CAPE PURE MATHEMATICS UNIT 2MODULE 1: COMPLEX NUMBERS AND CALCULUS II

Embed Size (px)

DESCRIPTION

CAPE PURE MATHEMATICS UNIT 2PRACTICE QUESTIONSCHALLENGE QUESTIONS

Citation preview

  • CAPE Pure Mathematics Unit 2

    Practice Questions

    By Carlon R.Baird

    MODULE 1: COMPLEX NUMBERS AND CALCULUS II

    1. (a) Use de Moivres theorem to prove the trigonometric identity:

    7 5 3cos7 64cos 112cos 56cos 7cos

    (b) Use de Moivres theorem to evaluate 8

    1 i

    (c) Express

    2cos3 sin3

    cos sin

    q i q

    q i q

    in the form cos sinkq i kq where k is an integer to be

    determined.

    2. If | 6 | 2 | 6 9 |z z i ,

    (a) Use an algebraic method to show that the locus of z is a circle, stating its centre and its

    radius.

    (b) Sketch the locus of z on an Argand diagram.

    3. Find dy

    dxin terms of x and y where

    3 3 23 6 4x x y y x

    4. (a) Find the derivative of the function

    1 2ln( )( ) cot( ) sin( )cos( ) cos ( ) 9

    ln(2 )

    xh x x x x x x

    x

    (b) The curve C has equation 2 cos( )xy e x

    i. Show that the stationary points on C occur when tan( ) 2x

    ii. Find an equation of the tangent to C at the point where x=0

    5. (a) Given that8( , , ) 4 cos( ) sin(4 ) tan 0zf x y z xyz xy x e xz y

    i. Determine xf , yf , zf

    ii. Determine xyf , yxf , yzf

    (b) Given that 2 42 4 18x

    p xv v xv

  • i. Determine p

    v

    and

    p

    x

    ii. Determine 2 p

    x v

    and

    2 p

    v x

    6. (a) Integrate with respect to x

    i. 2

    10

    1

    x

    x

    ii. 2

    15

    1

    x

    x

    iii. 2

    2 8

    1

    x

    x

    (b) (i) Express the function 4 3 2

    3 2

    4 9 17 12( )

    4 4

    x x x xh x

    x x x

    as partial fractions

    (ii) Hence, evaluate

    4 4 3 2

    3 2

    3

    4 9 17 12

    4 4

    x x x xdx

    x x x

    (c) Determine 12

    1tan

    1x dx

    x

    7. Using the substitution secx ,find 2

    2

    1 1

    1

    xdx

    xx x

    8. (a) Show that 4 31 (1 )x x x

    (b) Given that

    1

    3

    0

    (1 )nnI x x dx , show that 13

    3 2n n

    nI I

    n

    (c) Use your reduction formula to evaluate 4I .

    9. Given that sin(2 1)

    sin( )m

    m xJ dx

    x

    ,

    (a) Show that 1sin 2

    m m

    mxJ J

    m

    (b) Hence find 5J .

  • 10. Use the trapezium rule using 4 strips to estimate 3

    0

    1 tan( ) x dx

    giving your answer to 3 significant figures.

  • By Carlon R. Baird

  • 1. (a) First lets consider 7(cos sin )i

    Now, by de Moivres theorem

    7

    7

    (cos sin ) cos7 sin7

    cos7 sin7 (cos sin )

    Using binomial expansion:

    i i

    i i

    7 7 6 7 5 2 7 4 3

    1 2 3

    7 3 4 7 2 5 7 6 7

    4 5 6

    7 6 5 2 2 4 3 3

    cos7 sin7 cos (cos )( sin ) (cos )( sin ) (cos )( sin )

    (cos )( sin ) (cos )( sin ) (cos )( sin ) ( sin )

    cos 7(cos )( sin ) 21(cos )( sin ) 35(cos )( sin )

    i C i C i C i

    C i C i C i i

    i i i

    3 4 4 2 5 5 6 6 7 7

    7 6 5 2 4 3

    3 4 2 5 6 7

    35(cos )( sin ) 21(cos )( sin ) 7(cos )( sin ) sin

    cos 7cos sin 21cos sin 35cos sin

    35cos sin 21cos sin 7cos sin sin

    i i i i

    i i

    i i

    Now equating real parts:

