18
H. Hamano7. 部材断面 7-1 7.1 断面1次モーメント 7.1.1 断面1次モーメント (x,y)において微小面積 dy dx dA を考える.この微小 面積を重さ()と考えると,この力と x 軸からの距離 y 掛けたもの dA×y x 軸に対するモーメントである. これを全面積にわたって寄せ集めたものを断面 1 次モ ーメントと呼び,次式で定義する. ydA G x 同様に y 軸に関する断面1次モーメントは xdA G y (6.1),(6.2)を級数の形で書けば i i i x A y G i i i y A x G (b)の場合は 2 1 y y x ayd G 2 1 x x y bxd G [例題 7.17.2 の長方形断面の x 軸に対する断面1次 モーメントを求めよ. [解] 微小面積 dA=ady x 軸に対する断面1次モーメント b x ab aydy ydA G 0 2 2 [問題 7.1y 軸に関する断面1次モーメントを求めよ. [例題 7.2図形の面積と,x 軸からその面積の中心 までの距離 y0 が求められていると,上式は次のよう に簡単になる. A y G x 0 6.3.では,断面積は A=abx 軸からの距離は 2 0 b y であるから式(7.5)より 2 2 2 0 ab ab b A y G x となって,例題 6.1 と同じになる. 7.1.2 集合図形の断面 1 次モーメント 長方形,三角形等の単純な図形を組み合わせた図形の断 1 次モーメントは,各図形の面積を A1, A2, ・・・,xy から各図形の中心までの距離を y1, y2,・・・,x1, x2,・・・とすると 7 部材断面の性質 x2 x1 y2 y1 A1 A2 7.4 x O y (7.1) (7.2) (7.3) (7.4) (7.5) dA x y O x y A (a) A y0 x 7.3 7.2 b x y y dy a dA=ady 7.1 dA=ady x1 a O x y b dx y1 y2 dy x2 dA=bdx (b)

第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-1

7.1 断面1次モーメント

7.1.1 断面1次モーメント

点(x,y)において微小面積 dydxdA を考える.この微小

面積を重さ(力)と考えると,この力と x 軸からの距離 y を

掛けたもの dA×y は x 軸に対するモーメントである.

これを全面積にわたって寄せ集めたものを断面 1 次モ

ーメントと呼び,次式で定義する.

y d AGx

同様に y 軸に関する断面1次モーメントは

xdAGy

式(6.1),(6.2)を級数の形で書けば

i

iix AyG i

iiy AxG

図(b)の場合は

2

1

y

yx a y d yG

2

1

x

xy b x d xG

[例題 7.1]図 7.2 の長方形断面の x 軸に対する断面1次

モーメントを求めよ.

[解]

微小面積 dA=ady

x 軸に対する断面1次モーメント

b

x

abaydyydAG

0

2

2

[問題 7.1]y 軸に関する断面1次モーメントを求めよ.

[例題 7.2]図形の面積と,x 軸からその面積の中心

までの距離 y0が求められていると,上式は次のよう

に簡単になる.

AyGx 0

図 6.3.では,断面積は A=ab,x 軸からの距離は

20

by であるから式(7.5)より

22

2

0

abab

bAyGx

となって,例題 6.1 と同じになる.

7.1.2 集合図形の断面 1 次モーメント

長方形,三角形等の単純な図形を組み合わせた図形の断

面 1 次モーメントは,各図形の面積を A1, A2, ・・・,x,y 軸

から各図形の中心までの距離を y1, y2,・・・,x1, x2,・・・とすると

7 部材断面の性質

x2 x1

y2

y1

A1

A2

図 7.4

x O

y

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

dA x

y

O x

y

A

(a)

A

y0

x

図 7.3

図 7.2

b

x

y

y

dy

a dA=ady

図 7.1

dA=ady

x1

a

O x

y

b

dx

y1

y2

dy

x2

dA=bdx

(b)

Page 2: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-2

nnx AyAyAyG 2211

nny AxAxAxG 2211

となる(図 7.4).

