’s equations that govern the propagation and microwave heating of413

materialaregivenbelow:414

t

BE

(4)

cJt

DH

(5)

0. B (6)

D. (7)

WhereEiselectricfielddistribution(V/m),Diselectricfluxdensitydistribution415

(C/m2),Hismagneticfielddistribution(A/m),Bismagneticfluxdensitydistribution416

(W/m2), currentdensity(A/m2),ρisvolumechargedensity(C/m3).417

InfrequencydomaintimeharmonicMaxwell’sequationscanbewrittenas418

0''''

1 2

Ei

cE

(8)

where Eistheelectricfieldstrength(V/m), f isthemicrowavefrequency(Hz),419

c isthespeedoflight(m/s), ' , '' , arethedielectricconstant,dielectriclossfactor,420

andelectromagneticpermeabilityofthematerial,respectively.421

422

Theheatgenerationduetomicrowave, mQ (W/m3),givenby(COMSOL,2012),423

mlrhm QQQ . (9)

Page 23: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

22

Here, rhQ istheresistiveloss(W/m3)and mlQ isthemagneticloss(W/m3).For424

foodproductsthemagneticlossesarenegligible,i.e. 0mlQ (Chenetal.,2014).425

Theresistivelosscanbecalculatedas(Chenetal.,2014;Wentworth,2004)426

*5.0 EJQrh

(10)

where *EistheconjugateofE

andtheelectriccurrentdensity J

(A/m2)isgiven427

by,428

EfEJ

02 , (11)

where, istheelectricalconductivity(S/m), isthedielectriclossfactorand429

0 ispermittivityinfreespace.430

Substitutingtheaboveintoequation(12),themicrowaveheatgenerationdueto431

canbewrittenas,432

2

0 EfQm (12)

whichconformswiththeheatgenerationsequationderivedbyMetaxas(1996a).433

7.2 Dielectricproperties:434

Dielectricpropertiessuchasdielectricconstantanddielectriclossfactordefine435

how materials interact with electromagnetic energy. These properties of materials436

definehowmuchmicrowaveenergywillbeconvertedtoheat(Chandrasekaranetal.,437

2013). As can be seen from the heat generation formulation above, the dielectric438

properties of the material are one of themost important parameters in calculating439

microwaveheatgenerationduringdrying(Sosa‐Morales,Valerio‐Junco,López‐Malo,&440

García,2010).Therefore,theevaluationofdielectricpropertiesiscriticalinmodelling441

andproductandprocessdevelopment(Ikediala,Tang,Drake,&Neven,2000).442

7.3 HeatandmasstransfermodellinginMCD443

Heatandmasstransfermodel isnecessaryforevaluatingtheeffectofprocess444

parametersonenergyefficiency anddrying time, andoptimizing thedryingprocess445

Page 24: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

23

(Kumar,Karim,Joardder,&Miller,2012a;Kumar,Karim,&Joardder,2014).Developing446

aphysicsbaseddryingmodelforagriculturalproductsisachallengingtaskduetothe447

complexstructuralnatureofagriculturalproductsandchangesinthethermo‐physical448

properties during drying. Moreover, the heat generation due to microwave in MCD449

makesthemodellingmorechallenging.Therefore,someassumptionsareindispensable450

if mathematical models are to be developed, but these should be carefullymade to451

represent thephysical phenomenaduring theprocess. In this section, themodelling452

approachesofheatandmass transfer inMCDarediscussed, and their limitationare453

highlighted.TheMCDdryingmodelsavailable in literaturecanbeclassified into two454

categories:empiricalmodels,fundamentalmodels.Thefundamentalsmodelsagainthen455

categorizedintothreedivisionsbasedontheirwatertransportmechanisms:1)single456

phase,2)doublephaseand3)multiphasemodelsasshowninFigure12.Inthefollowing457

sections,themodelbasedontheseclassificationarediscussedandanalysed.458

459

Figure12.Generalclassificationofmicrowavedryingmodels460

461

7.3.1 Empiricalmodel462

TheempiricalmodelsaregenerallyderivedfromNewton’slawofcoolingandFick’s463

lawof diffusions (Erbay& Icier, 2010). These are simpler to apply and oftenused to464

describethedryingcurve.Thedryingconstantandcoefficientsintheempiricalmodels465

are developed with regression analysis. Page model and exponential model are466

frequently used in microwave convective drying. Table 1 and Table 2 present the467

Page 25: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

24

empiricalmodelofCMCDandIMCDavailableintheliterature.Therearemanydifferent468

empirical model often referred as thin layer drying models such as Newton, Page,469

Henderson Pabis, Logarithmic, two term, two‐term exponential, and Wang and Sing470

models.Theacceptabilityofthesemodelsareusuallydeterminedbythecoefficientof471

determinationR2, and the reducedvalueofmean squareofdeviationχ2.Theydonot472

providephysical insightintotheprocess.Also,thesemodelsareonlyvalidforspecific473

process condition and material. In contrast to empirical models, the physics‐based474

models can capture the inherent drying mechanism better (Chou, Chua, Mujumdar,475

Hawlader,&Ho,2000;Chua,Mujumdar,&Chou,2003;Ho,Chou,Chua,Mujumdar,&476

Hawlader,2002).The theoreticalmodelsoften canbeused forwide rangeofprocess477

parameterandcanbeusedforparametricanalysisandoptimization.478

7.3.2 Singlephasemodel479

Thesinglephasemodelsconsideronlyonephaseinfooddomaini.e.liquidwater480

diffusionthroughthesolidmedia.Theseareoftencalleddiffusion‐basedmodelsandare481

verypopularbecauseoftheirsimplicityandgoodpredictivecapability(JavierR.Arballo,482

Campañone,&Mascheroni,2010;Kumaretal.,2012b;Perussello,Kumar,deCastilhos,483

&Karim, 2014).Maybe due to this reason,most of themodel related tomicrowave484

assisted drying are single phase. Thesemodels assume conductive heat transfer for485

energyanddiffusivetransportformoisture.486

Thesinglephasemodelconsidersonlydiffusivewatertransportasshowninthe487

equation(13).488

489

0u)(-Deff

www cct

c (13)