    7 5 2 3 4 6

    7 5 2 3 2 2 2 3

    7 5 7 3 2 4

    3 3 0 3 2 3 1

    0 1 2

    cos7 cos 21cos sin 35cos sin 7cos sin

    cos 21cos (1 cos ) 35cos (1 cos ) 7cos (1 cos )

    cos 21cos 21cos 35cos 1 2cos cos

    7cos (1) ( cos ) (1) ( cos ) (1) ( cC C C

    2 3 0 337 5 7 3 5 7

    2 4 6

    7 5 7 3 5 7 3

    5 7

    7 7 7

    os ) (1) ( cos )

    cos 21cos 21cos 35cos 70cos 35cos

    7cos 1 3cos 3cos cos

    cos 21cos 21cos 35cos 70cos 35cos 7cos 21cos

    21cos 7cos

    cos 21cos 35cos

    C

    7 5 5 5 3

    3

    7cos 21cos 70cos 21cos 35cos

    21cos 7cos

    7 5 3cos7 64cos 112cos 56cos 7cos

  • 2(cos3 sin3 )cos(6 ) sin(6 )

    cos sin

    cos7 sin7

    q i qq q i q q

    q i q

    q i q

    (b)

    8

    2 2

    1

    Let ( 1 )

    Let 1

    ( 1) (1) 2

    tan 1

    tan (1)4

    z i

    p i

    r p

    arg

    4

    3

    4

    p

    8

    8

    8

    Rewriting in polar form: (cos sin )

    3 32 cos( ) sin( )

    4 4

    3 32 cos( ) sin( )

    4 4

    Now applying de Moivre's theorem:

    3 3( 2) (cos(8 ) sin(8 ))

    4 4

    24 2416(cos( ) sin( )

    4 4

    p p r i

    p i

    z p

    z i

    z i

    z i

    )

    16(cos(6 ) sin(6 ))

    16(1 (0))

    16.

    z i

    z i

    z

    (c)

    2(cos3 sin3 ) cos(2(3) ) sin(2(3) )

    cos sin cos( ) sin( )

    cos6 sin6

    cos( ) sin( )

    q i q q i q

    q i q q i q

    q i q

    q i q

    Recall that 1 1 1 2 1 22 2

    (cos( ) sin( ))z r

    iz r

    Im z

    Re z

    arg p

    1

    1

    Recall that cos( ) cos

    and sin( ) sin( )

  • C(-10,12)

    O

    12

    -10

    y

    x

    7k

    2. (a)

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2 2 2

    2 2

    6 2 6 9

    6 2 6 9

    ( 6) 2 ( 6) ( 9)

    ( 6) 2 ( 6) ( 9)

    ( 6) 4 ( 6) ( 9)

    12 36 4 12 36 18 81

    12 36 4 48 144 4 72 324

    3 60 3 72 432 0

    ou

    z z i

    x iy x iy i

    x iy x y i

    x y x y

    x y x y

    x x y x x y y

    x x y x x y y

    x x y y

    2 2

    2 2

    2 2

    t by 3

    20 24 144 0

    By completing the square

    ( 10) 100 ( 12) 144 144 0

    ( 10) ( 12) 100

    The locus of z is a circle with radius 10 and centre (-10,12)

    x x y y

    x y

    x y

    (b)

  • 3.

    3 3 2

    2 2

    2 2

    2

    2

    3 6 4

    : 3 1 3 3 8

    (3 3) 8 1 3

    8 1 3

    3 3

    x x y y x

    d dy dyx y x

    dx dx dx

    dyy x x

    dx

    dy x x

    dx y

    4. (a)

    1 2

    1 2

    2

    2 2

    ln( )( ) cot( ) sin( )cos( ) cos ( ) 9

    ln(2 )

    ln( ) 1( ) sin( )cos( ) cos ( ) 9

    ln(2 ) tan( )

    1 2ln(2 ) ln( )

    tan( ) 0 1 sec2'( )

