51
Carbon Footprint of Biodiesel from El Cimarrón, Colombia Draft Report Prepared for: Prestige Colombia SAS Prepared by: Quantis Simon Gmünder, Project Manager Laura Rubio, Life Cycle Analyst Rainer Zah, Scientific Support March 14, 2017 LAUSANNE – PARIS – BERLIN – ZURICH - BOGOTA - BOSTON | www.quantis-intl.com

Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Carbon Footprint of Biodiesel from ElCimarrón,ColombiaDraftReport

Preparedfor:PrestigeColombiaSASPreparedby:Quantis

SimonGmünder,ProjectManager

LauraRubio,LifeCycleAnalyst

RainerZah,ScientificSupport

March14,2017

LAUSANNE – PARIS – BERLIN – ZURICH - BOGOTA - BOSTON | www.quantis-intl.com

Page 2: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 Pageii

Quantis is a leading life cycle assessment (LCA) consulting firm specialized in supportingcompaniestomeasure,understandandmanagetheenvironmentalimpactsoftheirproducts,services and operations. Quantis is a global company with offices in the United States,Switzerland,Germany,ColombiaandFranceandemployscloseto60people,amongstwhichseveralareinternationallyrenownedexpertsintheLCAfield.

Quantis offers cutting-edge services in environmental footprinting (multiple indicatorsincluding carbon and water), eco design, sustainable supply chains and environmentalcommunication.Quantis also provides innovative LCA software,Quantis SUITE 2.0,whichenablesorganizationstoevaluate,analyzeandmanagetheirenvironmental footprintwithease. Fuelled by its close ties with the scientific community and its strategic researchcollaborations,Quantishasastrongtrackrecordinapplyingitsknowledgeandexpertisetoaccompany clients in transforming LCA results into decisions and action plans. Moreinformationcanbefoundatwww.quantis-intl.com.

This report has been prepared by the Latin American office of Quantis. Please direct allquestionsregardingthisreporttoSimonGmünderfromQuantisLatinAmerica.

QuantisLatinAmerica

SimonGmünder

Bogotá,Colombia

Tel:+573148182273

[email protected]

www.quantis-intl.com

Page 3: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 Pageiii

PROJECTINFORMATIONProjecttitle CarbonFootprintofBiodieselfromElCimarrón,Colombia

Contractingorganization

PrestigeColombiaSAS

Liabilitystatement Informationcontainedinthisreporthasbeencompiledfromand/orcomputedfromsourcesbelievedtobecredible.Applicationof thedataisstrictlyatthediscretionandtheresponsibilityofthereader.Quantisisnotliableforanylossordamagearisingfromtheuseoftheinformationinthisdocument.

Version Draftreport

Projectteam Simon Gmünder, Project Manager ([email protected])

RainerZah,ScientificSupport([email protected])

Sebastien Humbert, internal review ([email protected])

Clientcontacts HenrikWiig,AdvisorResGrowAS,[email protected]

Predro Gonfrier, Director Prestige Colombia SAS,[email protected]

Externalreviewer(s)

-

Page 4: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

TABLEOFCONTENT

1 Introduction............................................................................12

1.1 Backgroundandproblemstatement.............................................................................12

1.2 Goalofthisstudy..........................................................................................................12

2 CarbonFootprintMethodology...............................................13

2.1 Overviewaboutcarbonfootprintstandardsforbiofuels...............................................13

2.2 CarbonfootprintaccordingtoRED................................................................................14

2.3 Scopeofthestudy.........................................................................................................15

2.3.1 Generaldescriptionoftheproductsystems................................................................15

2.3.2 Functionalunit..............................................................................................................15

2.3.3 Systemboundaries.......................................................................................................16

2.4 Datacollectionandmodelling.......................................................................................17

2.4.1 Datatypesandsources................................................................................................17

2.4.2 Allocationmethod........................................................................................................18

2.4.3 Biogeniccarbonemissions...........................................................................................18

2.4.4 Landusechange...........................................................................................................18

2.5 Greenhousegases.........................................................................................................19

2.6 Sensitivityanalyses.......................................................................................................20

2.7 Limitationsofthestudy.................................................................................................20

3 Palmoilsupplychain...............................................................22

3.1 Overviewabouttheassedvaluechains.........................................................................22

3.2 Landprovision(el).........................................................................................................22

3.2.1 Previouslandusecategories........................................................................................22

3.2.2 Biomasscarbonstockchange.......................................................................................23

3.2.3 Soilcarbonstockchange..............................................................................................24

3.2.4 Annualizedcarbonemissionsofbiofuels.....................................................................25

Page 5: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD v

3.3 Palmoilplantations(eec)...............................................................................................26

3.3.1 Farmingsystem............................................................................................................26

3.3.2 Productivity..................................................................................................................27

3.3.3 Systemcharacterization...............................................................................................27

3.3.4 Mineralandorganicfertilizer.......................................................................................28

3.3.5 Pesticides......................................................................................................................29

3.3.6 Energyconsumption.....................................................................................................29

3.3.7 Emissionstoair.............................................................................................................29

3.3.8 Overviewaboutlifecycleinventory.............................................................................31

3.4 Palmoilextraction(ep).................................................................................................31

3.4.1 Systemdescription.......................................................................................................31

3.4.2 Productsandcoproducts..............................................................................................32

3.4.3 Materialandenergydemand.......................................................................................32

3.4.4 Combustionemissions..................................................................................................33

3.4.5 TransportationofFFBtooilmill...................................................................................34

3.4.6 Composting..................................................................................................................34

3.4.7 OrganicRankingCycleengine......................................................................................35

3.4.8 Inventoryoverviewandallocation...............................................................................35

3.5 Biodieselproduction(ep)...............................................................................................35

3.6 Distributiontothefillingstation(etd)............................................................................36

3.6.1 ExportthroughVenezuela............................................................................................36

3.6.2 ExportviaCartagena....................................................................................................37

3.6.3 TransportinEuropetofillingstation............................................................................38

3.7 Useofbiodieselincar(eu)............................................................................................39

3.8 Fossilreference(ef).......................................................................................................39

4 ResultsandDiscussion............................................................39

Page 6: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD vi

4.1 GHGbalanceofbiodiesel...............................................................................................39

4.1.1 Landprovisionandoilpalmcultivation........................................................................39

4.1.2 Palmoilmillandbiodieselplant...................................................................................41

4.1.3 Transporttofillingstationanduseincar.....................................................................41

4.2 Comparisonwithfossilfuel...........................................................................................42

4.3 Comparisonwithotherstudies......................................................................................44

4.4 TheEUREDdirectivefor2030–changeofmethodology...............................................45

4.5 Limitations....................................................................................................................46

5 Conclusionsandrecommendations.........................................47

5.1 Conclusion.....................................................................................................................47

5.2 Recommendationandnextsteps..................................................................................47

6 Reference................................................................................48

7 Annex.....................................................................................50

7.1 AnnexI–CarbonFootprintofCPOsoldinEurope.........................................................50

7.2 AnnexII–CarbonFootprintofMargarinesoldinVenezuela.........................................50

Page 7: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD vii

ListoffiguresFigure1:LocationofPrestigeColombiaSASoilpalmplantation.Theareacurrentlyundercultivation

(yellow),thelandtitle(green)andthepotentialexpansion(blue).....................................................15

Figure2:Overviewonthebiodieselvaluechain.Thenumbers indicatethechaptersdescribingthe

inventoryofthecorrespondingprocess..............................................................................................22

Figure3:Predominantlandusetypesinthestudyarea(left)andthegoogleimagefrom2016ofthe

currentlyestablishedplantation(right,googlemaps).........................................................................22

Figure4:Biomasscarbonstockofreferencelanduse(grassland)andoilpalmplantationsintC/ha.a)

thechangesofthecarbonstocksovertime(a)andtheaveragecarbonstock(b)ofgrasslandandoil

palmplantations..................................................................................................................................24

Figure5:CarbonstockoftheOrinocobasin(tC/ha).Source(WWF,2014).........................................25

Figure6:ExpectedyielddistributionbyageofoilpalmatElCimarrón(intFFB/ha)..........................27

Figure7:Schematicoverviewaboutoilpalminventory......................................................................28

Figure8:Schematicoverviewaboutthecomposting(source:Composystem)..................................34

Figure9:GlobalwarmingpotentialofoilpalmcultivationmeasuredinkgCO2eqperha..................40

Figure10:GlobalwarmingpotentialofoilpalmcultivationmeasuredinkgCO2eqperha.Negative

valuesarecarbonsequestration..........................................................................................................40

Figure11:CarbonFootprintofdifferenttransportationroutesfromthebiodieselplanttothefilling

stationinEurope(ingCO2eq/MJfuel)..............................................................................................42

Figure12:GHGemissionssavingsofbiodiesel comparedtofossil fuels(in%), leftfigure.Biodiesel

baselinescenarioCO2equivalentemissionsbysource,noticelandusechangeisnegativeasthereis

morecarboninpalmsthanformersavannah(gCO2eq/MJ),rightfigure.........................................43

Figure13:GHGemissionssavingsofbiodieselscenarioscomparedtofossilfuels(in%)...................43

Figure 14: The area under cultivation (in ha) at the top and the associatedGHG savings (in%) of

biodieselcomparedtofossilfuelatthebottom,baselinescenario....................................................44

Figure15:PotentialGHGsavingsfrombiodieselproductioninlosllanos(WWF,2014).....................45

Figure16:GHGemissionssavingsofbiodieselscenarioscomparedtofossilfuels(in%)...................46

Page 8: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD viii

ListofTablesTable1:LivingbiomassanddeadorganicmatterofdifferentlandusesystemsinColombia,intC/ha.

..............................................................................................................................................................23

Table2:MainparametersofLUCcalculationforthedefaultscenarioaccordingtoEUREDandforthe

sensitivityanalysis................................................................................................................................26

Table3:Fertilizeramounts(kgofnutrientperhectare)......................................................................29

Table4:FieldemissiondatausedtomodeltheNH3,N2O,NOx,NO3andCO2emissionrelatedtooil

palmplantations..................................................................................................................................30

Table 5: Life cycle inventory data for oil palm plantation (per hectare). ¶The values estimated by

Prestige(green),fromliterature(blue)fromdifferentcountries(CO:Colombia,IN:India,TH:Thailand,

IDN:Indonesia,BR:Brasil)andthevaluesusedinthestudy(orange)arelisted.................................31

Table6:Materialandenergyinputper100tonofFFB.ThevaluesestimatedbyPrestige(green),from

literature(blue)fromdifferentcountries(CO:Colombia,IN:India,TH:Thailand,IDN:Indonesia)and

thevaluesusedinthestudy(orange)arelisted.Otheroilmilloutputssuchaseffluentsandvapour

arenotlisted........................................................................................................................................32

Table 7: Airborne emissions from the combustion of 1MJ fiber, 1MJ shell and per 100 ton FFB

(Jungbluth,Dinkeletal.2007)..............................................................................................................33

Table8:Compostingmaterialandenergyflow(per100tFFB)forthedefaultscenario(apartofthe

EFBsareused for electricity generation) and the scenariowhereelectricity is generatedbasedon

diesel....................................................................................................................................................35

Table9:Allocationfactorsforoilmillproductsinpercent..................................................................35

Table10:AllocationfactorforPMEandglycerine...............................................................................36

Table11:DistributionfromVenezuelatothefillingstationduringrainyseason................................36

Table12:DistributionfromVenezuelatothefillingstationduringdryseason...................................37

Table13:DistributionfromCartagenatothefillingstationduringrainyseason................................38

Table14:DistributionfromCartagenatothefillingstationduringdryseason...................................38

Table15:GHGemissionsbiodieselproductionanduseingCO2equivalentsperMJoffuelcombusted.