490

where,cwisthemoistureconcentration(mol/m3), effD istheeffectivediffusion491

coefficient(m2/s)anduistheconvectiveflow.Theeffectivediffusioncoefficient, effD ,in492

thosemodelshastobedeterminedexperimentally.Thusthismodelcanbesaidassemi‐493

empiricalmodel.494

TheenergybalancewascharacterizedbyaFourierfluxwithaheatgenerationterm495

duetomicrowaveheating, micQ (W/m3).496

Page 26: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

25

micp QTkt

Tc

).( (14)

where,Tisthetemperature(0K), isthedensityofsample(kg/m3), pc isthespecificheat497

(J/kgK), and k is the thermal conductivity (W/mK). Theheat generation, micQ (W/m3),498

wascalculatedusingLambert’sLaw.499

Incaseofmicrowaveheatingordrying,theeffectivediffusivityincreasesdueto500

volumetric heating which cause pressure driven flow. This pressure driven flow is501

lumpedtogetherwithdiffusionincaseofsinglephasemodels.Thereforeitcanbesaid502

thatalthoughthismodelcanprovideagoodmatchwithexperimentalresults,itcannot503

provideanunderstandingofothertransportmechanismssuchaspressuredrivenflow504

and evaporation. This is because all water are lumped in one parameter, diffusion505

coefficient,cannotprovideindividualcontributionofthewaterflux.Thedrawbacksof506

thesekindsofmodelsarediscussedindetail intheworkofZhangandDatta(2004).507

Lumping all thewater transport asdiffusion cannotbe justifiedunder all situations.508

Therefore,multiphasemodelsconsideringtransportofliquidwater,vapour,airinside509

thefoodmaterialsareconsideredtobemorerealistic.510

7.3.3 Doublephasemodel511

Double phase models consider two species, namely water vapour and liquid512

waterformasstransferduringthemodellingprocess.Thesemodelsarecomparatively513

more realistic and comprehensive than single‐phase models because of the514

incorporationofevaporationorphasechangebetweenliquidwaterandwatervapour.515

Thegeneralgoverningequation fordoublephasemodel ispresented inEq (15)and516

(16).517

Liquidphaseofwater: Rcuc-Dt

cllll

l

(15)

Vapourphaseofwater:

Rcuc-Dt

cvvvv

v

(16)

Herethe lc and vc aretheconcentrationofliquidwaterandwatervapour, lD and518

vD arethediffusioncoefficientforliquidwaterandwatervapourand lu and vu arethe519

convectiveflowofliquidwaterandvapour.TheRistheproductionorconsumptionof520

Page 27: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

26

species (i.e. evaporation or condensation). Malafronte et al. (2012) estimated the521

evaporationrateas,522

0

)( vsatc cTckR when,

vsat

vsat

cc

cc

(17)

WhereRT

TMPTc v

sat

)()( and vapour pressure was calculated from Antoine’s523

equation.524

There are some two phase models in MCD drying process. For example,525

Malafronte et al. (2012) developed a two phase models for combined microwave526

convective drying. The strong point of the model is that they took moisture and527

temperaturedependentdielectricproperties.Moreover,theysolvedbothheatandmass528

transportequationsandMaxwell’sequationsintransientregime.Marraetal.(2010)529

alsodevelopedatwophasemodelforcombinedmicrowaveconvectivedrying.Themain530

strongpointoftheirmodelisthattheyconsideredconjugateapproachofheatandmass531

transfer,whichenabledtocalculaterealisticheatandmasstransfercoefficientwithout532

requiringempiricalaveragebasedcalculations. Jindaratetal. (2011)alsoconsidered533

twophasetransport.However,thedeformationorshrinkagehavenotbeenconsidered534

inallthesemodels.Moreover,theavailablemodelconsideringtwophaseneglectedthe535

Darcyorpressuredrivenflowi.e.bulkflow.Multiphasemodelsdiscussedbelowhave536

consideredbulkflow.537

7.3.4 Multiphaseporousmediamodel:538

The multiphase models consider all phases inside the food materials namely water, air, 539

water vapour and solid matrix. Multiphase models can be categorised into two groups: 540

equilibrium and non-equilibrium approach of vapour pressure. In equilibrium formulations, the 541

vapour pressure, vp , is assumed to be equal with equilibrium vapour pressure, eqvp , , and vice 542

versa. There are some multiphase models considering equilibrium approach applied in vacuum 543

drying of wood (Ian W. Turner & Perré, 2004) and convection drying of wood and clay 544

(Stanish, Schajer, & Kayihan, 1986) (Chemkhi, Jomaa, & Zagrouba, 2009), microwave 545

spouted bed drying of apple (H. Feng, Tang, Cavalieri, & Plumb, 2001) and large bagasse 546

stockpiles (Farrell et al., 2012). Some multiphase porous media models combine the liquid 547

water and vapour equations together to eliminate the evaporation rate term (Farrell et al., 2012; 548

Page 28: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

27

Ratanadecho, Aoki, & Akahori, 2001; Suwannapum & Rattanadecho, 2011). By doing this, the 549

concentrations of liquid water and vapour cannot be determined separately (Kumar, Joardder, 550

et al., 2016). 551

However, equilibrium condition may be valid at surface with lower moisture content 552

because equilibrium condition may not be achieved due to lower moisture content at the surface 553

during drying. Therefore, the non-equilibrium approach is a more realistic representation of 554

the physical situation during drying (J. Zhang & Datta, 2004). Moreover, the non-equilibrium 555

formulation for evaporation can be used to express explicit formulation of evaporation, thus 556

allowing calculation of each phase separately. Furthermore, non-equilibrium multiphase 557

models are computationally effective and applied to wide range of food processing such as 558

frying (Bansal, Takhar, & Maneerote, 2014; Ni & Datta, 1999), microwave heating (Chen et 559

al., 2014; V. Rakesh, Seo, Datta, McCarthy, & McCarthy, 2010), puffing (Vineet Rakesh & 560

Datta, 2013) baking (J. Zhang, Datta, & Mukherjee, 2005), meat cooking (Dhall & Datta, 2011) 561

etc. However, application of these non-equilibrium models in drying of food materials is very 562

limited. 563

TherearesomemultiphasemodelsinMCDprocess.Mostrecently,Kumaretal.564

(2016) developed multiphase model for IMCD of apple. They considered non‐565

equilibrium approach and applied Lambert’s law to calculate microwave heat566

generation.Dinčovetal. (2004)developedaFinitevolumemultiphaseporousmedia567

model where the coupling was achieved by considering dielectric properties as a568

functionofmoisture and temperature. Zhuet al. (2015)developeda comprehensive569

multiphase model of microwave drying of sphere. The governing equation used to570

developthemultiphasemodelaresummarisedinTable3(Kumar,Joardder,etal.,2016).571

Table3.Summaryofgoverningequationsusedinmultiphasemodelling572

Physics and Phases Governing Equations Eq. No.