    (ln(2 )) tan

    (cos )(cos ) (sin )(

    xh x x x x x x

    x

    xh x x x x x

    x x

    x xx xx x

    h xx x

    x x x

    2

    22 2

    2 2 2

    22 2

    2 2 2

    22 2

    2 2 2

    1sin ) 18

    1

    1(ln(2 ) ln( ))

    sec 1'( ) cos sin 18

    ln (2 ) tan 1

    2ln( )

    sec 1 = cos sin 18

    ln (2 ) tan 1

    ln(2) sec 1'( ) = cos sin 18

    ln (2 ) tan 1

    x xx

    x xxxh x x x x

    x x x

    xxx x x x

    x x x x

    xh x x x x

    x x x x

  • (b) i) 2 cosxy e x

    2 2

    2 2

    2

    2

    2

    cos( ) 2 sin( )

    =2 cos( ) sin( )

    = 2cos( ) sin( )

    At stationary pts. 0

    2cos( ) sin( ) 0

    0 and 2cos( ) sin( ) 0

    2cos( ) sin( ) 0

    2cos( ) sin( )

    x x

    x x

    x

    x

    x

    dyx e e x

    dx

    e x e x

    e x x

    dy

    dx

    e x x

    e x x

    x x

    x x

    sin( ) 2=

    cos( )

    tan( ) 2

    x

    x

    x

    ii) When 0x ,2(0) cos(0) 1y e

    We have co-ordinates (0,1)

    2(0)

    0

    1 1

    2cos(0) sin(0) 2

    Gradient of tangent at x=0 is 2

    So equation of tangent : ( )

    1 2( 0)

    2 1

    x

    dye

    dx

    y y m x x

    y x

    y x

    5. (a) 8( , , ) 4 cos( ) sin(4 ) tan( )zf x y z xyz xy x e xz y

    i)

    8

    8

    4 (cos )( ) ( )( sin( )) (sin(4 )(0) ( )(4 cos(4 )) 0

    4 cos( ) sin( ) 4 cos(4 ).

    z

    x

    z

    f yz x y xy x xz e z xz

    yz y x xy x ze xz

    2

    2

    4 [( )(0) (cos )( )] 0 sec

    4 cos( ) sec

    yf xz xy x x y

    xz x x y

  • 8 88 8

    8

    4 0 [ 4 cos(4 ) (sin(4 )(8 )] 0

    4 4 cos(4 ) 8 sin(4 )

    4 4 ( cos(4 ) sin(4 ))

    z z

    z

    z z

    z

    f xy e x xz xz e

    xy xe xz e xz

    xy e x xz xz

    ii)

    4 [ ][ sin( )] [cos( )][1] 0

    4 sin( ) cos( )

    xyf z x x x

    z x x x

    4 cos( ) ( )(0) (sin( ))( ) 0

    4 cos( ) sin( )

    yxf z x xy x x

    z x x x

    4 0 0

    4

    yxf x

    x

    (b) 2 42 4 18x

    p xv v xv

    i)

    2

    2

    2 2 4 0

    42 2

    pxv xv

    v

    xxv

    v

    2 3

    2 3

    40 72

    472

    pv x

    x v

    v xv

    ii)

    2

    2

    2

    42 0

    42

    pv

    x v v

    vv

    22

    2

    2 4 0

    42

    pv v

    v x

    vv

    6 (a) i)

    2 2

    2

    10 25

    1 1

    =5ln 1

    x xdx dx

    x x

    x c

  • ii) 1

    2 2

    2

    1515 (1 )

    1

    xdx x x dx

    x

    Recall that if some function

    1

    2 2( ) (1 )f x x

    1

    2 2

    1

    2 2

    1'( ) (2 )(1 )

    2

    '( ) (1 )

    f x x x

    f x x x

    So

    1 1

    2 22 2

    1

    2 2

    15 (1 ) 15 (1 )

    15(1 )

    x x dx x x dx

    x C

    iii) 2 2 2

    2 8 2 8

    1 1 1

    x xdx dx dx

    x x x

    2 2

    1 2

    1 22 4

    1 1

    2tan ( ) 4ln 1

    xdx dx

    x x

    x x C

    (b) i) 4 3 2

    3 2

    4 9 17 12( )

    4 4

    x x x xh x

    x x x

    This algebraic fraction is improper so we shall use algebraic long division:

    3 2 4 3 2

    4 3 2

    2

    4 4 4 9 17 12

    4 4 0

    5 17 12

    x

    x x x x x x x

    x x x

    x x

    2

    3 2

    5 17 12( )

