3
Calculus 8.3 Polar Graphs Area: The area of a small sector of a curve (circle in geometry) was given by the formula sector area = angle measure 2π π r 2 = angle measure 2 r 2 . Since we want the angle measure of the sector to be very tiny, let dθ = the angle measure, giving the area of the sector = 1 2 r 2 dθ . Therefore the area of the entire region will be 1 2 r 2 ! " # $ % & dθ θ =a θ =b = 1 2 f θ () ( ) 2 dθ θ =a θ =b where r = f θ () . Example: Find the area inside r = 2 + 2sinθ . Solution: Area is 1 2 2 + 2sinθ ( ) 2 dθ 0 2π = 1 2 4 + 8sinθ + 4sin 2 θ dθ 0 2π = 2 + 4sinθ + 2sin 2 θ dθ 0 2π = 2 + 4sinθ + 2 1 cos 2θ ( ) 2 " # $ % & ' dθ 0 2π = 2 + 4sinθ + 1 cos 2 θ ( ) dθ 0 2π = 3 + 4sinθ cos 2 θ ( ) dθ 0 2π = 3 θ 4cosθ sin 2θ ( ) 2 0 2π = 32π ( ) 4cos 2 θ ( ) sin 4θ ( ) 2 ! " # $ % &− 30 () 4cos 0 () sin 0 () 2 ! " # $ % & = 6π . Example: Find the area in the first leaf of r = 2sin 3 θ ( ) Solution: To find the limits, 2sin 3 θ ( ) = 0 sin 3 θ ( ) = 0 3 θ = 0, π , 2π , 3π θ = 0, π 3 , 2 π 3 , π . Therefore, the first leaf (of three) starts at α = 0 and ends at β = π 3 , then the area of this leaf will be 1 2 2sin 3 θ ( ) ( ) 2 0 π 3 dθ = 2sin 2 3 θ ( ) 0 π 3 dθ , using the half angle formula sin 2 θ = 1 2 1 cos 2 θ ( ) ( ) gives 2 1 2 1 cos 2 3 θ ( ) ( ) ( ) ( ) 0 π 3 d θ = 1 cos 6 θ ( ) 0 π 3 dθ = θ sin6θ 6 0 π 3 = π 3 sin6 π 3 ( ) 6 $ % & & ' ( ) ) 0 sin6 0 () 6 $ % & ' ( ) = π 3

Calculus 8.3 Polar Graphswp.lps.org/jdevrie/files/2014/08/Calc_8.3_PolarGrahs.pdf · 2017-04-12 · Example: Find the area shared by the graphs r = 2 and r=2(1−cosθ). Solution:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Calculus 8.3 Polar Graphswp.lps.org/jdevrie/files/2014/08/Calc_8.3_PolarGrahs.pdf · 2017-04-12 · Example: Find the area shared by the graphs r = 2 and r=2(1−cosθ). Solution:

Calculus 8.3 Polar Graphs Area: The area of a small sector of a curve (circle in geometry) was

given by the formula

sector area =angle measure

2π⋅ π r2

=angle measure

2⋅ r2 . Since we want the angle measure of the

sector to be very tiny, let

dθ = the angle measure, giving the area of the sector

= 12 r2dθ . Therefore the area of the entire region

will be 12r2

!

"#

$

%&dθ

θ=a

θ=b∫ = 1

2f θ( )( )2 dθ

θ=a

θ=b∫ where r = f θ( ) .

Example: Find the area inside r = 2+ 2sinθ .

Solution: Area is 12

2+ 2sinθ( )2 dθ0

2π∫ = 1

24+8sinθ + 4sin2θ  dθ

0

2π∫

= 2+ 4sinθ + 2sin2θ  dθ0

2π∫ = 2+ 4sinθ + 2 1−cos 2θ( )

2"#$

%&' dθ

0

2π∫ = 2+ 4sinθ +1− cos 2θ( ) dθ

0

2π∫

= 3+ 4sinθ − cos 2θ( ) dθ0

2π∫ = 3θ − 4cosθ − sin 2θ( )

2 0

= 3 2π( )− 4cos 2θ( )− sin 4θ( )2

!"#

$%&− 3 0( )− 4cos 0( )− sin 0( )2!"#

$%&= 6π .

Example: Find the area in the first leaf of

r = 2sin 3θ( )

Solution: To find the limits,

2sin 3θ( ) = 0

⇒ sin 3θ( ) = 0

⇒ 3θ = 0, π, 2π, 3π

⇒θ = 0, π3 , 2π3 , π . Therefore, the first

leaf (of three) starts at

α = 0 and ends at

β = π3 , then the area of

this leaf will be

12

2sin 3θ( )( )2

0

π3∫ dθ

= 2sin2 3θ( )0

π3∫ dθ , using

the half angle formula sin2θ = 12 1− cos 2θ( )( ) gives

2 12 1− cos 2 3θ( )( )( )( )

0

π3∫ dθ

= 1− cos 6θ( )0

π3∫ dθ

= θ −sin6θ6 0

π3

=π3−sin6 π

3( )6

$

%

& &

'

(

) ) − 0 − sin6 0( )

6$

% &

'

( )

=π3

Page 2: Calculus 8.3 Polar Graphswp.lps.org/jdevrie/files/2014/08/Calc_8.3_PolarGrahs.pdf · 2017-04-12 · Example: Find the area shared by the graphs r = 2 and r=2(1−cosθ). Solution:

Example: Find the area shared by the graphs r = 2 and

r = 2 1− cosθ( ) .