Hea

t and

Mas

s T

rans

port

Mas

s T

rans

port

Wat

e Liquid water evapc

w

wrww

w

wrwwww Rp

kkP

kkS

t

,,

(18)

Gas

Vapor evapvgeffgg

v

grgvgvgg RDSP

kkS

t

,

,(19)

Air va 1 (20)

Gas pressure evap

g

grggg RP

kkS

t

,

g (21)

Page 29: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

28

Ene

rgy

Energy mevapfgeffthwwggeffpeff QRhTkhnhn

t

Tc

).( ,

(22)

Nom

encl

atur

e

Sym

bols

=porosity, S=saturation, =density, k= permeability, P=gas pressure, = viscosity, P=gas

pressure, c= concentration, D=Diffusion coefficient, =mass fraction, T=Temperature, n

= flux, kth= thermal conductivity, h= latent heat, E=Electric field, f= microwave frequency, c= speed of light, Qm= microwave heat generation, Revap=evaporation of liquid water, p= pressure,

m = magnetic permeability, ' = dielectric constant , '' =dielectric loss factor, 0=permittivity in free space,

Subscript

w=water=vapor, g=gas, eff=effective, m=microwave, r=relative=capillary, evap=evaporation, m=microwave

573

8. Challengesandfuturedirectionforresearch574

Themajorchallengeinmicrowavesystemisthenon‐uniformityofelectricfield.575

Future research should involve addressing this problem focusing on obtainingmore576

uniform electric filed distribution thus to obtain uniform temperature andmoisture577

distribution.Onepotentialsolutioncouldbeusingmultiplemagnetronatappropriate578

locationofthechamber.Mathematicalmodellingandsimulationwouldbeessentialto579

do such investigations. The plant based food materials are hygroscopic in nature,580

containingfreewaterandboundwater.Thetransportmechanismsoffreewaterand581

boundwateraredifferent.Therefore,thefuturemodellingstudyofMCDshouldinclude582

aseparatemechanismforthetransportoffreeandboundwater.Moreover,themodels583

shouldbeabletopredicttheeffectofprocessparametersondryingkinetics,thenthe584

models can be used to optimize the process and suggest an appropriate strategy of585

applyingMCDtoavoidoverheatingandgainingmaximumfoodqualitywithminimum586

energyusage.587

9. Conclusion588

The present study provides an overview of MCD process focusing on drying589

kinetics,experimentalprocessandmathematicalmodelling.Moreover,thecomparative590

study of drying time betweenmicrowave assisted drying and convective drying for591

differentmaterialsarecalculatedanddiscussed.Itisclearthatdryingtimesavingcan592

beupto90%byapplyingmicrowave.ConsideringthishugedryingtimesavingofMCD,593

there is enourmous potential of this process in industrial applications. The critical594

Page 30: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

29

review of experimental facilities showed that the experimental facilities should be595

equippedwith real timemoistureand temperaturemeasurementof the sample, and596

shouldhaveuniformairflowdistribution.Theriskandsafetyissuesofcreatingventfor597

airflowinmicrowavecavitywasinvestigated.Althoughthesetupwithasinglemode598

cavity can provide an understanding of physics, their performance is sensitive to599

product position and geometry. In contrast,multimode cavities are less sensitive to600

productpositionorgeometrybutprovidesunevenheating.However,theseunevenheat601

canbeminimizedbyapplyingmicrowaveintermittently,providingturntableormodel602

stirrersandbysuitablecavitydesign.Continuousmicrowave‐convectivedrying may603

overheat and damage quality which can be overcome by intermittent microwave‐604

convective drying by applying appropriate power level and pulse ratio. The605

mathematical modeling can help to optimize intermittency and power level of606

microwaveforbetterproductqualityandenergyefficiency.Onemajordisadvantageof607

microwave application is the non‐uniform heating due to standing wave pattern. A608

comprehensivemultiphasemathematicalmodelcanalsohelp inselectingmagnetron609

size, position and cavity shape in order to obtain more uniform heating pattern.610

Therefore,thefutureresearchshouldfocusonscalingupandoptimizingthistechnology611

forindustrialapplications.612

10. References613

Abbasi  Souraki,  B.,  &  Mowla,  D.  (2008).  Experimental  and  theoretical  investigation  of  drying 614behaviour of garlic in an inert medium fluidized bed assisted by microwave. Journal of Food 615Engineering, 88(4), 438‐449. doi:10.1016/j.jfoodeng.2007.12.034 616

Ahrné, L. M., Pereira, N. R., Staack, N., & Floberg, P. (2007). Microwave Convective Drying of Plant 617Foods at Constant and Variable Microwave Power. Drying Technology, 25(7‐8), 1149‐1153. 618doi:10.1080/07373930701438436 619

Andrés, A., Bilbao, C., & Fito, P. (2004). Drying kinetics of apple cylinders under combined hot air–620microwave  dehydration.  Journal  of  Food  Engineering,  63(1),  71‐78.  doi:10.1016/s0260‐6218774(03)00284‐x 622

Arballo, J. R., Campanone, L. A., & Mascheroni, R. H. (2012). Modeling of Microwave Drying of Fruits. 623Part  II:  Effect  of  Osmotic  Pretreatment  on  the Microwave  Dehydration  Process.  Drying 624Technology, 30(4), 404‐415. doi:10.1080/07373937.2011.645100 625

Arballo, J. R., Campañone, L. A., & Mascheroni, R. H. (2010). Modeling of Microwave Drying of Fruits. 626Drying Technology, 28(10), 1178‐1184. doi:10.1080/07373937.2010.493253 627

Argyropoulos, D., Heindl, A., & Müller, J. (2011). Assessment of convection, hot‐air combined with 628microwave‐vacuum  and  freeze‐drying methods  for mushrooms  with  regard  to  product 629quality.  International  Journal  of  Food  Science  &  Technology,  46(2),  333‐342. 630doi:10.1111/j.1365‐2621.2010.02500.x 631