[注意]

断面 1 次モーメントの符号は,直行軸 x, y のとり方によって正または負に変化する.

断面 1 次モーメントは 面積×距離 であるから,単位は長さの 3 乗[mm3]となる.

[例題 7.3]図 7.5 の図形の断面 1 次モーメントを求めよ.

[解]

断面を 2 つの長方形に分ける.

A1=30×60=1 800 mm2 A2=50×20=1 000 mm2

y1=30 mm y2=10mm

x1=15 mm x2=55mm

33

2211 mm1046000110800130 AyAyGx

33

2211 mm1028000155800115 AxAxGy

7.1.3 軸の平行移動

座標軸 x,y を平行移動して新しい座標軸 u,v を設ける.

新しい座標軸に対する断面 1 次モーメントは

AyGdAyydAdAyyvdAG xu 000 )( , すなわち AyGG xu 0

AxGdAxxdAdAxxudAG yv 000 )( , すなわち AxGG yv 0

y

dA x

y

O x

A

v

u

u

v

x0

y0 (x0,y0)

図 7.6

(7.7)

(7.6)

50 30

40 A1

[mm]

図 7.5

x O

y

A2 20

断面 1 次モーメントは,

「基準となる軸からその図形の中心までの距離と,部材の断面積

を掛けたもの」

と考えてよい.

式で書けば,右図において

Gx=y0A, Gy=x0A

となる.

これは,面積 A を「作用している力」と考えれば,x,y 軸に関するモーメントと考えられる.

ちょっと休憩[7-1](断面 1次モーメントの求め方) x0

断面積 A

y0

O x

y

vyyuxx 00 ,

x,y=面積要素 dA の旧座標

u,v=面積要素 dA の新座標

x0,y0=旧座標に対する新座標の原点

Page 3: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-3

7.2 図心

7.2.1 図心

1 点を通る任意の軸に対する図形の断面 1 次モーメントが 0 となる点を図心と定義する.

図 7.6 でO が図心であるとすれば,定義より式(7.7)において 0,0 vu GG とおくと,図心を求める次

の公式が得られる.

A

Gy

A

Gx xy

00 ,

「ある軸 x,y から図心位置までの距離 x0,y0は,x,y 軸に関する断面 1 次モーメントをその面積で

割ったものである」

[例題 7.4]長方形断面(図 7.7)の図心を求めよ.

[解]例題 7.1 より x 軸に対する断面 1 次モーメントは2

2abGx ,

断面積は abA であるから,式(7.7)より

22

2

0

bab

ab

A

Gy x

例題 7.2 で面積の中心までという,あいまいな表現を使用したが,これは実は図心までの距離を表し

たものである.すなわち,図心は図形の中心という意味で使用される.

7.2.2 集合図形の図心

断面が多くの断面の集合体からなっていて,それぞれの図心位置を ),,(),,( 2211 yxyx とすると合成図

形の図心 ),( 00 yx は

21

2211

0

21

2211

0 ,AA

AyAy

A

Gy

AA

AxAx

A

Gx xy

で求められる.

[例題 7.5]図 7.8 の図心位置を求めよ.

[解] 面積 2

21 mm8002 AAA

したがって,式(6.9)より

mm9.22108.2

1064,mm3.29

108.2

10823

3

03

3

0

A

Gy

A

Gx xy

注) 重心:図形が重さをもつと仮定すると,その重さは面積に比例し,ある 1 点に集中して働く.この

重さの中心を重心という.

(7.8)

(7.9)

図 7.7

b

x

y

y

dy

a

dA=ady

O

50 30

40 A1

20

図 7.8

x O

y

A2

[mm]

図心の求め方

1. 図形が 2 本以上の対称軸をもつときは,その交点が図心.

2. 1 本の対称軸をもつ図形では,その対称軸上に図心がある.

対称軸に直角に適当な軸を設け図心を計算する.