Solution: To find the angle values for the shared region set the equations equal to each other and solve for q:

2 1− cosθ( ) = 2

⇒1− cosθ =1

⇒ cosθ = 0 , giving

θ = − π2 and π2 . The shared

area equals the area of a semicircle plus the part of the cardioid

12π 2( )2 +

12

2 1− cosθ( )( )2−π2

π2∫ dθ

= 2π + 2 − 4cosθ + 2cos2θ−π2

π2∫ dθ , using the half angle gives

2π + 2 − 4cosθ + 21+ cos2θ

2%

& '

(

) *

−π2

π2∫ dθ

= 2π + 3 − 4cosθ + cos2θ−π2

π2∫ dθ

= 2π + 3θ − 4sinθ +12sin2θ

%

& '

(

) * −π2

π2

= 2π + 3 π2( ) − 4sin π

2( ) +12sin2 π

2( )$

% &

'

( ) − 3 − π2( ) − 4sin − π2( ) +

12sin2 − π2( )$

% &

'

( )

= 2π + 32 π − 4 + 0 + 3

2 π − 4 + 0

= 5π − 8

Example: Find the area inside the graph of

r = 3+ 2cosθ , but outside the graph of r = 2.

Solution: To find the angle values for the non-shared region (shown as the white part in the diagram) set the equations equal to each other and solve for q:

3+ 2cosθ = 2

⇒ 2cosθ = −1

⇒ cosθ = − 12 , giving

θ = − 2π3 and 2π

3 . The non-shaded area

equals area of cardioid minus circle. Using symmetry, find the area of the top portion then multiply by 2.

Area

= 212

3+ 2cosθ( )2 − 2( )2( )0

2π3∫ dθ

= 9 +12cosθ + 4cos2θ − 4( )0

2π3∫ dθ

= 5 +12cosθ + 4 cos2θ0

2π3∫ dθ , using the half angle,

= 5 +12cosθ + 41+ cos2θ

2#

$ %

&

' (

0

2π3∫ dθ

= 7 +12cosθ + 2cos2θ0

2π3∫ dθ

= 7θ +12sinθ + sin2θ0

2π3

= 7 2π3( ) +12sin 2π

3( ) + sin2 2π3( )( ) − 7 0( ) +12sin 0( ) + sin2 0( )( )

=14π3

+12 32

#

$ %

&

' ( +

− 32

#

$ %

&

' (

#

$ % %

&

' ( (

=14π3

+11 32

≈ 24.187

Page 3: Calculus 8.3 Polar Graphswp.lps.org/jdevrie/files/2014/08/Calc_8.3_PolarGrahs.pdf · 2017-04-12 · Example: Find the area shared by the graphs r = 2 and r=2(1−cosθ). Solution:

Arc Length: Similar to a curve defined by parametric equations, arc length of polar equation can be approximated using the Pythagorean Theorem. As with function and parametric curves, the length of

the hypotenuse of the right triangle will be L = Δx( )2 + Δy( )2

= dx( )2 + dy( )2 . Using the polar conversion formula x = rcosθ ,

then dxdθ =drdθ cosθ + r −sinθ( ) = dr

dθ cosθ − rsinθ using the product

rule. Similarly, y = rsinθ giving dydθ =drdθ sinθ + rcosθ .

Therefore dx = r 'cosθ − rsinθ( )dθ and dy = r 'sinθ + rcosθ( )dθ , substituting in Pythagorean Theorem

gives L = r 'cosθ − rsinθ( )dθ( )2 + r 'sinθ + rcosθ( )dθ( )2

= " r cosθ − rsinθ( )2 + " r sinθ + rcosθ( )2dθ

= " r ( )2 cos2θ − 2 " r rcosθ sinθ + r2 sin2θ + " r ( )2 sin2θ + 2 " r rcosθ sinθ + r2 cos2θdθ

= " r ( )2 cos2θ + sin2θ( ) + r2 cos2θ + sin2θ( )dθ

= " r ( )2 + r2dθ .

Therefore the total arc length is !r( )2 + r2 dθθ=a

θ=b∫ = f ' θ( )( )2 + f θ( )( )2 dθ

θ=a

θ=b∫ where

r = f θ( ).

Using this example, the length around the entire graph of r = 2+ 2sinθ is

2cosθ( )2 + 2+ 2sinθ( )2 dθ0

2π∫ =16 .