Page 31: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

30

Bansal, H. S., Takhar, P. S., & Maneerote, J. (2014). Modeling multiscale transport mechanisms, phase 632changes  and  thermomechanics  during  frying.  Food  Research  International,  62,  709‐717. 633doi:10.1016/j.foodres.2014.04.016 634

Bantle, M., Käfer, T., & Eikevik, T. M. (2013). Model and process simulation of microwave assisted 635convective  drying  of  clipfish.  Applied  Thermal  Engineering,  59(1–2),  675‐682. 636doi:http://dx.doi.org/10.1016/j.applthermaleng.2013.05.046 637

Bhattacharya,  M.,  Srivastav,  P.,  &  Mishra,  H.  (2013).  Thin‐layer  modeling  of  convective  and 638microwave‐convective drying of oyster mushroom  (Pleurotus ostreatus).  Journal of  Food 639Science and Technology, 1‐10. doi:10.1007/s13197‐013‐1209‐2 640

Botha, G. E., Oliveira, J. C., & Ahrné, L. (2011). Quality optimisation of combined osmotic dehydration 641and microwave assisted air drying of pineapple using constant power emission. Food and 642Bioproducts Processing, 90(2), 171‐179.  643

Botha, G. E., Oliveira, J. C., & Ahrné, L. (2012). Microwave assisted air drying of osmotically treated 644pineapple with variable power programmes. Journal of Food Engineering, 108(2), 304‐311. 645doi:10.1016/j.jfoodeng.2011.08.009 646

Campañone, L. A., & Zaritzky, N. E.  (2005). Mathematical analysis of microwave heating process. 647Journal of Food Engineering, 69(3), 359‐368. doi:10.1016/j.jfoodeng.2004.08.027 648

Chandrasekaran, S., Ramanathan, S., & Basak, T. (2012). Microwave material processing‐a review. 649AIChE Journal, 58(2), 330‐363.  650

Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food 651Research International, 52(1), 243‐261.  652

Chemkhi, S., Jomaa, W., & Zagrouba, F. (2009). Application of a Coupled Thermo‐Hydro‐Mechanical 653Model to Simulate the Drying of Nonsaturated Porous Media. Drying Technology, 27(7‐8), 654842‐850. doi:10.1080/07373930903021477 655

Chen, J., Pitchai, K., Birla, S., Negahban, M., Jones, D., & Subbiah, J. (2014). Heat and Mass Transport 656during Microwave  Heating  of Mashed  Potato  in  Domestic  Oven—Model  Development, 657Validation,  and  Sensitivity  Analysis.  Journal  of  Food  Science,  79(10),  E1991‐E2004. 658doi:10.1111/1750‐3841.12636 659

Chong, C., Figiel, A., Law, C., & Wojdyło, A. (2014). Combined Drying of Apple Cubes by Using of Heat 660Pump, Vacuum‐Microwave, and Intermittent Techniques. Food and Bioprocess Technology, 6617(4), 975‐989. doi:10.1007/s11947‐013‐1123‐7 662

Chou, S. K., Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., & Ho, J. C. (2000). On the Intermittent 663Drying  of  an  Agricultural  Product.  Food  and  Bioproducts  Processing,  78(4),  193‐203. 664doi:10.1205/09603080051065296 665

Chua, K. J., Mujumdar, A. S., & Chou, S. K. (2003). Intermittent drying of bioproducts––an overview. 666Bioresource Technology, 90(3), 285‐295. doi:10.1016/s0960‐8524(03)00133‐0 667

Cinquanta, L., Albanese, D., Fratianni, A., La Fianza, G., & Di Matteo, M. (2013). Antioxidant activity 668and  sensory  attributes  of  tomatoes  dehydrated  by  combination  of  microwave  and 669convective heating. Agro Food Industry Hi‐Tech, 24(6), 35‐38.  670

COMSOL. (2012). RF Module User’s Guide.  671Darvishi, H., Khoshtaghaza, M. H., Najafi, G., & Nargesi, F. (2013). Mathematical Modeling of Green 672

Pepper  Drying  in  Microwave‐convective  Dryer.  Journal  of  agricultural  science  and 673technology, 15(3), 457‐465.  674

Darvishi, H., Khoshtaghaza, M. H., Najafi, G., & Nargesi, F. (2013). Mathematical modeling of green 675Pepper Drying in microwave‐convective dryer. Journal of agricultural science and technology, 67615(3), 457.  677

Dev, S. R. S., Geetha, P., Orsat, V., Gariépy, Y., & Raghavan, G. S. V. (2011). Effects of Microwave‐678Assisted  Hot  Air  Drying  and  Conventional  Hot  Air  Drying  on  the  Drying  Kinetics,  Color, 679Rehydration,  and  Volatiles  of  Moringa  oleifera.  Drying  Technology,  29(12),  1452‐1458. 680doi:10.1080/07373937.2011.587926 681

Page 32: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

31

Dhall, A., & Datta, A. K. (2011). Transport in deformable food materials: A poromechanics approach. 682Chemical  Engineering  Science,  66(24),  6482‐6497. 683doi:http://dx.doi.org/10.1016/j.ces.2011.09.001 684

Dinčov, D. D., Parrott, K. A., & Pericleous, K. A. (2004). Heat and mass transfer in two‐phase porous 685materials under intensive microwave heating. Journal of Food Engineering, 65(3), 403‐412. 686doi:10.1016/j.jfoodeng.2004.02.011 687

Erbay,  Z.,  &  Icier,  F.  (2010).  A  Review  of  Thin  Layer  Drying  of  Foods:  Theory, Modeling,  and 688Experimental  Results.  Critical  Reviews  in  Food  Science  and  Nutrition,  50(5),  441‐464. 689doi:10.1080/10408390802437063 690

Esturk, O. (2012). Intermittent and Continuous Microwave‐Convective Air‐Drying Characteristics of 691Sage  (Salvia  officinalis)  Leaves.  Food  and  Bioprocess  Technology,  5(5),  1664‐1673. 692doi:10.1007/s11947‐010‐0462‐x 693

Esturk, O., Arslan, M., Soysal, Y., Uremis, I., & Ayhan, Z. (2011). Drying of sage (Salvia officinalis L.) 694inflorescences  by  intermittent  and  continuous  microwave‐convective  air  combination. 695Research on Crops, 12(2), 607‐615.  696