3. 対称軸をもたない図形では式(7.6)で計算する.

座標軸 x,y は計算が楽になるように設定する.

4. 三角形,矩形,円などの図心は既知なものとして使用する.

5. 集合図形は適当に単純な図形に分割して計算する.

ちょっと休憩[7-2](図心の求め方)

Page 4: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-4

[例題 7.6]三角形断面(図 7.9)の x 軸に対する図心を求めよ.

[解] abA2

1

y 点の長さ )( ybb

aa であるから

dyybb

adyadA )(

b

x

abydyyb

b

aydAG

0

2

6)(

326

2

0

babab

A

Gy x

すなわち,底辺から 3 分の 1 の点にある.

[問題 7.2]三角形断面(図 7.9)の y 軸に対する図心を求めよ.

[例題 7.7]半径 r の 4 分円(図 7.10)の x 軸に対する図心を求めよ.

[解]4

2rA

y 点の長さ 22 yrr であるから

dyyrdyrdA 22

y d yyry d AGrr

x 0

22

0

この積分は次のように行う.

222 tyr とおくと tdtydy となり

0y のとき rt , ry のとき 0t であるから

30

3032

0

22

3

1)0(

3

1][

3

1rrtdttydyyrG

rr

r

x

3

4

43

1 23

0

rrr

A

Gy x

[例題 7.8]図 7.11 の台形断面の x 軸に対する図心を求めよ.

[解]点線で 2 つの三角形に分割する.

bhA2

11 ahA

2

12

3

1

hy

3

22

hy

式(3.9)より

ba

bah

ahbh

ahhbhh

AA

AyAyy

2

3

22

23

2

23

21

22110

[例題 7.9]図 7.12 の影部分の x 軸に対する図心を求めよ.

[解] 2

11 rA 2

22 rA

11 ry 22 ry

式(3.9)より

21

2

221

2

1

2

2

2

1

3

2

3

1

21

2211

0)(

)(

rr

rrrr

rr

rr

AA

AyAyy

dA

y

a

b

O x

a′

dy

y

図 7.9

dA

r

O x

y

dy r′

図 7.10

y

図 7.11

y a

h

O x

G1 y2

b

y1

G2 A1

A2

y

図 7.12

x

A1

A2

r1

r2

O

y

Page 5: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-5

[問題 7.3]次の図形の図心位置を求めよ.

図 7.13

30

60

40

20

(1)

x

y0

100

80

x0

20 x O

y

y0

20 (2)

[単位:mm] [単位:mm]

(3)

5

1

1

1 2 1

x

y

y0

x0

[単位:m]

長方形,台形,三角形,円

ちょっと休憩[7-3](よく使う図形の図心)

h

b

b/2

h/2

G

(a)

a

a

b

b

a

G

(b)

h/3

2h/3

G

(c)

d/2

d/2

G

(d)

Page 6: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-6

7.3 断面 2 次モーメント

7.3.1 断面 2 次モーメント

右図の座標系において,次の式で与えられる量を断面 2 次

モーメントと定義する.

dAyI x

2 x 軸に関する断面 2 次モーメント

dAxI y

2 y 軸に関する断面 2 次モーメント

これらの式は距離の 2 乗に面積を掛けたものであるから,単

位は[mm4]である.

7.3.2 軸の平行移動

座標軸 x,y を平行移動して新しい座標軸 u,v を設ける.

x,y=面積要素 dA の旧座標

u,v=面積要素 dA の新座標

x0,y0=旧座標に対する新座標の原点

vyyuxx 00 ,

断面 1 次モーメントの場合と同様に,式(7.10)に vyyuxx 00 , を代入して展開する.

AyGyIdAyvdAydAvdAvydAyI uux

2

00

2

00

22

0

2 22)(

AxGxIdAxudAxdAudAuxdAxI vvy

2

00

2

00

22

0

2 22)(

ここで,新しい座標軸を,図心を原点 ),( 00 yx にもつ座標軸とすれば

0 vu GG

となるから,上式は次式となる.