Negativevaluesarecarbonsequestration...........................................................................................39

Table16:GlobalwarmingpotentialofthepalmoilmillmeasuredingCO2eqMJfuel.Valuesinyellow

indicate0to10%,orange10%to50%,red>50%contribution...........................................................41

Page 9: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD ix

Table17:CarbonFootprintofCPO(gCO2eq/kgCPO)shippedtoEurope........................................50

Table18:CarbonFootprintofMargarine(kgCO2eq/kgmargarine),includingpackaging................50

Page 10: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD x

AbbreviationsandAcronymAGB AboveGroundBiomass

AF AllocationFactor

BGB BelowGroundBiomass

CO2 CarbonDioxide

CF CharacterizationFactor

CUE ConsortiumCNPML,UPBandEMPA

CPO CrudePalmOil

m3 Cubicmeter

DOM DeadOrganicMatter

EFB EnmptyFruitBunch

EF EnvironmentalFactor

eq Equivalents

FFA FreeFattyAcids

FFB FreshFruitBunch

GWP GlobalWarmingPotential

GHG Greenhousegas

IPCC IntergovernmentalPanelonClimateChange

ISO InternationalOrganizationforStandardization

kg Kilogram=1,000grams(g)=2.2pounds(lbs)

KgCO2eq Kilogramsofcarbondioxideequivalents

kWh Kilowatt-hour=3,600,000joules(j)

LCA LifeCycleAssessment

LCIA LifeCycleImpactAssessment

LCI LifeCycleInventory

L liter

MJ Megajoule=1,000,000joules,(948Btu)

CH4 Methane

POME PalmOilMillEffluent

SMAPs SectorialMitigationActionPlans

U UnitProcess

UNFCCC UnitedNationsFrameworkConventiononClimateChange

y Year

Page 11: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

ReportpreparedforBioD xi

EXECUTIVESUMMARY

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

CarbonFootprin

tofbiodiesel

(gCO

2eq/M

Jfuel)

Useincar

Transportofbiodiesel

Biodiesel plant

OilMill

Transporttooilmill

Oilpalmcultivation

Landusechange

Total

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

CarbonFootprin

tofbiodiesel

(gCO

2eq/M

Jfuel)

Useincar

Transportofbiodiesel

Biodiesel plant

OilMill

Transporttooilmill

Oilpalmcultivation

Landusechange

Total

BiodieselfromelCimarrón isprojectedtofulfiltheEUREDGHGcriteriabyshowing134%lessGHGemissionascomparedtofossildiesel.

Carbon Footprint ofBiodieselfrom elCimarrón |Colombia

ASSESSthecarbonfootprintofthefuturelarge-scalebiodieselproduction ofPrestigeColombiainVichada

EVALUATEthecompliancewiththeGHGcriteriaoftheRenewableEnergyDirective(RED)

DESIGNthecultivationandprocessingfacilitiesinacarbonfriendlyway.

Objective Results

0%

Fossildiesel

100%

Biodiesel

MethodologyTheGHGcalculationfollowstheEURED

FOSSIL VS.BIODIESEL

134%

GHGSAV

INGS

Context• PrestigeColombiaSASisaColombianpalmoilproducer inVichada |Colombia• Oilpalmcultivation:Currently650ha| Expansionplanto60.000ha• Biodieselproduction (future):State-of-theartoilextraction,biodieselproduction

andtreatmentofby-products&exportofpalmoilorbiodieseltoEurope

ofpalmbasedbiodiesel

ZOOMONBIODIESEL

Economyofscaleallows

optimaluseandtreatmentofby-products.Avoidedmethaneemissionduetoproper treatmentofPOMEandEFB.

Ifoilpalmplantationsare

establishedonlowcarbon land(e.g.savannasinlos Llanos)thecarbonstockincreases(negativevaluesforlandusechange).

GHGemissions

-34%

Page 12: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 12

1 Introduction

1.1 Backgroundandproblemstatement

Prestige Colombia SAS (hereafter Prestige) is a Colombian palm oil producer in Vichada,Colombia. Currently 625 hectares (ha) are under cultivation and the first harvest isapproaching. Theoilwill be extracted in a smallmill inVichada,which is currently underconstruction,andthecrudepalmoil isintendedtobesoldinColombia.PrestigeColombiaSAShas13000haoflandrightsandarelookingtofurtherexpandthecultivationareaundertheZIDRESlaw(upto60.000ha).

PrestigeColombiaSASisevaluatingthefeasibilityofexportingpalmoilorbiodieseltoEurope.To receive government support or count towards national renewable energy targets thebiofuelshavetocomplywiththeEUsustainabilitycriteria.Therenewableenergydirective(RED) criteria for greenhouse gas (GHG) emissions states that “from 1 January 2018greenhousegasemissionsavingsshallbeatleast60%1forbiofuelsandbioliquidsproducedin installations inwhich production started on or after 1 January 2017” (EU-Commission,2008)Article17paragraph2.

AccordingtotheEU,thedefaultgreenhouseemissionsavingsofpalmoilbiodieseldonotfulfil the sustainability criteria of 60% GHG reduction compared to fossil fuels. Severalprevious studies however underlined the substantial GHG saving potential of Colombianbiodieselfrompalmoil(Castanheira&Freire,2016;CUE,2012)andthusthedefaultvaluesprovidedbytheEU,whicharemainlybasedondatafromSouth-EastAsia,donotreflecttheconditionsofbiodieselproductioninColombia.

1.2 Goalofthisstudy

Themaingoaloftheproposedprojectistoassessthecarbonfootprintofthefuturelarge-scalebiodieselproductionofPrestigeColombiainVichadaandtoevaluatethecompliancewiththeGHGcriteriaoftheRED.

Theprospective studywill bebasedon realistic assumptions from similar production andprocessingsystems.

Further,thecarbonfootprinthotspotswillbehighlightedandmeasurestoreducethecarbonfootprintareproposed.Theresultsof thestudywillbeusedtodesignthecultivationandprocessingfacilitiesinacarbonfriendlyway.

Theproject report is intended toprovide results in a clear andusefulmanner to supportcommunicationofthecarbonfootprinttointernalandexternalaudiences(clients,providers,policymakers,shareholders,etc.).Whendisclosingtheresultsithastobeclearlystatedthat

1On30November2016, theCommissionpublishedaproposal fora revisedRenewableEnergyDirective toensurethatthe2030targetsaremet.Theproposedchangesincludese.g.thattheGHGsavingsofleast70%forbiofuelsandbioliquidsproducedininstallationsstartingoperationafter1January2021.(EU-Commission,2008)Article17paragraph2.

Page 13: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 13

thecarbon footprintstudy isprospective, since thesystem isyet tobebuild,andhas thecharacterofascreeningstudywithrelativelyhighuncertainties.

2 CarbonFootprintMethodology

2.1 Overviewaboutcarbonfootprintstandardsforbiofuels

Carbon footprinting is an internationally recognized approach that evaluates the carbonimpactsassociatedwithproductsandservicesthroughouttheirlifecycle,beginningwithrawmaterialextractionandincludingallaspectsoftransportation,production,use,andend-of-lifetreatment.Amongotheruses,carbonfootprintingcanidentifyopportunitiestoimprovetheenvironmentalperformanceofproductsatvariouspointsinthelifecycle,informdecision-making,andsupportmarketing,communication,andeducationalefforts.Itisimportanttonote that, rather than direct measurements of real impacts, the impacts described areestimates of relative, potential impacts with limitations that are clearly indicated andacceptedbytheguidelines.

Differentprinciples,standardsandnormsexistabouthowtoassessthecarbonfootprintofaproductorservice:

• Generic:Asetofinternationalandnationalguidelinesandprinciplesabouthowtoassessthe

carbonfootprintofproductsandservicesareavailable.Amongthemostwidelyusedarethe

ISO14067(ISO,2013),GHGprotocol(Penny,Fisher,&Collins,2012)andPAS2050(BSI,2011).

They slightlydiffer in thegoal& scope,modelingprinciples, levelofdetail andwhether the

standardiscertifiable.

• Biofuelspecific:Overthelastdecadeasetofbiofuelspecificstandardshasemerged.Theyare

mainly linked to policies (e.g. Renewable energy directive RED, Swiss tax exemption) or

voluntary schemes (e.g. Roundtable of Sustainable biofuels, RSB) whichmight also be crop

specific(e.g.RoundtableofSustainablePalmOil,RSPO)(EU-Commission,2008;Leuenberger&

Huber-Hotz,2006;RSB,2008;RSPO,2005).

Allofthecarbonfootprintapproachesarebasedonthelifecycleperspective,asdefinedinISO 14040/44 (ISO, 2006a, 2006b). Themost significant differences includewhether theyallowcomparisonwithproducts fulfilling thesamefunction (e.g.biofuelsand fossil fuels),howtheyallocateby-productsandhowthelandusechangeisconsidered.

InthisstudytheREDmethodwasused.TheREDmethodisalsorecognizedbyRSB,isintegralpartofISCCandpartiallycompliantwithRSPOcertification.

Page 14: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 14

2.2 CarbonfootprintaccordingtoRED

REDspecifiesthatGHGfromtheproductionanduseofbiofuelsshallbecalculated

as:

E=eec+el+ep+etd+eu–esca–eccs–eccr–eee,

whereE: totalemissionsfromtheuseofthefuel;

eec: emissionsfromtheextractionorcultivationofrawmaterials;

el: annualisedemissionsfromcarbonstockchangescausedbyland-usechange(seechapter2.4.4ofthisreport);

ep: emissionsfromprocessing;

etd: emissionsfromtransportanddistribution;

eu: emissionsfromthefuelinuse;

esca: emissionsavingfromsoilcarbonaccumulationviaimprovedagriculturalmanagement;

eccs: emissionsavingfromcarboncaptureandgeologicalstorage;

eccr: emissionsavingfromcarboncaptureandreplacement;and

eee: emissionsavingfromexcesselectricityfromcogeneration.