Esturk,  O.,  &  Soysal,  Y.  (2010).  Drying  Properties  and  Quality  Parameters  of  Dill  Dried  with 697Intermittent and Continuous Microwave‐convective Air Treatments. Tarim Bilimleri Dergisi‐698Journal of Agricultural Sciences, 16(1), 26‐36.  699

Fang, S., Wang, Z., Hu, X., Chen, F., Zhao, G., Liao, X., . . . Zhang, Y. A. N. (2011). Energy requirement 700and quality aspects of chinese  jujube (zizyphus  jujuba miller)  in hot air drying followed by 701microwave drying. Journal of Food Process Engineering, 34(2), 491‐510. doi:10.1111/j.1745‐7024530.2009.00372.x 703

Farrell, T. W., Knight, J. H., Moroney, T. J., Hobson, P. A., Turner, I. W., & Fulford, G. R. (2012). The 704mathematical modelling of large‐scale bagasse stockpiles.  705

Feng, H., Tang, J., Cavalieri, R. P., & Plumb, O. A. (2001). Heat and mass transport in microwave drying 706of  porous  materials  in  a  spouted  bed.  AIChE  Journal,  47(7),  1499‐1512. 707doi:10.1002/aic.690470704 708

Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and 709Heat  and  Mass  Transfer  Modeling.  Food  Engineering  Reviews,  4(2),  89‐106. 710doi:10.1007/s12393‐012‐9048‐x 711

Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective 712and  vacuum‐microwave  methods.  Journal  of  Food  Engineering,  98(4),  461‐470. 713doi:10.1016/j.jfoodeng.2010.01.029 714

Fu, Y.‐C., Dai, L., & Yang, B. B. (2005). Microwave finish drying of (tapioca) starch pearls. International 715Journal  of  Food  Science  &  Technology,  40(2),  119‐132.  doi:10.1111/j.1365‐7162621.2004.00898.x 717

Funebo,  T., & Ohlsson,  T.  (1998). Microwave‐assisted Air Dehydration  of Apple  and Mushroom. 718Journal of Food Engineering, 38(3), 353‐367. doi:10.1016/S0260‐8774(98)00131‐9 719

Gerling,  J.  F.  (2000).  Waveguide  components  and  configurations  for  optimal  performance  in 720microwave  heating  system.   721http://www.rfdh.com/ez/system/db/lib_app/upload/1774/[Gerling]_WAVEGUIDE_COMPO722NENTS_AND_CONFIGURATIONS_FOR_OPTIMAL_PERFORMANCE_IN_MICROWAVE_HEATIN723G_SYSTEMS.pdf 724

Gowen, A. A., Abu‐Ghannam, N., Frias, J., & Oliveira, J. (2008). Modeling dehydration and rehydration 725of  cooked  soybeans  subjected  to  combined microwave–hot‐air  drying.  Innovative  Food 726Science & Emerging Technologies, 9(1), 129‐137. doi:10.1016/j.ifset.2007.06.009 727

Gulati,  T.,  Zhu,  H.,  Datta,  A.  K.,  &  Huang,  K.  (2015).  Microwave  drying  of  spheres:  Coupled 728electromagnetics‐multiphase  transport  modeling  with  experimentation.  Part  II:  Model 729validation  and  simulation  results.  Food  and  Bioproducts  Processing,  96,  326‐337. 730doi:http://dx.doi.org/10.1016/j.fbp.2015.08.001 731

Page 33: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

32

Gunasekaran,  S.  (1999).  Pulsed microwave‐vacuum drying of  food materials. Drying  Technology, 73217(3), 395‐412. doi:10.1080/07373939908917542 733

Gunasekaran,  S.,  &  Yang,  H.‐W.  (2007a).  Effect  of  experimental  parameters  on  temperature 734distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 73578(4), 1452‐1456. doi:10.1016/j.jfoodeng.2006.01.017 736

Gunasekaran, S., & Yang, H.‐W. (2007b). Optimization of pulsed microwave heating. Journal of Food 737Engineering, 78(4), 1457‐1462. doi:10.1016/j.jfoodeng.2006.01.018 738

Hassini,  L.,  Peczalski,  R.,  &  Gelet,  J.‐L.  (2013).  Combined  Convective  and Microwave  Drying  of 739Agglomerated  Sand:  Internal  Transfer  Modeling  with  the  Gas  Pressure  Effect.  Drying 740Technology, 31(8), 898‐904. doi:10.1080/07373937.2012.724489 741

Hemis, M., Choudhary, R., & Watson, D. G. (2012). A coupled mathematical model for simultaneous 742microwave and convective drying of wheat seeds. Biosystems Engineering, 112(3), 202‐209. 743doi:10.1016/j.biosystemseng.2012.04.002 744

Ho, J. C., Chou, S. K., Chua, K. J., Mujumdar, A. S., & Hawlader, M. N. A. (2002). Analytical study of 745cyclic  temperature drying: effect on drying  kinetics  and product quality.  Journal of  Food 746Engineering, 51(1), 65‐75. doi:10.1016/s0260‐8774(01)00038‐3 747

Holtz, E., Ahrné, L., Karlsson, T. H., Rittenauer, M., & Rasmuson, A. (2009). The Role of Processing 748Parameters on Energy Efficiency during Microwave Convective Drying of Porous Materials. 749Drying Technology, 27(2), 173‐185. doi:10.1080/07373930802603334 750

Holtz,  E., Ahrné,  L.,  Rittenauer, M., &  Rasmuson, A.  (2010).  Influence  of  dielectric  and  sorption 751properties on drying behaviour and energy efficiency during microwave convective drying of 752selected food and non‐food inorganic materials. Journal of Food Engineering, 97(2), 144‐153. 753doi:10.1016/j.jfoodeng.2009.10.003 754

Ikediala, J., Tang, J., Drake, S., & Neven, L. (2000). Dielectric properties of apple cultivars and codling 755moth  larvae. Transactions of  the ASAE‐American  Society of Agricultural  Engineers, 43(5), 7561175‐1184.  757

Ilknur, A. (2007). Microwave, air and combined microwave–air‐drying parameters of pumpkin slices. 758LWT ‐ Food Science and Technology, 40(8), 1445‐1451. doi:10.1016/j.lwt.2006.09.002 759

Izli, N., &  Isik, E.  (2014). Color  and Microstructure Properties of Tomatoes Dried by Microwave, 760Convective, and Microwave‐Convective Methods. International Journal of Food Properties, 76118(2), 241‐249. doi:10.1080/10942912.2013.829492 762