AyII ux

2

0 , AxII vy

2

0 (7.11)

この式は,図心を通る座標軸 ),( vu の断面 2 次モーメント ),( vu II を,任意の軸(x,y)の断面 2 次モーメ

ント ),( yx II に換算する式で,よく使用される.

[注意事項]

1. 式(7.11)の AxAy 20

20 , は正であるから,図心を通る断面 2 次モーメントが最小であることがわかる.

2. 式(7.11)より,任意の座標軸の(x,y)の断面 2 次モーメント ),( yx II がわかれば,図心を通る座標軸 ),( vu

の断面 2 次モーメント ),( vu II は

AyII xu20 , AxII yv

20 (7.12)

より求められる.

3. 断面 2 次モーメントの単位は[mm4].

dA x

y

O x

y

A

図 7.14

(7.10)

y

dA

x

y

O x

A

v

u

u

v

y0 (x0,y0)

図 7.15

x0

Page 7: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-7

[例題 7.10]次の長方形断面の図心軸を通る軸 u に対する断面 2 次モーメントを求めよ.また,x 軸に

対する断面 2 次モーメントはいくらか.

[解]

12

23

2

2

2

0

222 bhdyybdyybdAyI

h

h

h

u

3212

3232

0

bhbh

hbhAyII ux

[例題 7.11]次の三角形断面の図心軸を通る軸 u に対する断面

2 次モーメントを求めよ.また,x 軸に対する断面 2 次モーメン

トはいくらか.

[解] yh

bb ,

2

bhA , ydy

h

bdybdA

4

3

0 0

32

2

bhdyy

h

bdAyI

h h

x

3623

2

4

3232

12

bhbhhbhAyII xu

122336

3232

01

bhbhhbhAyII ux

[例題 7.12]次の円形断面の図心軸を通る軸 u に対する断面 2 次モーメントを求めよ.

[解] bdydA , cos2rb

s i nry ,

cosrd

dy

drdrrbdydA 22 cos2coscos2

44

4s i n

22

4c o s1

2s i nc o ss i n4

)c o s2()s i n(22

42

0

42

0

4

2

0

242

0

224

2

0

222

0

22

rrdr

drdr

drrdAydAyIr

r

r

u

図 7.17

u

x1

b

y

dy h

x2

y1

y0

dA=bdy

u

x b

y

dy h/2

h/2

図 7.16

u r

b

y

dy

x

図 7.18

次の各図形の図心軸における断面 2 次モーメントは公式として使用する.

ちょっと休憩[7-4](断面 2次モーメント)

h/2

h/2

b

長方形断面

h/3

2h/3

三角形断面

b

円形断面

r

X

X X

Page 8: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-8

[例題 7-13]x 軸に平行な図心軸に関する断面 2 次モーメントを求めよ.

[解]図心位置は

hbh

bh

bhbh

bhhbhh

AA

AhAhy 4

12

48

84

854252 2

21

210

A1の下端,A2の上端が図心であるから,例題 7.10 より

A1部分の下端の断面 2 次モーメントは:3

32

3

)2(4 33

1

bhhbI

A2部分の上端の断面 2 次モーメントは:3

64

3

)4( 33

2

bhhbI

ゆえに,図心軸に関する断面 2 次モーメントは, 3

21 32bhIIIu

[例題 7-14]薄肉断面管の断面 2 次モーメント.

[解]断面 2 次モーメント:44

4

2

4

1 rrI

これを変形する.

trt

rrt

trrrtrrrrtrrrtr

rrrrrrrrrr

I

32

2

222

21

2

21

2

2121

2

2

2

1

4

2

4

1

4

2

4

1

4

42)2()2(22

4

))()((4

)(444

ここに,

rtrrArrr

trr 2)(,2

, 2

2

2

121

21

21

2

21

2

21

2

2121

2

221

2

1

2

2

2

1 242)2(2)(22 rrrrrrrrrrrrrrrrrr

21

2

21

2

21

2

221

2

1

2

21

2 44)(2)(4 rrtrrrrrrrrrrr

4b

b

2h

4h

A1

A2

u

y0

x

図 a

r1

r2

t

図 b

Page 9: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-9

[問題 7.4]次の各問に答えよ.