Withinthisstudytheemissionsavings(esca,eccs,eccrandeee)arenotconsideredasrelevant,since:

• Thesoilcarbonaccumulationviaagriculturalmanagementisconsideredintheel.Nobonus

forEscaisattributed,sincetheoilpalmplantationsarenoestablishedonseverelydegraded

noronheavilycontaminatedland(REDAnnexV,C.8).

• Nocarboniscapturedandgeologicalystored(eccs)orusedtoreplacefossilderivedCO2used

incommercialproductsandservices(eccr).Thesavingsofreplacingfossildieselisconsidered

(seebelow).

• Noexcesselectricityisproducedbythebiofuelsystem,sincealltheelectricitygeneratedis

consumedforpalmoilcultivationandprocessing.Consequentlyeeeissettozero.

Theemissionsavingsarecalculatedas:SAVING=(EF–EB)/EF,where

EB: totalemissionsfromthebiofuelorbioliquid;and

EF: totalemissionsfromthefossilfuelcomparator.

Page 15: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 15

2.3 Scopeofthestudy

2.3.1 Generaldescriptionoftheproductsystems

TheoilpalmcultivationandprocessingplantarelocatedclosetoNuevaAntioquia,Primaveramunicipality, Vichada department, Colombia. Themap below illustrates the current areaundercultivation,the13.000haandtheplannedexpansionof80.000ha(ofwhich60.000haareusedforoilpalmplantation).

Figure1:LocationofPrestigeColombiaSASoilpalmplantation.Theareacurrentlyundercultivation(yellow),thelandtitle(green)andthepotentialexpansion(blue).

Oil palm plantationswere established in 2011 and 2012 (yellow area, 625ha) and the oilextractionplantwhichiscurrentlyunderconstructionisplannedtobeoperationalinApril2017.

WithinthisstudywethecarbonfootprintoflargescalebiodieselproductioninPrimavera,NuevaAntioquia.Theanalysedsystemconsistsofanoilpalmcultivationareaof60.000haonthe total land area of 80.000ha2, 5 oil extraction mills and a state of the art biodieselproduction plant. The residues from oil extraction are used to generate electricity andcompost.ThebiodieselwillbetransportedtoEuropeintwopotentialrouts(viaVenezuelaandCartagena).

2.3.2 Functionalunit

Product carbon footprints rely on a “functional unit” as a reference for evaluating thecomponents within a single system or amongmultiple systems on a common basis. It isthereforecriticalthatthisparameterisclearlydefinedandmeasurable.Tofulfilthefunctionalunit, different quantities and types ofmaterials are required for eachproduct. These areknownasreferenceflows.Thereferenceflowforcomparingbiodieselwithfossildieselusedinthisstudyis1MJoffuelcombustedinastandardpassengercarandtheGHGemissionsfromfuelsareexpressedintermsofgramsofCO2equivalentperMJoffuel,gCO2eq/MJ.

2Theareamightbedividedintodifferentsections(notjustoneplot)andcombinedwithothercropandanimalproduction.

Page 16: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 16

ThisimpliesthatwewillmeasuretheGHGemissionsfromthelifebiodieselcycletransformedtoCO2equivalentsandthencomparedtotheemissionsfromfossilfuelsforthesameamountofenergy.TheMJreferstothelowerheatingvalueofthefuel.

2.3.3 Systemboundaries

Thesystemboundariesidentifythelifecyclestages,processes,andflowsconsideredintheLCA and should include all activities relevant for attaining the above-mentioned studyobjectives.

In this study the GHG emissions from cradle-to-grave are quantified, starting with thefeedstockproductionup to the combustionof thebiodiesel. In the following section, thegenerallifecyclestagesaredescribed,whilethedetaileddescriptionofeachstageisprovidedinchapter3.

Oilpalmcultivation:Theoilpalmcultivationstartswiththelandprovisionandincludesalldirect and indirect emissions related to cultivation, as well as the harvesting andtransportationofthefreshfruitbunches(FFB)totheoilmill.Emissionsfromthecultivationof rawmaterials (eec) shall include emissions from the cultivationprocess itself; from thecollectionofrawmaterials;fromwasteandleakages;andfromtheproductionofchemicalsorproductsusedincultivation(includesvaluechainemissions).

Oil extraction and biodiesel production: Emissions from processing (ep) shall includeemissionsfromtheprocessingitself;fromwasteandleakages;andfromtheproductionofchemicalsorproductsusedinprocessing.TheCPOisextractedfromtheFFB.Thebyproductssuchaskerneloilandmealaresold.Thepalmoilmilleffluents(POME)andtheemptyfruitbunch(EFB)arecomposted.Therawmaterialsarerefinedandtrans-esterifiedtoproducebiodieselandglycerine.

Transport to filling station: Emissions from transport and distribution (etd) shall includeemissionsfromthetransportandstorageofrawandsemi-finishedmaterialsandfromthestorageanddistributionoffinishedmaterials.

Thebiodiesel isblendedwith fossildieselproducedand transported to the fillingstationsbeforeitiscombustedinthedieselenginesofvehicles.

2.3.3.1 Temporalandgeographicboundaries

Thisisaprospectivestudy,sincethesystemunderstudyisnotyetimplemented.Dataandassumptionsareintendedtoreflectcurrentequipment,processes,andmarketconditions.

2.3.3.2 Cut-offcriteria

All product components and production processes are included when the necessaryinformationisreadilyavailableorareasonableestimatecanbemade.InaccordancewiththeEUREDmethodologythefollowingflowsareexcludedfromthisstudy:

• Capitalgoods:Emissionsfromthemanufactureofmachineryandequipmentarenotbetaken

into account (RED guidelines). It should be noted that the capital equipment and

infrastructure available in theecoinventdatabase is included in thebackgrounddata. The

Page 17: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 17

inclusion leads to a slight overestimation which can be considered as insignificant, since

capitalgoodsofbackgroundprocessestypicallyshowlowcontributions.

• Humanenergyinputs(e.g.thefoodoftheemployees).

• Transportofconsumerstoandfromthepointofretailpurchase(e.g.transporttothefilling

station).

• Transportofemployeestoandfromtheirnormalplaceofwork.

Furtherprocessesandflowsthatarecut-offaredescribedintherespectivechapters.

2.4 Datacollectionandmodelling

2.4.1 Datatypesandsources

Asfaraspossibleconservativebutrealisticvaluesforthesystemunderarecollectedbasedonexpertinterviews,questionnairesorfromrelevantliterature.

Oilpalmplantations:Primarydatafromthe625haundercultivationwascollected.ThedatacollectionwasbasedonaquestionnairefilledoutbypersonalfromPrestige.Theprimarydatawas compared to literaturevalueanda conservative value foreach flowwas considered.Secondarydatawasusedforthebackgroundprocessesandthecarbonstockvaluesofthedifferentlanduses.

Palmoilextraction:Estimateddatafromtheoilmillwhichiscurrentlyunderconstructioniscollected based on a questionnaire filled out by personnel from Prestige. The data wascomparedtoliteraturevalueandaconservativevalueforeachflowwasconsidered.

Biodieselproduction:DefaultvaluesfromEUREDwereused.

Biodiesel transport and distribution:We analysed four different transportation routes,considering the specific transportation distances and transportation means. The energyconsumptionfromthefueldepotandfillingstationarebasedonEUREDdefaultvalues.

Biodieseluse:TheEUREDdefaultvalues(zero)areused.

Fossildiesel:TheEUREDdefaultvaluesareused.

Backgrounddataarenotspecificallyrelatedtotheproductsystemandareusuallyderivedfrom generic inventory databases. Typical examples are transport datasets and datasetsrelatedtomaterialproductionandelectricitygeneration.Suchbackgrounddata isderivedfrom literature and from the Ecoinvent v 3.2 database3. Ecoinvent is internationallyrecognizedbymanyexpertsinthefieldasoneofthemostcompleteLCIdatabasesavailable,fromaquantitative(numberofincludedprocesses)andaqualitative(qualityofthevalidationprocesses,datacompleteness,etc.)perspective.

3http://www.ecoinvent.org/

Page 18: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 18

ForfuelsandelectricitytheColombianspecificemissionfactorsofFecoc42016wereusedforthefuelcombustion(AMELLARRIETA,CHEJNEJANNA,LOPEZLÓPEZ,FORERO,&HERRERA,2016)andcompletedwithEcoinventbackgroundprocessesforthefuelproduction.

The data sources and assumptions are documented in the respective chapters. InventorymodellingandcarbonfootprintcalculationsareperformedinSimapro7.35.

2.4.2 Allocationmethod

WeapplytheenergyallocationasdefinedintheEURED:“Whereafuelproductionprocessproduces,incombination,thefuelforwhichemissionsarebeingcalculatedandoneormoreotherproducts(co-products),greenhousegasemissionsshallbedividedbetweenthefuelorits intermediate product and the co-products in proportion to their energy content(determinedbylowerheatingvalueinthecaseofco-productsotherthanelectricity).

Wastes,agriculturalcropresidues,includingstraw,bagasse,husks,cobsandnutshells,andresidues fromprocessing, includingcrudeglycerine (glycerine that isnot refined), shallbeconsideredtohavezerolife-cyclegreenhousegasemissionsuptotheprocessofcollectionofthosematerials.”EURED,AnnexV,chapterC.17.

2.4.3 Biogeniccarbonemissions

CarbondioxideiscapturedbytheFFBandaretypicallyreleasedinthesameyearduringthecombustionofthefuel.FollowingtheREDguidelines,weexcludetheCO2uptakebyFFBandtheCO2emissionsfromthefuelinuse(eu).

This assumption is based on the concept of “carbon neutrality”, where the atmosphericcarbonfixationandend-of-lifecarbonemissionsoccurinsuchashortperiodoftimethattheycanberegardedasoffsettingeachother.

2.4.4 Landusechange

The carbon emissions fromdirect land use change are calculated according to the Tier 1approachproposedbyIntergovernmentalPanelonClimateChange(IPCC,2006).Thecarbonchangeiscalculatedasthedifferenceofthecarboninabovegroundbiomass(AGB),belowgroundbiomass(BGB),deadorganicmatter(DOM)andsoilorganiccarbon(SOC)beforeandafteroilpalmplantation.Thereferencelanduseissetto20086andadiscountingperiodoflandusechangeissetto20years(annualizedemissions).

4LacalculadoradeFactoresdeEmisióndelosCombustiblesColombianos-FECOC-.tienecomoobjetofacilitarel cálculo de emisiones de CO2 generados por el aprovechamiento energético de los combustibles queactualmente hacen parte importante de la canasta energética Colombiana.http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html#5http://www.pre-sustainability.com/62008isthecut-offyear,whichmeansthatLUCoccurredbefore2008arenotaccountedfor.Withinthisstudythereferenceyearof2008isnotrelevantsincetheplantationsareestablishedlater.