    4 4

    x xh x x

    x x x

    2

    2

    2

    2

    5 17 12

    ( 4 4)

    5 17 12

    ( 2)

    x xx

    x x x

    x xx

    x x

    Let 2

    2

    5 17 12( )

    ( 2)

    x xq x

    x x

    22 ( 2)

    A B C

    x x x

    Multiplying out both sides by 2( 2)x x gives

    25 17 12x x 2( 2) ( 2)A x Bx x Cx

  • 2 2

    Let 0;

    5(0) 17(0) 12 (0 2)

    4 12

    3

    x

    A

    A

    A

    2

    2 2 2

    Comparing terms:

    5

    5

    3 5

    2

    x

    Ax Bx x

    A B

    B

    B

    Comparing terms:

    17 4 2

    17 4 2

    17 4(3) 2(2)

    17 12 4

    C= 17 16 1

    x

    x Ax Bx Cx

    A B C

    C

    C

    2

    3 2 1( )

    2 ( 2)q x

    x x x

    So ( ) ( )h x x q x

    2

    3 2 1( )

    2 ( 2)h x x

    x x x

    ii) Hence,

    4 44 3 2

    3 2 2

    3 3

    4 9 17 12 3 2 1

    4 4 2 ( 2)

    x x x xdx x dx

    x x x x x x

  • 4 4 4 4

    2

    3 3 3 3

    1 1 3 2 ( 2)

    ( 2)x dx dx dx x dx

    x x

    4 42 1

    4 4

    3 33 3

    2 2 1 1

    3 2

    ( 2)3 ln 2 ln 2

    2 1

    4 3 (4 2) (3 2)3 ln(4) ln(3) 2 ln(4 2) ln(3 2)

    2 2 1 1

    9 4 18 3 ln( ) 2ln(2)

    2 3 2

    7 4 1ln( ) ln(2)

    2 3 2

    643 ln( 4)

    27

    253 ln(

    x xx x

    6

    )27

    (c) 1 1

    2 2

    1 1tan ( ) tan ( )

    1 1x dx x dx dx

    x x

    1 1tan ( ) tan ( )x dx x

    Let 1tan ( )I x dx

    1(1)(tan ( ))x dx

    Let 1tan and 1

    dvu x

    dx

    2

    1

    1

    du

    dx x

    v x

    Using integration by parts:

    1 2

    1

    2

    1

    2

    1 2

    1tan ( ) ( )( )

    1

    tan ( )1

    1 2tan ( )

    2 1

    1tan ( ) ln |1 |

    2

    I x x x dxx

    xx x dx

    x

    xx x dx

    x

    x x x

  • 1 1 2 1

    2

    1 1tan ( ) tan ( ) ln |1 | tan ( )

    1 2x dx x x x x C

    x

    7. 2

    2

    1 1

    1

    xdx

    xx x

    Using the substitution 1

    seccos

    x

    2

    2

    [cos ][0] [1][ sin ]

    cos

    sin

    cos

    sin 1

    cos cos

    dx

    d

    tan sec

    tan sec

    dx

    d

    dx d

    2 2

    2 2

    1 1 1 sec 1 tan sec

    sec1 sec sec 1

    1

    sec

    xdx d

    xx x

    2

    2

    1tan tan sec

    tan

    2

    1tan tan

    tan

    1 tan

    tan

    d

    d

    tan

    2

    2

    1 tan

    sec

    tan

    d

    d

    d

    C

    Remember in the question that 1

    seccos

    x

    1

    cosadj

    x hyp

  • Now lets apply a little bit of trigonometry:

    x

    1A

    B

    C

    By Pythagorass theorem:

    2 2 2

    2 2

    2 1

    AB BC AC

    BC AB AC

    BC x

    So 2Opp 1

    tanAdj 1

    BC x

    AC

    Now we can replace 2tan with 1x

    2

    2

    2

    1 11

    1

    xdx x C

    xx x

    8 (a) R.T.S. 4 31 1 x x x

    R.H.S.:

    (b)

    1

    3

    0

    (1 ) nn

    I x x dx Employing integration by parts:

    Let 3(1 ) and n

    dvu x x

    dx

    3 3

    4

    4

    1 1 (1 )

    x x x x x

    x x x

    x

  • 3 1 2

    2 3 1

    (1 ) ( 3 )