Jindarat, W., Rattanadecho, P., & Vongpradubchai,  S.  (2011). Analysis of energy  consumption  in 763microwave  and  convective  drying  process  of  multi‐layered  porous  material  inside  a 764rectangular  wave  guide.  Experimental  Thermal  and  Fluid  Science,  35(4),  728‐737. 765doi:10.1016/j.expthermflusci.2010.11.008 766

Jindarat,  W.,  Rattanadecho,  P.,  Vongpradubchai,  S.,  &  Pianroj,  Y.  (2011).  Analysis  of  Energy 767Consumption  in Drying Process of Non‐Hygroscopic Porous Packed Bed Using a Combined 768Multi‐Feed  Microwave‐Convective  Air  and  Continuous  Belt  System  (CMCB).  Drying 769Technology, 29(8), 926‐938. doi:10.1080/07373937.2011.560318 770

Khraisheh, M.  A. M.,  Cooper,  T.  J.  R.,  & Magee,  T.  R.  A.  (1997). Microwave  and  air  drying  I. 771Fundamental  considerations  and  assumptions  for  the  simplified  thermal  calculations  of 772volumetric  power  absorption.  Journal  of  Food  Engineering,  33(1–2),  207‐219. 773doi:10.1016/s0260‐8774(97)00050‐2 774

Kouchakzadeh, A., &  Shafeei,  S.  (2010). Modeling  of microwave‐convective drying  of pistachios. 775Energy  Conversion  and  Management,  51(10),  2012‐2015. 776doi:10.1016/j.enconman.2010.02.034 777

Kowalski,  S.  J., Musielak,  G., &  Banaszak,  J.  (2010).  Heat  and mass  transfer  during microwave‐778convective drying. AIChE Journal, 56(1), 24‐35. doi:10.1002/aic.11948 779

Kumar, C.  (2015). Modelling  intermittent microwave  convective drying  (IMCD) of  food materials. 780(PhD), Queenland University of Technology, Australia.    781

Page 34: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

33

Kumar, C., Joardder, M. U. H., Farrell, T. W., & Karim, A. (2016). Multiphase porous media model for 782intermittent microwave convective drying (IMCD) of food. International Journal of Thermal 783Science, 104, 304‐314. doi:http://dx.doi.org/10.1016/j.ijthermalsci.2016.01.018 784

Kumar, C.,  Joardder, M. U. H., Farrell, T. W., Millar, G.  J., & Karim, M. A.  (2015). A Mathematical 785Model  for  Intermittent Microwave  Convective  (IMCD)  Drying  of  Food Materials.  Drying 786Technology, 34(8), 962‐973. doi:10.1080/07373937.2015.1087408 787

Kumar, C., Joardder, M. U. H., Karim, A., Millar, G. J., & Amin, Z. (2014). Temperature Redistribution 788Modelling  During  Intermittent  Microwave  Convective  Heating.  Procedia  Engineering, 78990(2014), 544‐549. doi:http://dx.doi.org/10.1016/j.proeng.2014.11.770 790

Kumar, C., Karim, A., Joardder, M. U. H., & Miller, G. J. (2012a, November 25‐28). Modeling Heat and 791Mass Transfer Process during Convection Drying of Fruit. Paper presented at  the The 4th 792International Conference on Computational Methods, Gold Coast, Australia. 793

Kumar, C., Karim, A., Saha, S. C., Joardder, M. U. H., Brown, R. J., & Biswas, D. (2012b, December 28‐79429,). Multiphysics modelling of convective drying of food materials. Paper presented at the 795Proceedings  of  the  Global  Engineering,  Science  and  Technology  Conference,  Dhaka, 796Bangladesh. 797

Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical 798review. Journal of Food Engineering, 121(0), 48‐57.  799

Kumar,  C., Millar,  G.  J., &  Karim, M.  A.  (2016).  Effective  Diffusivity  and  Evaporative  Cooling  in 800Convective  Drying  of  Food  Material.  Drying  Technology,  33(2),  227‐237. 801doi:10.1080/07373937.2014.947512 802

Kurniawan, H., Alapati, S., & Che, W. S. (2015). Effect of mode stirrers in a multimode microwave‐803heating applicator with the conveyor belt. International Journal of Precision Engineering and 804Manufacturing‐Green Technology, 2(1), 31‐36. doi:10.1007/s40684‐015‐0004‐0 805

Lehne, M., Barton, G. W., & Langrish, T. A. G.  (1999). Comparison of experimental and modelling 806studies for the microwave drying of Ironbark timber. Drying Technology, 17(10), 2219‐2235. 807doi:10.1080/07373939908917680 808

Malafronte,  L.,  Lamberti,  G.,  Barba,  A.  A.,  Raaholt,  B.,  Holtz,  E., &  Ahrné,  L.  (2012).  Combined 809convective  and microwave  assisted  drying:  Experiments  and modeling.  Journal  of  Food 810Engineering, 112(4), 304‐312. doi:10.1016/j.jfoodeng.2012.05.005 811

Marra, F., De Bonis, M. V., & Ruocco, G. (2010). Combined microwaves and convection heating: A 812conjugate  approach.  Journal  of  Food  Engineering,  97(1),  31‐39. 813doi:10.1016/j.jfoodeng.2009.09.012 814

Marzec,  A.,  Kowalska, H., &  ZadroŻNa, M.  (2010).  Analysis  of  instrumental  and  sensory  texture 815attributes of microwave–convective dried apples. Journal of Texture Studies, 41(4), 417‐439. 816doi:10.1111/j.1745‐4603.2010.00234.x 817

McMinn, W. A. M., Khraisheh, M. A. M., & Magee, T. R. A. (2003). Modelling the mass transfer during 818convective,  microwave  and  combined  microwave‐convective  drying  of  solid  slabs  and 819cylinders.  Food  Research  International,  36(9‐10),  977‐983.  doi:10.1016/s0963‐8209969(03)00118‐2 821

Metaxas, A. C. (1996a). Foundation and Electroheat: A Unified Approach: John Wiley & Sons. 822Metaxas, A. C. (1996b). Foundations of Electroheat. Chichester, U.K.: John Wiley and Sons. 823Mihoubi,  D.,  &  Bellagi,  A.  (2009).  Drying‐Induced  Stresses  during  Convective  and  Combined 824