Page 19: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 19

Forthecalculationofthoseemissionsthefollowingruleshallbeapplied(REDAnnexV,C.7):

𝑒" = 𝐶𝑆'– 𝐶𝑆) ∗ 3.664 ∗120 ∗

1𝑃– 𝑒𝐵

whereel annualisedgreenhousegasemissionsfromcarbonstockchangeduetoland-usechange

(measuredasmassofCO2-equivalentperunitbiofuelenergy);

CSR thecarbonstockperunitareaassociatedwiththereferencelanduse(measuredasmassofcarbonperunitarea,includingbothsoilandvegetation).ThereferencelanduseshallbethelanduseinJanuary2008;

CSA thecarbonstockperunitareaassociatedwiththeactuallanduse(measuredasmassofcarbonperunitarea,includingbothsoilandvegetation).Incaseswherethecarbonstockaccumulatesovermorethanoneyear,thevalueattributedtoCSAshallbetheestimatedstockperunitareaafter20yearsorwhenthecropreachesmaturity,whichevertheearlier;

P theproductivityofthecrop(measuredasbiofuelorbioliquidenergy(MJ)perunitarea(ha)peryear);

eB bonusof29gCO2eq/MJbiofuelorbioliquidifbiomassisobtainedfromrestoreddegradedlandundertheconditionsprovidedforinpoint8ofREDAnnexVchapterC7.Notapplicableinthisstudy.

3.664 ThequotientobtainedbydividingthemolecularweightofCO2(44g/mol)bythemolecularweightofcarbon(12g/mol)isequalto3,664.

Indirect land use change (iLUC) effects are not considered in accordance with the REDguidelines,butpotentialiLUCarediscussedinchapter4.4.

2.5 Greenhousegases

Greenhousegases(GHGs)aresubstancesknowntocontributetoglobalwarmingandincludecarbon dioxide, methane, dinitrogen oxide and chlorofluorocarbons amongst othersubstances.TheGHGsareweightedbasedonanidentifiedglobalwarmingpotential(GWP)expressedingramsofcarbondioxide(CO2)equivalents.

ThefractionofaninitialCO2pulsethatremainsintheatmosphereattimetisbasedonthedecayfunctionoftheBern2.5CCcarboncyclemodel.Sincethedecayandradiativeefficiencyof other GHG differs from CO2, the characterization factors are dependent on the timehorizon.TheGWPofotherGHGiscommonlycalculatedovertimehorizonof20,100and500years.Withinthisstudytheassessmentperiodofmodellingtheemissionsandtheimpactissetat100years.ThistimehorizoniswidelyacceptedandrecommendedbyEURED,PAS2050,RSPOandtheILCDguidelines(BSI2011;EuropeanCommission2010).

ThegreenhousegasestakenintoaccountareCO2,N2O(CO2equivalenceof296)andCH4(CO2equivalence of 23). However, for the background database we use the full list of GHGsubstancesas implementedintheGWPindicator(IPCC2007) inSimaPro,whichleadstoaslightoverestimationoftheGHGemission.

7Thebonushallbeattributedifevidenceisprovidedthatthelandwasnotinuseforagricultureoranyotheractivity inJanuary2008;andthelandisheavilycontaminatedorseverelydegraded.Severelydegradedland’meanslandthat,forasignificantperiodoftime,haseitherbeensignificantlysalinatedorpresentedsignificantlyloworganicmattercontentandhasbeenseverelyeroded.

Page 20: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 20

Asmentionedinchapter2.4.3thebiogenicCO2andmonoxideemissionsareexcludedfromthestudy.However,theGWPfactorfornon-CO2emissionsoriginatingfrombiogeniccarbonsources (e.g. CO2 removed from the atmosphere and subsequently emitted as CH4) areconsideredandtheemissionfactoriscorrectedinorderintoaccounttheremovaloftheCO2

thatgaverisetothebiogeniccarbonsource.ForbiogenicmethanetheGWP100is23kgCO2-eqperkgbiogenicmethane(EURED).

Further,noweighting factor fordelayedemissions (e.g. timedelaybetweenvegetableoilproductionandcombustionofthebiodiesel) isnotconsidered inaccordancewithEURED(assumedthattheuptakeandtheemissionsaretakingplaceinthesameperiod).

2.6 Sensitivityanalyses

Theparameters,methodologicalchoicesandassumptionsusedwhenmodelingthesystemspresentacertaindegreeofuncertaintyandvariability.It is importanttoevaluatewhetherthe choice of parameters, methods, and assumptions significantly influences the study’sconclusionsandtowhatextentthefindingsaredependentuponcertainsetsofconditions.Sensitivity analyses are used to study the influence of the uncertainty and variability ofmodeling assumptions and data on the results and conclusions, thereby evaluating theirrobustnessandreliability.Sensitivityanalyseshelpintheinterpretationphasetounderstandthe uncertainty of results and identify limitations. The following sensitivity analyses areconductedinthisstudy:

• Landusechange:ontheamountoflandchanged&thecarbonstockvaluesused(includingorexcludingLUCasasensitivityresult)

• Electricity generation at oilmill:The biomass based electricity generation using craft engineoperatesonanorganicrankingcycleiscomparedtodieselelectricitygeneration.

• Transportation routes: Two different export scenarios of the biodiesel (via Venezuela andCartagena)arecalculated.

2.7 Limitationsofthestudy

TheGHGstudyprovidesacomprehensiveoverviewabout thecarbonemissionsalongthebiodieselvaluechainandabouttheGHGsavingscomparedtofossildiesel.However,whileinterpretingtheresultsfollowinglimitationshavetobeconsidered:

Prospectivestudy:Thesystemsanalysedarenotyetestablished.Thestudyestimates therealisticGHGreductionpotential,butincasethesystemisestablisheddifferentthanassumedtheresultswillchange.ConsequentlytheGHGstudyneedstobeupdatedfrequentlyinordertoreflecttheactualpalmoilcultivation,processinganduse.

Inventorydata:Theassessmentofenvironmentalimpactsinthelifecycleusuallyrequiresalargesetofdataandmodelassumptions.Theseassumptionshavetobeconsideredwhileinterpretingtheresults.

Theuncertaintiesrelatedtotheinventorydatawerenotquantified.However,thesensitivityof results on different inventory assumptions was tackled by the evaluation of differentscenarios.

Duetolimitedaccesstoprimarydata,somesecondaryandtertiaryinventorydatasetshadtobeused.SomeoftheimplementedLCIdatarepresentEuropeanoperations,implyingthatthe

Page 21: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 21

studyheremaynotbe100%representativeofprocessesrelatedtoColombiaorgeographiclocationsofPrestigessupplychainandcustomers.However,adatabaseofequivalentquality,transparency,androbustnessisnotyetavailablefortheColombia.

Overallsustainability:Althoughthecarbonfootprintingmethodologyisadequatetoassessa key aspect of environmental sustainability, it is capturing neither other environmentalimpacts(e.g.acidification,eutrophication,toxicity,biodiversity,etc.)northesocio-economicimpactstheygenerate.Inordertoobtainacompleteviewofsustainability,theresultsoftheCFstudyshouldbeinterpretedtogetherwithotherassessments, i.e.twinstudydescribingsocio-economic and environmental conditions at El Cimarron commissioned by Prestige(Wiig,2017)

Page 22: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 22

3 Palmoilsupplychain

3.1 Overviewabouttheassedvaluechains

Inthefollowingchapterthebiodieselvaluechainisdescribedindetailandtheinventorydatageneratedisprovided.Figure2providesanoverviewaboutthestructureandaboutselectedkeyaspectsrelevantforconductingthebiodieselcarbonfootprintcalculation.

Figure2:Overviewonthebiodieselvaluechain.Thenumbersindicatethechaptersdescribingtheinventoryofthecorrespondingprocess.

3.2 Landprovision(el)

3.2.1 Previouslandusecategories

Therearetwodominantlandcoverinthestudysite,whicharesavannasandgalleryforestalong the surface water bodies. Oil palm plantations will only be established on naturalgrasslandoronlandunderuse(e.g.pastureoragriculturalland),leavingabufferareaofat50m8tothenextwaterbody,asindicatedinFigure3.

Figure3:Predominantlandusetypesinthestudyarea(left)andthegoogleimagefrom2016ofthecurrentlyestablishedplantation(right,googlemaps)

AccordingIPCC“grasslandsvarygreatlyintheirdegreeandintensityofmanagement,fromextensivelymanagedrangelandsandsavannahs–whereanimalstockingratesandfireregimes are the main management variables – to intensively managed (e.g., with8Forthenewplantationsabufferareaof150mwillbeimplemented.

Feedstock Oilextraction Biodiesel Distribution/Use

OilPalmplantation(FFB)

Biodieselproduction (PME)

Transporttofillingstation

Fossildieselproduction&combustion

Fossilreference

Landprovision Oilmill(CPO)

Combustion incar

3.2

3.4

3.3

3.5

3.6

3.7

3.8

Oil palm plantation

Natural grassland

Page 23: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 23

fertilization, irrigation, species changes) continuous pasture and hay land. Grasslandsgenerally have vegetation dominated by perennial grasses, and grazing is thepredominantlanduse.”(IPCC2006,Chapter6).

Withinthisstudyweassumeextensivelymanagedsavannahsasthepreviouslanduse,wheregrazingandfirearecommonperturbations.

3.2.2 Biomasscarbonstockchange

The direct carbon emissions caused by the direct land use change (LUC) are calculatedaccordingtotheTier1methodologybyIPCC.TheaboveandbelowgroundbiomassvaluesofthedifferentecosystemaretakenfromliteratureandarelistedinTable1.Thecarbonstockofoilpalmistheaveragecarbonstockaboutthewholecrop.

Table1:LivingbiomassanddeadorganicmatterofdifferentlandusesystemsinColombia,intC/ha.

Category Landuse Biomasscarbonstock(tC/ha) Source

Forest GalleryForest 180 FromIDEAM2011&WWF,2014

Scrubland Tropicalscrubland–SouthAmerica 53 Europeancommission,table15(EC,2010).

Annualcrop Annualcropland-rice 0 IPCC2006

Oilpalm Perennialcrop-OilPalm 60 Europeancommission,table12(EC,2010).

Grassland&savanna

Grassland–tropicalmoist 8.1 Europeancommission,table13(EC,2010).

Savanna 15.7521MgAGB/ha(Anaya,Chuvieco,&Palacios-Orueta,2009),0.48tC/tBM,ratioBGB/AGB=0.5(IPCC,2006)

Opengrassland 7.64 Etteretal.2010

Sandygrassland 4.46 Etteretal.2010

Inthisstudyweusethevalueof8.1tC/haforpreviouslanduse(grassland),asspecifiedin(EC,2010),tomodelthebiomasscarbonstockchange.ThedifferenceinaveragecarbonstockofgrasslandtooilpalmplantationsisillustratedinFigure4.