    3 (1 )

    n

    n

    dun x x

    dx

    nx x

    and

    2

    2

    xv

    1 12 2

    13 2 3

    00

    1

    4 3 1

    0

    1

    3 3 1

    0

    1 1

    3 1 3 3 1

    0 0

    1

    (1 ) 3 12 2

    3 0 (1 )

    2

    Using the identity in

    31 (1 ) (1 )

    2

    3 3(1 ) (1 ) (1 )

    2 2

    3 3

    2

    nn

    n

    n

    n

    n

    n

    n n

    n

    n n

    x xI x nx x dx

    nI x x dx

    nI x x x dx

    n nI x x dx x x x dx

    n nI I

    1

    3

    0

    1

    1

    1

    1

    1

    (1 )2

    3 3

    2 2

    3 3

    2 2

    2 3 3

    2 2

    (2 3 ) 3

    3

    3 2

    n

    n n n

    n n n

    n n

    n

    n n

    n n

    x x dx

    n nI I I

    n nI I I

    I nI nI

    n I nI

    nI I

    n

  • (c)

    1

    3 0

    0

    0

    1

    0

    12

    0

    (1 )

    (1)

    2

    10

    2

    1

    2

    I x x dx

    x dx

    x

    4

    12 9 6 3 1 243

    14 11 8 5 2 1540I

    4 3

    2

    2

    1

    1

    0

    0

    3(4)

    3(4) 2

    12 3(3) =

    14 3(3) 2

    12 9 =

    14 11

    12 9 3(2) =

    14 11 3(2) 2

    12 9 6 =

    14 11 8

    12 9 6 3(1) =

    14 11 8 3(1) 2

    12 9 6 3 =

    14 11 8 5

    I I

    I

    I

    I

    I

    I

    I

  • 9. sin((2 1) )

    sin( )

    m

    m xJ dx

    x

    (a)

    Recall: sin( ) sin( ) 2cos sin2 2

    1

    (2 1 2 1) ((2 1) (2 1))2cos sin

    2 2

    sin( )

    4 22cos sin

    2 2 =

    sin( )

    2cos 2 sin( ) =

    m m

    m m x m m x

    J J dxx

    mx x

    dxx

    mx x

    sin( )x

    =2 cos(2 )

    = 2

    dx

    mx dx

    1

    2sin(2 )

    sin(2 ) =

    mxm

    mx

    m

    1

    sin (2( 1) 1)sin((2 1) )

    sin( ) sin( )

    sin((2 1) ) sin((2 2 1) )

    sin( ) sin( )

    sin((2 1) ) sin((2 1) )

    sin( ) sin( )

    sin((2 1) ) sin((2 1) )

    sin( )

    m m

    m xm xJ J dx

    x x

    m x m xdx

    x x

    m x m xdx

    x x

    m x m xdx

    x

  • (b)

    0

    sin(2(0) 1)

    sin( )

    1

    xJ dx

    x

    dx

    x

    5sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2 )

    5 4 3 2 1

    x x x x xJ x C

    10. 3

    0

    1 tan( ) x dx

    03width of strips= where n is the number of strips

    4 12

    b ah

    n

    x 0 12

    6

    4

    3

    y 1 1.126032 1.25593 1.41421 1.65289

    Using the trapezium rule:

    3

    0

    1 1 tan( ) (width of strips)(1 height+2(sum of all middle heights)+last height)

    2

    stx dx

    1

    5 4

    3

    2

    1

    0

    sin(2 )

    sin(2(5))

    5

    sin 2(4)sin(10 )

    5 4

    sin(10 ) sin(8 ) sin(2(3) )

    5 4 3

    sin(10 ) sin(8 ) sin(6 ) sin(2(2) )

    5 4 3 2

    sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2(1) )

    5 4 3 2 1

    sin(10 ) sin

    5

    m m

    m xJ J

    m

    xJ J

    xxJ

    x x xJ

    x x x xJ

    x x x x xJ

    x

    0(8 ) sin(6 ) sin(4 ) sin(2 )

    4 3 2 1

    x x x xJ

  • 11 2(1.126032 1.25593 1.41421) 1.65289

    2 12

    1 7.592344 1.6528924

    10.24523424

    1.3410979...

    1.34 {3 sig. fig}