(1) 次図の 321 ,, xxx 軸に対する断面 2 次モーメントを求めよ.

(2) 次図の図心軸 x に対する断面 2 次モーメントを求めよ.

(3) 次図の図心軸 x に対する断面 2 次モーメントを求めよ.

(4) 次図の x 軸および図心軸 G に対する断面 2 次モーメントを求めよ.

[単位:mm]

140 140

90

10 1

0

20

20

20

x

(a)

140

20

(b) (c)

図 7.20

x1

x2

x3

b

h

h/2

図 7.19

h/2

x 30 120 50

40

110 G

図 7.22

[単位:mm]

x

(b)

10

100

10 10

40 20 40 [単位:mm] 30

60

40

20

x

(a)

y0

10

10 y0

図 7.21

x1

Page 10: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-10

7.3.3 断面極 2 次モーメント

点 O に関する断面極 2 次モーメントを次式で定義する.

Ap dArI 2

ここで

222 yxr

を代入すると

A

yxA

p IIdAyxdArI )( 222

[例題 7.15]円形断面の図心を通る軸に対する断面 2 次モーメント

を断面極 2 次モーメントを用いて求めよ.

[解] rdrdA 2

24

224

00

42

0

2 rrrdrrdArI

rrr

p

ここで yxp III ,また,円であるから yx II

ゆえに Gxp III 22 , 42

4rII

p

G

[例題 7.16]円の断面 2 次モーメントを図 7.25 のように微小面積

dA を用いて求めよ(前出,別解).

[解]

A

a ya a

Ax dyyaydyydxdxdyydAyI

0 0 0

22222222

44

θay sin によって積分変数を y から θにかえて積分すると

2

0

2

0

424224

42s i nc o ss i n4

a

dadaI x

[例題 7.17] 図 7.26 のような 1 辺の長さが a の正方形の対角線のまわりの断面 2 次モーメントを求

めよ.

[解]図(a)について

A

ay

a

x

adyydxdxdyyI 2

0

2

0

422

124

[別解]図(b)のように座標軸を 45°回転して求めれば

2s i ns i nc o s 22

xyyxX IIII

において

1

s i n s i n4 2

2

1

4coscos

12

4aII xy , 0xyI

であるから

4

12y

aI

(7.13)

(7.14)

dA

x x

y

y

O

r

図 7.23

r

図 7.24

O

y

x

a

図 7.25

y dy

dx x

x

a

y

O

(a)

x

y X

a

O

(b)

図 7.26

dy

dx

y

Page 11: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-11

7.4 相乗モーメント

7.4.1 相乗モーメント

右図の座標系において,次の式で与えられる量を相乗モー

メントと定義する.

x y d AI xy

単位は[mm4]であり,正負の符号をとる.

7.4.2 軸の平行移動

座標軸 x,y を平行移動して新しい座標軸 u,v を設ける.

x,y=面積要素 dA の旧座標

u,v=面積要素 dA の新座標

x0,y0=旧座標に対する新座標の原点

vyyuxx 00 ,

断面 2 次モーメントの場合と同様に,式(7.15)に vyyuxx 00 , を代入して展開する.

AyxGyGxIdAyxvdAxudAyuvdA

dAvyuxxydAI

vuuv

xy

00000000

00 ))((

ここで,新しい座標軸を,図心を原点 ),( 00 yx にもつ座標軸とすれば

0 vu GG

となるから,上式は次式となる.

AyxII uvxy 00 (7.16)

この式は,図心を通る座標軸 ),( vu の相乗モーメント )( uvI を,任意の軸 (x,y) の相乗モーメント )( xyI

に換算する式である.