Page 24: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 24

Figure4:Biomasscarbonstockofreferencelanduse(grassland)andoilpalmplantationsintC/ha.a)thechangesofthecarbonstocksovertime(a)andtheaveragecarbonstock(b)ofgrasslandandoilpalmplantations.

Ithastobenotedthat“grassland”isnotaclearlydefinedtermandthatthecarbonstockofdifferentgrasslandtypescanvarysignificantly.Toanalysethesensitivityofthecarbonstockdataontheoverallresultsandconclusion,weusetheconservativevalueof15.75tC/ha.Asadditional sensitivity analysis we calculate the effect of converting scrubland and galleryforests.

3.2.3 Soilcarbonstockchange

ThesoilcarbonstockchangesaremodeledbasedontheTier1approachproposedbyIPCC(2006),asspecifiedby theCommissiondecisiononLUC (EC,2010).Theactual soil carbonstocks(SOCintC/ha)iscalculatedbasedonthesoilcarbonstockundernaturallandcover(SOCREF) and the influence of land use (FLU),management (FMG) and input (FI) factors. FLUconsiderstheytypeanddurationoflanduse,FMGconsidersthetillageforcroplandandthemanagement for grassland, while the FI considers the amount fertiliser and crop residuemanagement(seeIPCC2006formoredetails).TheSOCREFisdeterminedbythesoiltype(highactiveclaysoils),whichhaveacarbonstockof65tC/ha(EC,2010).

𝑆𝑂𝐶 = 𝑆𝑂𝐶'56 ∗ 𝐹89 ∗ 𝐹:; ∗ 𝐹<

Theinfluencefactorsoflanduse,managementandinputforpalmoil(FLU=1,FMG=1.15,FI=1),annualcrops(FLU=0.48,FMG=1.15,FI=1)andnaturalsystemsandextensivelyusedgrassland(FLU=1,FMG=1,FI=1)arebasedonIPCCTier1.

Bio

mass C

arbon S

tock (tC

/ha)

Time (years)Grasslandextensive use

Frequent burning

t0

Oil palm cultivation

t25

Average carbon stock

increase

Average carbon stock

Oil palms (60tC/ha)

Average carbon stock

grassland(8.1tC/ha)

a) Dynamic biomass carbon stock (simplified) | from grassland to oil palm cultivationB

iom

ass C

arbon S

tock (tC

/ha)

Time (years)Grasslandextensive use

Frequent burning

t0

Oil palm cultivation

t25

Average carbon stock

increase

Average carbon stock

Oil palms (60tC/ha)

Average carbon stock

grassland(8.1tC/ha)

b) Average biomass carbon stock (modeled) | from grassland to oil palm cultivation

Palm - mature

Page 25: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 25

3.2.4 Annualizedcarbonemissionsofbiofuels

Thepreviouslanduse(grassland–tropicalmoist)stores8.1tC/hainbiomassand65tC/haisstoredinsoil,whichsumsto73.1tC/ha,whichisintherangeofthevaluesprovidedinFigure5(WWF,2014).

Figure5:CarbonstockoftheOrinocobasin(tC/ha).Source(WWF,2014)

Thecarbonstockofoilpalmplantationissignificantlyhigherwith60tC/hastoredinbiomassand74.8tC/hastoredinsoil(totalof134.8tC/ha).

TheGHGemissionsrelatedtolandusechangearecalculatedasthesumofCvegchangeandSOCchange(61.65tC/ha)andisannualizedover20years9(accordingtoIPCC2006)andusingtheCO2toCconversionratioof44/12.ConsequentlytheLUCemissionsare–11.3tCO2eq/ha.Thenegativevalueindicatesanetcarboncapture.

9Thecarbonemissionsoflandusechangeareequallydistributedover20years.E.g.iftheaveragecarbonstockincreasesby60tC/hatheannualcarbonstockincreaseis3tC/ha/yr.

Study site

Page 26: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 26

Table2:MainparametersofLUCcalculationforthedefaultscenarioaccordingtoEUREDandforthesensitivityanalysis.

Parameter Unit Defaults(grassland)

Grassland(highercarbonstock)

Scrubland

Galleryforest

Landexpansionsince2008

Grassland–tropicalmoist % 100% 100% 0% 0%

Scrubland % 0% 0% 100% 0%

NaturalForest % 0% 0% 0% 100%

Totalexpansion % 100% 100% 100% 100%

Biomasscarbonstock

Cveg0(previouslanduse) tonC/ha 8.1 15.8 53.0 180.0

Cvegact(oilpalm) tonC/ha 60.0 60.0 60.0 60.0

Cvegchange tonC/ha -51.9 -44.3 -7.0 120.0

Soiltype

HighactivityClaysoil % 100% 100% 100% 100%

SoilOrganicCarboncontent

SOCref=SOC0(previouslanduse) tonC/ha 65.0 65.0 65.0 65.0

SOCact(oilpalm) tonC/ha 74.8 74.8 74.8 74.8

SOCchange tonC/ha -9.8 -9.8 -9.8 -9.8

GHGemissionsfromLUC tCO2/ha/yr -11.3 -9.9 -3.1 20.2

3.3 Palmoilplantations(eec)

3.3.1 Farmingsystem

Cultivatingoilpalmnotonlyrequirestherightclimateandsoil.Obtainingmaximumyieldsateachproductionstagealsodependsonthequalityofseedsused,arigorousselectionprocessofseedlingsinthenursery,goodsoilpreparationbeforeplanting,thecorrectsettingupofcoverageplantsandtherightuseoffertilizers(Fedepalma2009).

Thelifecycleofanoilpalmusuallystartsinanursery,whereseedlingsdevelopinpolybagsforabout10 to20months.Beforeplanting thesiteshouldbe leveledandallvegetation toaradius of 1m around the pit (deeper than 1m) should be cleared. Commercial oil palmplantationsaretypicallyestablishedasmonoculturalfieldsusingasymmetricspacingof9mx9m.

Theoilpalmtypicallystartsyielding inthesecondorthirdyearafterplantation.Theyieldincreasescontinuouslyandstartsstabilizingafterseventotenyears.Overalltheproductivity

Page 27: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 27

and growth of oil palms is determined by optimal water and nutrient availability,temperaturesandthepresenceofpestsanddiseases.

Oilpalmproductioncanlastmorethan50years(Fedepalma2006).Butafter25years,theoilpalmisdifficulttoharvestbecauseofitsheight(thelifespanof25yearsisusedwithinthisstudy).Aftertheplanthasreachedthemaximalheight,eitherGlyphosateisinjectedintothepalmsothatitdiesorthetreeiscutandclearedout.Thereplantingisdoneontheclearedfieldorbetweenthedeadpalms.

3.3.2 Productivity

Theoilpalmgivesthehighestyieldsperhectareofalloilcropsatpresent(CorleyandTinker2007).Theyieldofoilpalmsdependsupononvariousfactors(e.g.management,soilfertility,diseases,climate,etc.)andshowsatypicaldistributionovertheageoftheoilpalm(seeFigure6).

Figure6:ExpectedyielddistributionbyageofoilpalmatElCimarrón(intFFB/ha)

CurrentlytheredonotexistyieldfiguresforoilpalmcultivationinNuevaAntioquia,Vichada,duetotheabsenceofmatureoilpalmplantations.Forthisstudyweuseanaverageannualyieldof20tonsFFBperhectare,whichisinlinewiththeaverageliteraturevalueof20.2tonFFB/haasindicatedinTable5.

3.3.3 Systemcharacterization

Figure7showstheinputsusedforpalmoilcultivationandtheemissions.Thesingleflowsaredescribedinthefollowingchapters.

IMMATURE

YOUNG PRIME AGEING OLD

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Prod

uctiv

ity (t

FFB/

ha)

Average annual yield

Page 28: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 28

Oil palmcultivation

Water

Land transformation

Land occupation

CO2 uptake, biogenic

Energy uptake, biogenic

Organic fertilizer

Mineral fertilizer Pesticides Machine use

Transport

Emissions to air

Emissions to water

Emissions to soil

Fresh fruit bunch, at farm

Production and transport

Figure7:Schematicoverviewaboutoilpalminventory.

3.3.4 Mineralandorganicfertilizer

Theamountandtypeofsupplementaryfertilizerdependonthekindofplantsthataregrownandthesoilconditions.InTable3thenutrientsupplyofpalmoilplantationsareprovided.

TheamountofNPKfertilizercurrentlyapplied(markedingreeninTable3)doesnotrepresentthe average fertilizer amount, since the plantation are not yetmature. For this studywecalculatedthefertilizerapplicationbasedontheagronomicrecommendations:

Year0to7: 5.5kgoffertilizerperpalmandyear(148palms/ha)

Year8-25: 8kgoffertilizerperpalmandyear(148palms/ha)

Thefertilizercompositionis13/5/27andthustheaverageannualfertilizerapplicationrateis147kgN,57kgP2O5and306kgK2Operhectare.

Not all thenutrientswill be suppliedbymineral fertilizer.A share is also suppliedby thecompostproducedfromtheorganicoilmillresiduesandbyproducts.Perhaabout2tonsofcompostwill be applied (2.2/1.2/2.9NPK ratio and amoisture contentof 50%). Composttypically showsahighernutrientavailability forplantgrowthasmineral fertilizer.For thisstudyhowever,wehaveassumedarationof1:1,reducingthemineralfertilizerdemandto121kgN,44kgP2O5and275kgK2Operhectare.

Nitratefixingplantsareusedtoincreasethesoilfertility.

Page 29: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 29

Table3:Fertilizeramounts(kgofnutrientperhectare).

3.3.5 Pesticides

Variousagrochemicalsareappliedinordertocontrolfungus,herbs,insectsandpests.Theliteratureaveragewasusedtocalculatethecarbonfootprintrelatedtopesticideapplication.

3.3.6 Energyconsumption

The followingdescribes the transportof the inputmaterials (fertilizer)and themachineryusedforharvest.

Fertilizingandpesticides:Amain fertilizerofoilpalmplantation is thecompost,which istransported from the oil mill back to the plantation by truck. Themineral fertilizers andpesticidesarealsotransportedbytrucktothefieldborderanddistributedusinglabors.

Weeding:Usuallyplantsareallowedtospringupnaturallyand/orareplanted(e.g.nitrogenfixatingplants)betweentheoilpalms,butarecontrolledbyperiodicslashing,mowinggrazingorbytheuseofherbicidesespeciallyclosetothestemandrootingsystem(CorleyandTinker2007).

Harvesting: The fresh fruitbunchesareharvestedmanuallyusinga longharvesting knife.AftertheFFBiscutfromthetree,thefruitsaregroupedsothattheycanbeloadedmoreefficiently.