Microwave and Convective Drying of Saturated Porous Media. Drying Technology, 27(7‐8), 825851‐856. doi:10.1080/07373930902988122 826

Mujumdar, A. S. (2004). Research and Development in Drying: Recent Trends and Future Prospects. 827Drying Technology, 22(1‐2), 1‐26. doi:10.1081/drt‐120028201 828

Nair, G. R., Li, Z., Gariepy, Y., & Raghavan, V. (2011). Microwave Drying of Corn (Zea mays L. ssp.) for 829the  Seed  Industry.  Drying  Technology,  29(11),  1291‐1296. 830doi:10.1080/07373937.2011.591715 831

Page 35: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

34

National Research Council. (1994). Microwave Processing of Materials. New York: National Academy 832Press. 833

Ni, H., & Datta, A. K.  (1999). Moisture, Oil and Energy Transport During Deep‐Fat Frying of Food 834Materials.  Food  and  Bioproducts  Processing,  77(3),  194‐204. 835doi:http://dx.doi.org/10.1205/096030899532475 836

Orsat,  V.,  Yang, W.,  Changrue,  V.,  &  Raghavan,  G.  S.  V.  (2007). Microwave‐Assisted  Drying  of 837Biomaterials. Food and Bioproducts Processing, 85(3), 255‐263. doi:10.1205/fbp07019 838

Perussello, C. A., Kumar, C., de Castilhos, F., & Karim, M. A. (2014). Heat and mass transfer modeling 839of the osmo‐convective drying of yacon roots  (Smallanthus sonchifolius). Applied Thermal 840Engineering, 63(1), 23‐32. doi:http://dx.doi.org/10.1016/j.applthermaleng.2013.10.020 841

Pitchai, K., Birla, S. L., Subbiah, J., Jones, D., & Thippareddi, H. (2012). Coupled electromagnetic and 842heat transfer model for microwave heating in domestic ovens. Journal of Food Engineering, 843112(1–2), 100‐111. doi:10.1016/j.jfoodeng.2012.03.013 844

Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave‐assisted convective air 845drying of thin layer carrots. Journal of Food Engineering, 25(2), 283‐293. doi:10.1016/0260‐8468774(94)00031‐4 847

Rakesh,  V.,  &  Datta,  A.  K.  (2013).  Transport  in  deformable  hygroscopic  porous  media  during 848microwave puffing. AIChE Journal, 59(1), 33‐45. doi:10.1002/aic.13793 849

Rakesh, V., Datta, A. K., Amin, M. H. G., & Hall, L. D. (2009). Heating uniformity and rates in a domestic 850microwave  combination  oven.  Journal  of  Food  Process  Engineering,  32(3),  398‐424. 851doi:10.1111/j.1745‐4530.2007.00224.x 852

Rakesh, V., Seo, Y., Datta, A. K., McCarthy, K.  L., & McCarthy, M.  J.  (2010). Heat  transfer during 853microwave  combination  heating:  Computational modeling  and MRI  experiments.  AIChE 854Journal, 56(9), 2468‐2478. doi:10.1002/aic.12162 855

Ratanadecho, P., Aoki, K., & Akahori, M.  (2001). Experimental and numerical study of microwave 856drying  in  unsaturated  porous material.  International  Communications  in Heat  and Mass 857Transfer, 28(5), 605‐616. doi:http://dx.doi.org/10.1016/S0735‐1933(01)00265‐2 858

Sadeghi, M., Mirzabeigi  Kesbi,  O.,  & Mireei,  S.  A.  (2013). Mass  transfer  characteristics  during 859convective, microwave and combined microwave–convective drying of lemon slices. Journal 860of the Science of Food and Agriculture, 93(3), 471‐478. doi:10.1002/jsfa.5786 861

Salagnac,  P.,  Glouannec,  P., &  Lecharpentier,  D.  (2004). Numerical modeling  of  heat  and mass 862transfer  in  porous  medium  during  combined  hot  air,  infrared  and  microwaves  drying. 863International  Journal  of  Heat  and  Mass  Transfer,  47(19‐20),  4479‐4489. 864doi:10.1016/j.ijheatmasstransfer.2004.04.015 865

Sanga, E. C. M., Mujumdar, A. S., & Raghavan, G. S. V. (2002). Simulation of convection‐microwave 866drying for a shrinking material. Chemical Engineering and Processing: Process Intensification, 86741(6), 487‐499. doi:10.1016/s0255‐2701(01)00170‐2 868

Schiffmann, R. F. (1995). Microwave and dielectric drying. New York: Marcel Dekker Inc. 869Sharma, G. P., Prasad, S., & Chahar, V. K.  (2009). Moisture  transport  in garlic  cloves undergoing 870

microwave‐convective  drying.  Food  and  Bioproducts  Processing,  87(1),  11‐16. 871doi:10.1016/j.fbp.2008.05.001 872

Sosa‐Morales, M. E., Valerio‐Junco, L., López‐Malo, A., & García, H. S. (2010). Dielectric properties of 873foods: Reported data in the 21st Century and their potential applications. LWT ‐ Food Science 874and Technology, 43(8), 1169‐1179. doi:10.1016/j.lwt.2010.03.017 875

Soysal,  Y.,  Arslan,  M.,  &  Keskin,  M.  (2009b).  Intermittent  Microwave‐convective  Air  Drying  of 876Oregano.  Food  Science  and  Technology  International,  15(4),  397‐406. 877doi:10.1177/1082013209346588 878

Soysal, Y., Ayhan, Z., Eştürk, O., & Arıkan, M. F. (2009a). Intermittent microwave–convective drying 879of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems 880Engineering, 103(4), 455‐463. doi:10.1016/j.biosystemseng.2009.05.010 881

Page 36: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

35

Stanish, M. A., Schajer, G. S., & Kayihan, F. (1986). A mathematical model of drying for hygroscopic 882porous media. AIChE Journal, 32(8), 1301‐1311. doi:10.1002/aic.690320808 883

Sunjka, P.  S., Rennie, T.  J., Beaudry, C., & Raghavan, G.  S. V.  (2004). Microwave‐Convective  and 884Microwave‐Vacuum Drying of Cranberries: A Comparative Study. Drying Technology, 22(5), 8851217‐1231. doi:10.1081/drt‐120038588 886