7.4.3 対称軸と相乗モーメント

右図のような y 軸に対称な図形を考える.相乗モーメントは

02

0

0

2

1

0

0

2

1

2

x

xA

y

y

x

x

y

yxy

xydyxdxydyxydAI

すなわち,与えられた図形が対称軸 y をもつときは,これに直交する

任意の軸を x 軸とすれば,x,y 軸についての相乗モーメントは 0 とな

る.あるいは簡単にいえば,対称軸についての相乗モーメントは 0 で

ある.

dA

x

y

O x

y

A

図 7.27

(7.15)

y

x

y2

-y1

dA=dxdy

(x,y)

-x0 x0

図 7.29

O

y

dA x

y

O x

A

v

u

u

v

x0

y0 (x0,y0)

図 7.28

Page 12: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-12

[例題 7.18]矩形断面の xy 軸に対する相乗モーメントを求めよ.

[解]

4

22

0 0

baxdxydyxydAI

A

b a

xy

または

422

022

00

baab

baAyxII uvxy

[例題 7.19]三角形断面の xy 軸に対する相乗モーメントを求めよ.

[解]

図の微小面積 dyb

ybadA

)(

微小面積の y 軸から図心までの距離 b

ybax

2

)(

ゆえに

b

xy

baydyyb

b

aI

0

222

2

2

24)(

2

[問題 7.5]次の矩形断面の xy 軸に対する相乗モーメントを求めよ.

図 7.30

b

x

y

y

dy

a

dA=dxdy

dx x

O

図 7.32

a

b

x

y a/2

O

(1)

b

x

y

a O

(2)

x

dA

y

a

b

O

x

dy

y

図 6.31

Page 13: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-13

7.5 座標軸の回転と主軸

7.5.1 座標軸の回転

右図のように原点を共有して,座標軸を Oxy から uvO

へ だけ回転する.このとき両座標系の間には右図より

θyθxv

θyθxu

c o ss i n

s i nc o s

あるいは

θvθuy

θvθux

c o ss i n

s i nc o s

の関係を得る.

7.5.2 新座標と旧座標の関係

断面 1 次モーメント

s i nc o ss i nc o s)c o ss i n( yxAAA A

u GGx d Ay d AdAyxvdAG

s i nc o ss i nc o s)s i nc o s( xyAAA A

v GGy d Ax d AdAyxudAG

断面 2 次モーメント

新座標に対する断面 2 次モーメントは

A A A

uvvu uvdAIdAuIdAvI ,, 22

式(7.21)に式(7.17)を代入すると,次式が得られる.

θIθII

I

θIθIIII

θIθIθII

θIθIIII

θIθIθII

xy

yx

uv

xy

yxyx

xyyxv

xy

yxyx

xyyxu

2cos2sin2

2sin2cos22

2sincossin

2sin2cos22

2sinsincos

22

22

この式は逆に次のように書ける.

θIθII

I

θIθIIII

θIθIθII

θIθIIII

θIθIθII

uv

vu

xy

uv

vuvu

uvvuy

uv

vuvu

uvvux

2cos2sin2

2sin2cos22

2sincossin

2sin2cos22

2sinsincos

22

22

上式の第 1 式と第 2 式を加えると

yxvu IIII =一定

この式は一組の直交軸に対して 1 対の 2 次モーメントを求めたときは,原点を同一とした場合その和

は一定であることを示している.この和を pI で表し,図形の座標原点に対する極 2 次モーメントという

(前出).

[問題 7.6]式(7.21)に式(7.17)を代入して式(7.22)を求めよ.

[問題 7.7]式(7.22)から式(7.23)を求めよ.

注) cos)cos(,sin)sin(

(7.18)

(7.17)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

dA x

y

O x

y

A

図 7.33

v

u

u v

Page 14: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-14

7.5.3 主軸

相乗モーメントが 0 になるような直交軸を,与えられた図形の主軸という.原点は図心にとる.