ForthisstudyweassumeatransportationdistancefortheFFBof10kmfromthefieldtotheextractionplant(maximumexpecteddistancetouseaconservativeassumption).Forothertransportsandmachinerythe2015dataforthedieselconsumption(43kg/ha)andgasolineconsumption(12kg/ha)areused.

3.3.7 Emissionstoair

The airborne emissions caused by fertilizing are listed in Table 57. The emissions arecalculatedaccordingtotheworldfoodlifecycledatabaseguidelines.

For ammonia emissions the emission factors from the EMEP-EEA air emission inventoryguidebookTier2approachareconsidered(EEA2013)todeterminetheshareofappliedNlost as NH3. For urea theNH3 emissions are 20% of the total nitrogen applied, for otherfertilizerstheemissionsaretypicallylower(1-9%).Theappliedcropresiduesinclude9tons

Page 30: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 30

ofprundedfrontsperhectareandyear(12kgNton-1drymatter)and60toffelledbiomassatreplanting(6kgNt-1biomass)everycroprotation(25yr).

Nitrogenoxidesstemmainlyfromthenitrificationprocess.TheIPCCemissionfactorof0.012kgNOxperkgNapplied isused.TheNOxemission iscalculatedafterthesubtractionofNemittedasNH3.

DinitrogenoxideisproducedfromnitrificationanddenitrificationandisapowerfulGHG.REDleavesitopenwhichkindofdatabaseforemissionfactorsshallbeusedandhowtheN2Oemissionsarecalculated.WithinthisstudyweapplytheTier1approachofIPCC(2006).Thenitrateemissionsusedtocalculatethe indirectN2OmissionsarebasedontheNO3-SQCBmodelandtheparametersusedarespecifiedin

Table4.

Table 4: Field emission data used to model the NH3, N2O, NOx, NO3 and CO2 emission related to oil palmplantations.

Parameter Unit Value

Nitrogenapplication(Input)

N-mineralfertilizer kgN/ha 121

N-cropresidue(EFB,prunes,trunk) kgN/ha 40

N-organicfertilizer(compost) kgN/ha 26

N2Oemissions

N2O kgN2O/ha 4.7

Noxemissions

NOx kgNox/ha 2.2

NH3emissions

NH3,tot kgNH3/ha 5.7

NO3emissions

Precipitation mm/yr 3'216

Irrigation mm/yr -

Precipitation+irrigation(P) mm/yr 3'216

Claycontent % 49

Rootingdepth mm/yr 1

Corg % 2

Bulkdensity tsoil/m3 1'300

Corg,EMPA tC/3000m3 59

SoilVolume m3 5'000

rc/n - 11

rNorg - 1

Norg kgN/ha 7'598

Nitrogenuptake kgN/ha 120

Page 31: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 31

NO3 kgNO3/ha 972

3.3.8 Overviewaboutlifecycleinventory

Anoverviewabouttheestimateddata,thedatafromliteratureandthedatausedforsmallandlargescaleplantationsisspecifiedinTable5Table5:Lifecycleinventorydataforoilpalmplantation(perhectare).¶ThevaluesestimatedbyPrestige(green),fromliterature(blue)fromdifferentcountries(CO:Colombia,IN:India,TH:Thailand,IDN:Indonesia,BR:Brasil)andthevaluesusedinthestudy(orange)arelisted.

3.4 Palmoilextraction(ep)

3.4.1 Systemdescription

Thepalmoilextractionprocessincludesfollowingprocessingsteps:

Loading:TheheavyFFBareunloadedfromthetrucksintowagonsofoilpalmFFB.

Sterilization:Sterilizationiscarriedoutwithsteamatrelativelylowpressuresforabout90minutes.

Treshing:Amechanicalprocessseparatestheoilyfruitfromthefruitbunch.Theemptyfruitbunchistransportedonconveyorbeltstothecompostfacility.

Page 32: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 32

Digestionandpressing:Digestionistheprocessofreleasingthepalmoilinthefruitthroughtheruptureorbreakingdownoftheoil-bearingcells.Thedigestercommonlyusedconsistsofasteam-heatedcylindricalvesselfittedwithacentralrotatingshaft.Throughtheactionoftherotatingbeaterarmsthefruitispounded.

Clarificationanddrying:Theoilisclarifiedthroughthegravityseparationmethodwhichisbasedondifferentdensities. The clarifiedoil is stored in tanks. Theoil is dried to reducemoisture,eitherbyheatinginatanksystemorbyatmosphericorvacuumdrying.

Effluent treatment: The oilywaterwhich is the by-product of the clarification process ispassedthroughcentrifugesinordertorecoveroil.Theremainingeffluentistreatedinawastewatertreatmentsystem,i.e.compostingatElCimarrón.

DefibrationandKernelmill:Themixturecomposedoffiberandnutsisseparated.Theshellofthenutsisbrokenandthekernelremoved.Thekernelpassesthesilodryingandtheoilispressed.Thekerneloilissoldandthekernelcakeisusedasfodder.Thefiberandtheshellarecollectedandusedasafuelintheboiler

3.4.2 Productsandcoproducts

InTable6thematerialandenergyinputper100tonFFBisprovided.

Table6:Materialandenergyinputper100tonofFFB.ThevaluesestimatedbyPrestige(green),fromliterature(blue)fromdifferentcountries(CO:Colombia,IN:India,TH:Thailand,IDN:Indonesia)andthevaluesusedinthestudy(orange)arelisted.Otheroilmilloutputssuchaseffluentsandvapourarenotlisted.

The average extraction rate of 21t CPO per 100 ton FFB is in linewith the average CPOextractionrateforEasternColombiaof20.9%.Theaveragemassbalanceofpalmkernelofabout4.5% is slightlyhigheras specified in (Fedepalma,2015)but loweras the literatureaverage.

3.4.3 Materialandenergydemand

Thetotalelectricitydemandforpalmoilextractionisassumedtobe2500kWhper100tonofFFB.Thisincludestheelectricitydemandforadministrationandcomposting.

Currentlytheelectricityisgeneratedbasedondiesel.Atalargescaleoperation,theuseofbiomassenergytocovertheelectricitydemand(thusreplacingthedieselaggregate)becomeseconomicallyviable.Therebyheatfrombiomass,EFBinourcase,isburnedinafurnaceand

Page 33: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 33

theheatistransferredtothecraftengineusingaheatexchanger.Thecraftengineoperatesonanorganicrankingcycle(ORC),whichissimilartoasteamengineprocess,butusesotherfluidsthanwater.Thesefluidshavelowerboilingpointsandotherpositiveabilitiesthatmakethemmoresuitableforlow-temperatureoperations.

The conversion of biomass energy to electricity has a typical electric efficiency of 10%10.Consequently theuseof 1kg EFBwith a lower heating valueof 18MJ generates 1.8MJofelectricity(or0.5kWh).

WeusetheORCtechnologyasdefaultandcomparethecarbonfootprintofdieselelectricitygenerationinasensitivityanalysis.

3.4.4 Combustionemissions

Theenergyconsumedtoextractthepalmoilisgenerallygeneratedbytheboilerandturbinesystem.Theby-productsoftheextraction,suchasfibersandshells,areusuallyusedasfuels.ThecompositionoftheinputenergycarriersislistedinTable65.

Table65:Propertiesofthefiberandtheshell(Source:Ecoinvent).

Parameter Unit Shell FiberLowerheatingvalue MJ/kg 12,57 8,98

Moisture % 6,16 28,76Carboncontent % 51,8 58,9H-content % 25,1 20,15S-content % 0,3 0,24N-content % 5,15 4,21O-content % 12,35 8,62Ashcontent % 4,96 5,55

Theprocessingof100tFFBresultsinabout10tonoffiberand7tonofshell,whichareusedintheboilertoproducesteam.

Theemissionsarecalculatedbasedonthe“Cogenunit6400kWth,woodburning“processfromEcoinvent.TheemissionsperMJfiberandshell,aswellasper100tonofFFBarelistedinTable7.

Table7:Airborneemissionsfromthecombustionof1MJfiber,1MJshellandper100tonFFB(Jungbluth,Dinkeletal.2007).

Emission Unit 1MJoffibers

1MJofshell

100tonofFFB

Carbondioxide,biogenic kg 2.4E-01 1.5E-01 39'597Carbonmonoxide,biogenic kg 9.1E-06 1.2E-05 1.1Methane,biogenic kg 5.6E-07 7.4E-07 0.1Dinitrogenmonoxide kg 3.0E-06 3.9E-06 0.4Nitrogenoxides kg 1.1E-04 1.5E-04 13.8

10http://www.vikingheatengines.com/products

Page 34: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 34

3.4.5 TransportationofFFBtooilmill

Theaveragetransportdistancefromthefarmtotheextractionplantis10km(conservativeassumption),usingtheecoinventdataset“transport,freight,lorry7.5-16metricton,EURO3”.

3.4.6 Composting

ThePOME(palmoilmilleffluent)isgeneratedduringtheoilextractionprocessintheoilmill.Thewastewater contains high amounts of organicmatter and is usually treated in openlagoons. However, at Prestige the POME is used for composting, where it’s mixed withchoppedEFB,fibersandshells.

Figure8:Schematicoverviewaboutthecomposting(source:Composystem).

ThecompostingtechnologyisusingaerationinordertoavoidCH4generationandirrigationinordertocontrolthetemperature.TheaerationandirrigationarecontrolledbasedonthemonitoredtemperatureandonCO2andCH4concentrations.Thecompostingprocessimpliestheaerobicdecayoforganicmaterial.Thisreactionresultsinreleaseofcarbondioxideandwatervaporandpracticallynomethaneasitwouldhappeninanaerobicdecay. EveryweekthecompostpilesareturnedusingtheTracTurn3.7truck.After12weeksthedegradation of the organic feedstock is sufficiently decomposed and reaches a suitablemoistureleveltobeusedasorganicfertilizerhelpingtoimprovesoilstructureandnutrientcontent.

Since the rainfall at the site location is over 2000mmper year, the plants are paved andcoveredinordertocontrolthecompostingprocess.

Page 35: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 35

Table8:Compostingmaterialandenergyflow(per100tFFB)forthedefaultscenario(apartoftheEFBsareusedforelectricitygeneration)andthescenariowhereelectricityisgeneratedbasedondiesel.

Flow Massbalance Unit

Defaultscenario

ORC

ScenarioDieselelectricitygenergation Comment

IN POME ton 80 80 Fromoilmill

IN EFB ton 15 20

fromoilmill,inthedefaultscenarioashareoftheEFBisusedtogenerateelectricity

IN Fiber ton 5 5 fromoilmill

IN Electricity kWh N/A N/AIncludedinoilmillelectricityconsumption

IN Diesel11 kg 65.2 81 Norhasmillahetal(2013)

OUT Compost ton 10.4 13 Usedasfertilizeronfield

OUT Methane ton 0 0Assumedtobe0,optimalaeration

Pertonofcompost6.3kgofdieselisconsumed(basedonNorhasmillahetal(2013)).ChiewandShimada(2013)suggestedthat2600kgoffreshEFBresultedin1000kgcompost.