Suwannapum, N., & Rattanadecho, P. (2011). Analysis of Heat–Mass Transport and Pressure Buildup 887Induced  inside Unsaturated Porous Media Subjected  to Microwave Energy Using a Single 888(TE10)  Mode  Cavity.  Drying  Technology,  29(9),  1010‐1024. 889doi:10.1080/07373937.2010.548110 890

Swain, S., Samuel, D. V. K., Bal, L. M., & Kar, A. (2013). Thermal Kinetics of Colour Degradation of 891Yellow  Sweet  Pepper  (Capsicum  Annum  L.)  Undergoing Microwave  Assisted  Convective 892Drying.  International  Journal  of  Food  Properties,  17(9),  1946‐1964. 893doi:10.1080/10942912.2013.775150 894

Tulasidas, T. N. (1995). Combined convective and microwave drying of grapes.  895Turner, I. W., & Jolly, P. C. (1991). Combined microwave and convective drying of a porous material. 896

Drying Technology, 9(5), 1209‐1269. doi:10.1080/07373939108916749 897Turner,  I. W., & Perré, P.  (2004). Vacuum drying of wood with  radiative heating:  II. Comparison 898

between theory and experiment. AIChE Journal, 50(1), 108‐118. doi:10.1002/aic.10010 899Turner, I. W., Puiggali, J. R., & Jomaa, W. (1998). A Numerical Investigation of Combined Microwave 900

and Convective Drying of  a Hygroscopic Porous Material: A  Study Based on Pine Wood. 901Chemical Engineering Research and Design, 76(2), 193‐209. doi:10.1205/026387698524622 902

Uprit, S., & Mishra, H. N. (2003). Microwave Convective Drying and Storage of Soy‐Fortified Paneer. 903Food and Bioproducts Processing, 81(2), 89‐96. doi:10.1205/096030803322088224 904

Vega‐Mercado,  H., Marcela  Góngora‐Nieto, M.,  &  Barbosa‐Cánovas,  G.  V.  (2001).  Advances  in 905dehydration  of  foods.  Journal  of  Food  Engineering,  49(4),  271‐289.  doi:10.1016/s0260‐9068774(00)00224‐7 907

Wang, J., Wang, J. S., & Yu, Y. (2007). Microwave drying characteristics and dried quality of pumpkin. 908International  Journal  of  Food  Science &  Technology,  42(2),  148‐156.  doi:10.1111/j.1365‐9092621.2006.01170.x 910

Wentworth, S. M.  (2004). Fundamentals of Electromagnetics with Engineering Applications:  John 911Wiley. 912

Wojdyło,  A.,  Figiel,  A.,  Lech,  K.,  Nowicka,  P., & Oszmiański,  J.  (2014).  Effect  of  Convective  and 913Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of 914Sour  Cherries.  Food  and  Bioprocess  Technology,  7(3),  829‐841.  doi:10.1007/s11947‐013‐9151130‐8 916

Workneh,  T.  S., & Oke, M. O.  (2013).  Thin  Layer Modelling  of Microwave‐Convective Drying  of 917Tomato Slices. International Journal of Food Engineering, 9(1), 75‐89. doi:10.1515/ijfe‐2012‐9180205 919

Yang, H. W., & Gunasekaran, S.  (2001). Temperature Profiles  in a Cylindrical Model Food During 920Pulsed Microwave Heating.  Journal of Food Science, 66(7), 998‐1004. doi:10.1111/j.1365‐9212621.2001.tb08225.x 922

Yang, H. W., & Gunasekaran,  S.  (2004).  Comparison  of  temperature  distribution  in model  food 923cylinders based on Maxwell's equations and Lambert's law during pulsed microwave heating. 924Journal of Food Engineering, 64(4), 445‐453. doi:10.1016/j.jfoodeng.2003.08.016 925

Zhang, J., & Datta, A. K. (2004). Some Considerations in Modeling of Moisture Transport in Heating 926of Hygroscopic Materials. Drying Technology, 22(8), 1983‐2008. doi:10.1081/drt‐200032740 927

Zhang, J., Datta, A. K., & Mukherjee, S. (2005). Transport processes and  large deformation during 928baking of bread. AIChE Journal, 51(9), 2569‐2580. doi:10.1002/aic.10518 929

Zhang, M.,  Jiang, H., &  Lim, R.‐X.  (2010). Recent Developments  in Microwave‐Assisted Drying of 930Vegetables, Fruits, and Aquatic Products—Drying Kinetics and Quality Considerations. Drying 931Technology, 28(11), 1307‐1316. doi:10.1080/07373937.2010.524591 932

Page 37: c Consult author(s) regarding copyright matters Notice Please … · 2020-02-28 · 106 reported by Prabhanjan et al. (1995) for carrot (82%), Bantle et al. (2013) for clipfish 107

36

Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave‐related drying of fruits 933and  vegetables.  Trends  in  Food  Science  andTechnology,  17(10),  524‐534. 934doi:10.1016/j.tifs.2006.04.011 935

Zhao, D., An, K., Ding, S., Liu, L., Xu, Z., & Wang, Z. (2014). Two‐Stage Intermittent Microwave Coupled 936with Hot‐Air Drying of Carrot Slices: Drying Kinetics and Physical Quality. Food and Bioprocess 937Technology, 7(8), 2308‐2318. doi:10.1007/s11947‐014‐1274‐1 938

Zhao, H. (1997). Computational models and numerical techniques for solving maxwell's equations: A 939study  of  the  heating  of  lossy  dielectric  material  inside  arbitary  shaped  cavities.  (PhD), 940Queensland University of Technology, Brisbane.    941

Zhou, L., Puri, V. M., Anantheswaran, R. C., & Yeh, G. (1995). Finite element modeling of heat and 942mass  transfer  in  food materials  during microwave  heating — Model  development  and 943validation. Journal of Food Engineering, 25(4), 509‐529. doi:10.1016/0260‐8774(94)00032‐5 944

Zhu,  H.,  Gulati,  T.,  Datta,  A.  K.,  &  Huang,  K.  (2015).  Microwave  drying  of  spheres:  Coupled 945electromagnetics‐multiphase  transport  modeling  with  experimentation.  Part  I:  Model 946development and experimental methodology. Food and Bioproducts Processing, 96, 314‐947325. doi:http://dx.doi.org/10.1016/j.fbp.2015.08.003 948

949