図形が対称軸をもつ場合は,その軸とこれに直交する軸が図形の主軸となる.

図形が対称軸をもたない場合,図心を通る軸 x,y を だけ回転した位置に主軸 X,Y があるとすると,

式(7.22)の第 3 式を 0uvI と置き,次式よりその方向を求める.

2

2t a nyx

xy

II

この主軸に対して求めた断面 2 次モーメントを,断面主 2 次

モーメントといい, 21 , II で表す. 1I を第 1 主軸, 2I を第 2

主軸といい,次式のように与えられる.

2

2

2

1

22xy

yxyxI

IIII

I

I

この式においても

yx IIII 21

が成り立つ.

[問題 7.8]式(7.24)を式(7.22)の第 1,2 式に適用して式(7.25)を求めよ.

[問題 7.9]次の図形について問に答えよ.

(1) 図心位置 ),( 00 yx を求めよ.

(2) xyyx III ,, を求めよ.

(3) uvvu III ,, を求めよ.

(4) 図心を通る主軸と断面主 2 次モーメントを求めよ.

注)式(7.22)において x,y を主軸とみなせば 0xyI となり, yx II , は主 2 次モーメントとなる.これを 21, II で表して

書き直せば次式のようになる.

2s i n2

c o ss i n

s i nc o s

21

22

21

22

21

III

III

III

uv

u

u

(7.24)

(7.25)

O x

y

X

X

図 7.34

(7.26)

100

80

x0

20

x O

y

y0

20

u

v

図 7.35 [単位:mm]

Page 15: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-15

7.6 断面係数・断面 2 次半径・核点

7.6.1 断面係数

次式で表される量を断面係数と定義する.

t

x

t

c

x

cy

IW

y

IW ,

Wc : 上縁の断面係数

Wt : 下縁の断面係数

Ix : 図心軸 x に対する断面 2 次モーメント

yc , yt : 図心軸から上縁および下縁までの距離

断面係数は曲げモーメントに抵抗する割合を表す.

単位[mm3]

7.6.2 断面 2 次半径(回転半径)

次式で表される量を断面 2 次半径と定義する.

A

Ir

A

Ir

y

y

x

x ,

単位[mm]

7.6.3 核点

次式で表される量を核点と定義する.

A

WK

A

WK t

c

c

t ,

単位[mm]

x

yc

yt

Ix

Wc

Wt

図 7.36

G (7.27)

(7.28)

(7.29)

x

Wc

yc

yt

A

図 7.38

y

Kc

Kt

Wt

G

yc

yt

rx

A

図 7.37

x rx

ry

ry

G

y

Page 16: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-16

[問題 7.10]次の問に答えよ.

(1) 次の図形の x 軸に対する断面係数・断面 2 次半径・核点を求めよ.

(2) 次の図形の x 軸に対する断面係数・断面 2 次半径・核点を求めよ.

(3) 次の図形の図心軸 x に対する断面係数を求めよ.

(4) 次図の x,y 軸に対する断面 2 次半径を求めよ.

x

b

(a)

h/2

h/2

x

r 2h/3

h/3

b

x

(b) (c)

図 7.39

[単位:mm]

90

20

20

x

140

20

y

図 7.42

30

60

40

20

x

図 7.40

[単位:mm]

100

80

20

x

y0

20

(a) (b)

5

1

1

1 2 1

x

y0

図 7.41

[単位:m] [単位:mm] O

Page 17: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-17

[例題 7.20]次の図形について問に答えよ.

(1) 断面 2 次モーメント xI , yI を求めよ.

)mm(1067.21242102010012

20100

1101802012

1802021020180

12

20180

4423

23

23

xI

)mm(1067.115012

10020

12

20180

12

18020 44333

yI

(2) 図心位置 0y を求めよ

)mm(4.12710020220180

102010011020180210201800

y

(3) XI , YI を求めよ.