3.4.7 OrganicRankingCycleengine

3.4.8 Inventoryoverviewandallocation

Energyallocationwasusedtoassigntheenvironmentalburdenofthepalmoilmill tothedifferentproducts.

Table9:Allocationfactorsforoilmillproductsinpercent.

Product Amount Unit Energycontent Allocationfactor

CPO 21.0 ton 37 MJ/kg 86%

PalmKernelOil 2.0 ton 17 MJ/kg 4%

PalmKernelMeal 2.5 ton 37 MJ/kg 10%

3.5 Biodieselproduction(ep)

We use the GHG emissions as specified in the EU RED guideline for refinement andtransesterification.1.048tonofCPOarerequiredandtoproduceonetonofPMEand105.6kgofglycerin.ThelowerheatingvalueofPMEis37.2MJ/kg.

TheallocationbetweenPMEandglycerinislistedinTable10.

11Thefossildieselusedcouldbereplacedbythebiodieselproduced.

Page 36: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 36

Table10:AllocationfactorforPMEandglycerine.

OutputAmount(t/tPME)

Energy content(MJ/kg)

Allocationfactor

PME 1 37.2 95.7%

Glycerine 0.11 16 4.3%

3.6 Distributiontothefillingstation(etd)

The aim is to export the biodiesel via Venezuela, using bargewhen the RioMeta carriessufficientwater(8months)andtousetheroaduntilPuertoCarreñobyOrinocoriverduringthedryseason(4months).Duetopoliticalrestrictions,thisrouteisnotoperationalatthemomentandthusweusetheexportationrouteviaCartagenawhichisalreadyestablishedasanalternative(sensitivityanalysis).

3.6.1 ExportthroughVenezuela

ThetransportationmodeandexportroutefromNuevaAntioquiaviaVenezuelatoEuropedependsontheseason:

Rainy season (8month): It is possible to transport biodiesel fromNuevaAntioquia to theAtlanticOcean, throughVenezuela, by fluvialmeans using theMeta12 andOrinoco River.Duringwinter,rivertransportationpredominates,butthereislackoflandtransportationtothedocks.Actually,theMetariverhasaconsiderableflowthatallowsitsnavigationduring8monthsoftheyear,fromApriltoDecember.However,thereareplanstodredgetheriverandturnitseaworthyduringallseasons.TheOrinocoriverisnavigableforboatstransitallovertheyear.OnceinPuertoOrdaz,biofuelscanbedirectedtoEuropebymaritimemeans.

Table11:DistributionfromVenezuelatothefillingstationduringrainyseason

From To Distance Vehicle(EIv3) Comment/Source

BiodieselplantNuevaAntioquiaport

30 Truck32tGoogle maps, distance from projectedbiodieselplanttoport

NuevaAntioquiaport

PuertoCarreño

250km Barge GoogleMaps

PuertoCarreño

PuertoOrdaz

(Venezuela)

840km Barge http://www.iirsa.org/admin_iirsa_web/Uploads/Documents/aic_19_navegabilidad_del_rio_meta.pdf

PuertoOrdaz

(Venezuela)

Oslo 8595km Tankship http://www.sea-distances.org/

Oslo Depot 150km Truck EURED

Depot FillingStation 150km Truck EURED

12http://www.asorinoquia.org/publicaciones/socializacion-estudio-de-navegabilidad-rio-meta

Page 37: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 37

Dry season (4months):During dry season theMeta river is not navigated, so terrestrialtransportshouldbeperformed.Nopavedroadexists,butadirtroadexistswhichcanbeusedbytrucksduringdrymonths(fromJanuarytoMarch).Nevertheless,studieshavebegunforconstructionamajorroutethatwilllinkthecenterofthecountrywiththeOrinoquíazone.ItwillconnectPuenteArimenaandPuertoGaitán(Meta),withPuertoCarreño(Vichada).Theproposal deadline is until the end of 2017, but it most likely takes longer to finalizeconstructions.

Transportation by fluvialmeans should be performed using theMeta andOrinoco River.Actually,theMetariverhasaconsiderableflowwhichallowstonavigateitduring8monthsoftheyear,fromApriltoDecember.However,thereareplanstodredgetheriverandmakeittravelableallovertheyear.TheOrinocoriverdoesnotpresentinconveniencesfortheboatstransitthroughouttheyear.

OncethebiofuelsreachPuertoOrdaz,itcanbesenttoEuropebyTransoceanicships.

Table12:DistributionfromVenezuelatothefillingstationduringdryseason

From To Distance Vehicle(EIv3) Comment/Source

NuevaAntioquia

PuertoCarreño

270km Truck32t https://co.rutadistancia.com/distancia-entre-puerto-carreno-a-nueva-antioquia

PuertoCarreño

PuertoOrdaz-Venezuela

840km Barge http://www.iirsa.org/admin_iirsa_web/Uploads/Documents/aic_19_navegabilidad_del_rio_meta.pdf

Venezuela Oslo 8595km Tankship http://www.sea-distances.org/

Oslo Depot 150km Truck EURED

Depot FillingStation

150km Truck EURED

3.6.2 ExportviaCartagena

ThetransportationmodeandexportroutefromNuevaAntioquiaviaCartagenatoEuropedependsontheseason:

Rainy season (8months): The other routewould be through theMeta River fromNuevaAntioquiatoPuertoGaitan.Actually,theMetariverhasaconsiderableflowthatallowstonavigateitduring8monthsoftheyear,fromApriltoDecember,along800kmfromPuertoLópeztoPuertoCarreño.OnceinPuertoLópez,thebiofuelcanbetransportedtoCartagenabytruck.

Finally,inCartagenaPortitcanbetransporttoEuropebymaritimemeans.

Page 38: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 38

Table13:DistributionfromCartagenatothefillingstationduringrainyseason

From To Distance Vehicle(EIv3) Comment/Source

NuevaAntioquia

PuertoGaitán

385km barge Googlemaps

PuertoGaitán

Cartagena 1374 Truck32t https://co.rutadistancia.com/distancia-entre-puerto-gaitan-a-cartagena-meta

Cartagena Oslo 9030km Tankship http://www.sea-distances.org/

Oslo Depot 150km Truck EURED

Depot FillingStation 150km Truck EURED

Dryseason(4months):BasicallytherearetwowaystotransportationroutestoCartagena.ThefirstoneconsistsoftransportthebiofuelfromNuevaAntioquiatoCartagenabytruck,themainproblemofthistransportationmeans isthevial infrastructureduringtherainingseason.FromNuevaAntioquiatoPuenteArimenaterrestrialtransportationisonlypossibleduringthedryseason.Noroadhasbeenbuilttoallowtransitthroughouttheyear.Thereisapathmarkedbythefootprintthatvehiclesleavewiththeirpassage.Itispassablebytrucksandcampersonlyduring4monthsoftheyearwhichcorrespondstothedryperiod.FromPuenteAremidatoCartagenatheroadinfrastructuredoesnotpresentlimitationsorgreaterproblemsthatavertvehiculartrafficduringthewholeyear.

Table14:DistributionfromCartagenatothefillingstationduringdryseason

From To Distance Vehicle(EIv3) Comment/Source

Biodieselplant

NuevaAntioquiaport

30 Truck32tGoogle maps, distance from projectedbiodieselplanttoport

NuevaAntioquia

PuertoLopez 382km

Truck32t https://co.rutadistancia.com/distancia-entre-puerto-carreno-a-puerto-lopez-meta

PuertoLopez

Cartagena 1266km Truck32t

http://co.toponavi.com/821-41169

Cartagena Oslo 9030km Tankship http://www.sea-distances.org/

Oslo Depot 150km Truck EURED

Depot FillingStation

150km Truck EURED

3.6.3 TransportinEuropetofillingstation

Thetransportofthebiodieselfromtheporttothedepotandfromthedepottothefillingstationisassumedtobe150kmeach.Theenergyuseofthedepotandthefillingstationisconsideredwith20kgCO2pertonofPME,basedonEURED.

Page 39: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 39

3.7 Useofbiodieselincar(eu)

TheemissionsoffuelcombustionaresettozeroaccordingtotheEURREDguidelines.

3.8 Fossilreference(ef)

According to theEURED, the fossil fuel comparatorEF shallbe the latestavailableactualaverageemissionsfromthefossilpartofpetrolanddieselconsumedintheCommunityasreportedunderDirective98/70/EC.Ifnosuchdataareavailable,thevalueusedshallbe83,8gCO2eq/MJ(valueusedforthisstudy).

It has to be noted that the proposed update of the fossil reference value will be of 94gCO2eq/J,whichwillsignificantlyincreasetheGHGsavings(EC,2016a)AnnexV,C.19.

4 ResultsandDiscussion

4.1 GHGbalanceofbiodiesel

EachMJ of biodiesel combusted is linked to -28.6 g of GHG emission. The negativeGHGemissions iscausedbythecarbonsequestrationduringplantgrowth,whilethemainGHGemissionislinkedtoemissionsfromtheoilmillandthebiodieselproduction.Inthefollowingtheimpactscausedineverylifecyclestagearedescribedinmoredetails.

Table15:GHGemissionsbiodieselproductionanduseingCO2equivalentsperMJoffuelcombusted.Negativevaluesarecarbonsequestration.

ProcessCarbonFootprint(gCO2eq/MJ)

Share(%)

Landusechange -62.4 218%

Oilpalmcultivation 10.5 -37%

Transporttooilmill 0.2 -1%

OilMill 0.4 -1%

Biodieselplant 17.1 -60%

Transportofbiodiesel 5.5 -19%

Useincar 0.0 0%

Total -28.6 100%

4.1.1 Landprovisionandoilpalmcultivation

InFigure9theaverageglobalwarmingpotentialofoilpalmcultivationisindicated,ismainlyrelated to fertilizer production and N2O emissions due to fertilizer application anddecompositionofcropresidues.

Page 40: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 40

Figure9:GlobalwarmingpotentialofoilpalmcultivationmeasuredinkgCO2eqperha.

TheaverageGHGintensityofoilpalmcultivationexcludingLUCofthisstudyis10.5gCO2eqperMJoffuelcombustedand.Thevaluesareslightlylowerasthevaluesprovidedbyarecentstudyof13to17gofCO2eqperMJoffuelcombusted(Castanheira&Freire,2016)andtheREDdefaultvalueof14gCO2eqperMJoffuelcombusted(EU-Commission,2008).

Figure 10 shows the carbon footprint of oil palm cultivation including the carbon stockchangescausedbyoilpalmplantations.OverallmorecarbonissequesteredbyoilpalmtreescomparedtothelifecycleGHGemissionsrelatedtothecultivation.Thecarbonsequestrationislinkedtomovingfromlowcarbonstockarea(lowcarbonstockgrassland&savanna)tooilpalmplantationwithrelativelyhighercarbonstocks(seechapter3.2).