)mm(1037.6310)20100220180(4.1271067.21242 44242

0 AyII xX

)mm(1067.1150 44 yY II

(4) 断面 2 次半径 Xr , Yr を求めよ.

)mm(4.352009

1067.1150

)mm(8.822009

1037.6310

4

4

A

Ir

A

Ir

Y

Y

X

X

(5) X 軸に関する断面係数 tc WW , を求めよ.

)mm(1047.6814.127220

1037.6310 334

c

X

cy

IW

)mm(1032.4954.127

1037.6310 334

t

X

ty

IW

(6) Y 軸に関する断面係数 W を求めよ.

)mm(1085.12790

1067.1150

2/

334

B

IW Y

(7) 格点を求めよ.

)mm(8.532009

1032.495 3

A

WK t

c

)mm(1.742009

1047.681 3

A

WK c

t

)mm(9.132009

1085.127 3

A

WK

180

180

20

x

y,Y

y0

100

X

20

20

Kc

Kt

K

K

図 7.44 [単位:mm]

180

180

20 x

y,Y

y0

100

X

20

20

図 7.43 [単位:mm]

Page 18: 第1章 単 位H. Hamano, 7. 部材断面 7-3 7.2 図心 7.2.1 図心 1 点を通る任意の軸に対する図形の断面1次モーメントが0となる点を図心と定義する.

H. Hamano, 7. 部材断面 7-18

[例題 7.19] 曲げを受ける鉄筋コンクリート T形断面の図心位置および図心軸対する断面 2次モーメン

トを求めよ.

[解]鉄筋コンクリート断面は通常ウエッブ部分を

無視して考える.したがって,フランジと鉄筋の換

算断面積の部分の合成図形として図心位置を求めれ

ばよい.

1) 図心位置を求める.

フランジ:

断面積 Ac=1 000×100=1.0×105mm2

x 軸に対する断面 1 次モーメント

Gc=Acyc=1.0×105×(-50)=-5.0×106mm3

鉄筋:

鉄筋の断面積をコンクリートの断面積に換算する.

sc nAA =15×3 039.5=45 592.5mm2

x 軸に対する断面 1 次モーメント

scs yAG =45 592.5×(-500)=-22.8×106mm3

ゆえに図心位置は

9.1 9 04 5 5 9 2 5.1

2 7 8

10)455925.00.1(

10)8.220.5(5

6

0

sc

sc

AA

GG

A

Gy mm

2) 断面 2 次モーメントを計算する.

8523

1068.20100.1)509.190(12

1000001

XcI mm4

IXs=(400-90.9)2×45 592.5=43.56×108mm4

IX=IXc+IXs=64.24mm2

これまで重力単位で計算していたものを,SI 単位系で表すのはなかなか面倒なところがある.し

たがって,ここでは SI 単位を表記する場合は,下表のように重力単位に換算係数 gc(=9.81N)を付記

して用い,実際の数値計算はこの数値を代入して計算することとする.

換算断面積

鉄筋とコンクリートの弾性係数を ,s cE E とすると

15104.1

101.23

4

c

s

g

g

c

s

E

En

これを用いて鉄筋の断面積をコンクリートの断面積(あるいは逆)に換算することができる.

鉄筋→コンクリート c sA nA

コンクリート→鉄筋 /s cA A n

これらを換算断面積と言う.

注) この換算係数を使わずに直接換算断面積を求めてよいことは勿論である.

重力単位 SI 単位

鋼材の弾性係数 Es=2.1×104kgf/mm2 Es=2.1×104 gcN/mm

コンクリートの弾性係数 Ec=1.4×103kgf/mm2 Ec=1.4×103 gcN/mm

ちょっと休憩[7-5](換算断面積)

1 000

400

100

換算断面積

X

y0

x

・・・・ ・・・・

[mm]

As=8- 22=3 039.5 mm2

X

図 7.45 換算断面積