Figure10:GlobalwarmingpotentialofoilpalmcultivationmeasuredinkgCO2eqperha.Negativevaluesarecarbonsequestration.

ThedefaultscenarioisbasedonEUREDvaluesforgrassland(8tC/ha)andshowsignificantcarbonstocksequestration.Evenifmoreconservativevaluesforthecarbonstockofgrasslandareconsidered(16tC/ha)oreventheconversionofscrubland(53tC/ha)showsignificantnetbenefits. Only if gallery forests (180 tC/ha) are clear-cut significant amounts of carbon

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Oilpalmcultivation

CarbonFootprin

t(kgCO

2eq/h

a)

Fertilizerproduction

Pesticideproduction

Energyuse

Fieldemissions

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

Default(Grassland)

Grassland(highercarbonstock)

Scrubland Galleryforests NoLUC

CarbonFootprin

t(kgCO2

eq/ha)

Landusechange

Fertilizerproduction

Pesticideproduction

Energyuse

Fieldemissions

Total

Page 41: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 41

emissionsareemitted(theoreticalscenariosincegalleryforestsareprotectedbylawandtheoilpalmsarecultivatedusinga100mbufferzone,seeFigure3).

Last,ithastobenotedthattheLUCbenefitsandimpactsareuniformlydistributedover20yearstimehorizon(annualisedemissions).Oncethe20yearsarepassed,noLUCcreditsaregiventotheoilpalmcultivation,sincethepastandcurrentlanduseareoilpalmplantations(no LUC change occurs). If grassland is converted in 2017 (default scenario) the carbonfootprintofoilpalmcultivationremainsconstant(-9617kgCO2eq/ha)untiltheyear2037andfromyear2038onwardsthecarbonfootprintis(1699kgCO2eq/ha,seeFigure9)sincetheLUCbenefitsarenotanymoreaccountedfor(noLUCscenarioinFigure10).

4.1.2 Palmoilmillandbiodieselplant

As indicated inTable16, themainGHGemissionsrelatedtooilextraction is linkedtotheenergyconsumption,whichiscurrentlyfossilbased.Inalargescaleset-upapartoftheEFBbiomasswillbeusedinanorganicrankingenginetoauto-generateelectricity.Consequently,theemissionsreducesignificantly.

Table16:GlobalwarmingpotentialofthepalmoilmillmeasuredingCO2eqMJfuel.Valuesinyellowindicate0to10%,orange10%to50%,red>50%contribution.

ProcessOilmill

SmallscaleOilmill

(incl.autogen.ofel.) gCO2eq/MJ % gCO2eq/MJ %Energyuse 2.9 95% 0.3 68%CHPemissions 0.2 5% 0.2 32%Composting 0.0 0% 0.0 0%Total 3.0 100% 0.5 100%

InColombia,thePOMEtreatmentinopenlagoonsunderanaerobicconditionstypicallyleadstoamuchhigherGHGintensityascomparedtotheoptimizedcompostsystemimplementedattheelCimarronsite.TheCUEstudyindicatedaGHGintensityof30gCO2eqperMJfuelcombustedand6gCO2eqperMJifmethaneiscaptured(CUE2012).(Castanheira&Freire,2016)indicatedthattheGHGintensityofpalmoilextractionforbiogasflared(2.3gCO2eqMJ−1)was about eight times lower than for biogas released into the atmosphere (19.0 gCO2eqMJ−1).REDspecifiesprocessingGHGemissionsof35g/MJand13gCO2eq/MJwithmethane capture (including both the oil mill and transesterification emissions) (EU-Commission,2008).

The crude oil refining and trans-esterification is responsible for 17.9g CO2eq per MJ, inaccordancewiththeEUREDdefaultvalues.

4.1.3 Transporttofillingstationanduseincar

TheimpactoftransportationanddistributionofthebiodieselshowsignificantGHGemissions,giventheremotelocationoftheproductionsite.

Page 42: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 42

Figure11:CarbonFootprintofdifferenttransportationroutesfromthebiodieselplanttothefillingstationinEurope(ingCO2eq/MJfuel).

The GHG intensity of transport and distribution ranges from 5.5 gCO2 per MJ of fuelcombustedfortheexportviaVenezuelato8.1gCO2perMJoffuelcombustedfortheexportviaCartagena.Therelativelyremote location leadstohigheremissionsoftransportasthedefaultvaluespublishedbyRED(5gCO2eqperMJ).

TheuseofbiodieselassumedtobezeroinaccordancewiththeEUREDguidelinesforGHGcalculation(“carbonneutrality”principle).

4.2 Comparisonwithfossilfuel

UsingbiodieselfromelCimarrónisprojectedtoshow134%lessGHGemissionascomparedtofossildiesel.Thisisbasedontheassumptionthattheoilpalmplantationsareestablishedon low carbon-stock grassland, that the by-products are used optimally (e.g. for autogenerationofelectricity)andthatthebiodieselisexportedthroughVenezuela.

0

1

2

3

4

5

6

7

8

9

ExportviaVenezuela(default)

ExportviaCartagena

Carbonfootprint(gCO

2eq/MJ)

TruckinColombia

Barge

Transoceanicship

TruckinEU

Depot&Fillingstation

Page 43: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 43

Figure 12:GHGemissions savings of biodiesel compared to fossil fuels (in%), left figure. Biodiesel baselinescenarioCO2equivalentemissionsbysource,noticelandusechangeisnegativeasthereismorecarboninpalmsthanformersavannah(gCO2eq/MJ),rightfigure.

IfthebiodieselisexportedthroughColombia,theGHGreductionwouldstillreach131%asemissionsfromtankersisnegligiblecomparedtothevolumetransported.UsingfossildieseltogenerateelectricityusedforprocessingleadstoGHGreductionof132%.

As explained in chapter 4.1.1, the renewal of oil palm plantations are not considered aschangingthelandusechange(thusnoLUCbenefitsafter20yearscanbeattributed).Evenwithout accounting for land use benefits, palm biodiesel saves 60% of GHG emissions ascomparedtofossildieselifexportedviaVenezuela(43%ifexportedviaCartagena).

Figure13:GHGemissionssavingsofbiodieselscenarioscomparedtofossilfuels(in%).

InelCimarrónnotallthe60.000hawillbeestablishedatthesametime.Itcanbeassumedthateveryyeara5.000haplotwillbecultivatedoveraperiodof12years.Consequently,thecarbonsequestrationbenefitduring20yearswillgraduallydecreasefrom134%GHGsavingsto60%GHGsavingsinyear32(20yearsafterthelast5.000hawillbecultivated).

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

CarbonFootprin

tofbiodiesel

(gCO

2eq/M

Jfuel)

Useincar

Transportofbiodiesel

Biodiesel plant

OilMill

Transporttooilmill

Oilpalmcultivation

Landusechange

Total

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

CarbonFootprin

tofbiodiesel

(gCO

2eq/M

Jfuel)

Useincar

Transportofbiodiesel

Biodiesel plant

OilMill

Transporttooilmill

Oilpalmcultivation

Landusechange

Total0%

Fossildiesel

100%

Biodiesel

FOSSIL VS.BIODIESEL

134%

GHGSAV

INGS

ZOOMONBIODIESELGHGemissions

-34%

-100%

-50%

0%

50%

100%

150%

Baseline Grassland(highercarbon

stock)

Scrubland Galleryforests NoLUC(after20years)

Noel.autogeneration

ExportviaCartagenaGHGsavings(%)

DifferentlandusechangescenariosDefaultScenario

OilMill-Electricityfrom

diesel

ExportviaCartagena

RED criteria60% GHG savings

Page 44: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 44

Figure 14: The area under cultivation (in ha) at the top and the associatedGHG savings (in%) of biodieselcomparedtofossilfuelatthebottom,baselinescenario.

4.3 Comparisonwithotherstudies

TheREDdefaultvaluesforbiodieselfrompalmoilof68gand37gCO2eqperMJ(includingbiogascaptureandflaring)aresignificantlyhigherthanforthisstudy(-29gCO2eqperMJ,baselinescenario).ThemaindifferenceisthattheREDdefaultvaluesdonotconsiderLUC(neitheremissionsnorcapture).

AlsotheupdatedvaluefromtheJECconsortiumrangefrom31to62gCO2eq(alsoLUCisnotconsidered).

Thenationalstudyfrom2012aboutGHGemissionsofbiodiesel(B100)fromCPOandethanol(E100)fromsugarcaneindicatedrespectively83%and74%ofGHGsavingscomparedtofossilfuels(CUE,2012).ThemaindifferenceisthatinthecaseofelCimarronalloftheplantationsarenewlyestablishedandthusthetotalcultivationcomeswithLUCbenefits.InColombiaalsooilpalmplantationsolderthan20yearsexist,forwhichnoLUCisaccountedfor(lowercarbonsequestrationbenefits).

Castanheira&FreirecalculatedthattheGHGintensityofpalmbiodieselinColombiarangedfrom4gCO2eqMJ−1to25gCO2eqMJ−1,dependingonthefertilizationschemeandbiogasmanagementoption.ThistranslatesintoaGHGsavingof70%to95%ascomparedtofossilfuels(Castanheira&Freire,2016).

TheresultsarealsoinlinewiththeWWFstudy,whichindicatedGHGsavingsofmorethan60% formost areas of Vichada (WWF, 2014).Only if Gallery forests are cut the emissionreductiontargetscannotbemet(redareas,whichareforbiddenbylaw).

010000200003000040000500006000070000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Areaundercultivation

(ha)

years

0%

50%

100%

150%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

GHGsavings(%)

years

Page 45: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 45

Figure15:PotentialGHGsavingsfrombiodieselproductioninlosllanos(WWF,2014).

4.4 TheEUREDdirectivefor2030–changeofmethodology

TheEuropeanCommissionproposedachangeofthecurrentEUREDmethodology(EC,2016a,2016b). Themain differences in terms of GHG calculation are the higher value for fossilreference(94gCO2eq/MJinsteadof83.8gCO2eq/MJ),loweremissionfactorsformethane(23insteadof25CO2eq)anddinitrogenoxide(296insteadof298CO2eq),thehigherdefaultemissionsvalues for transportanddistribution (6.9 insteadof5gCO2/MJ)and that thethresholdofGHGsavingsincreasedto70%forbiofuelswhichareproducedininstallationsstartingoperationafter1January2021.

Theproposedchangesalsoincludetheconsiderationofindirectlandusechange(iLUC)emissions.TheiLUChastobeconsideredifthefeedstockisnotlistedinpartAoftheannex(EC,2016a)orifthefeedstockproductionhasledtodirectland-usechange,i.e.achangefromoneofthefollowingIPCClandcovercategories:forestland,grassland,wetlands,settlements,orotherland,tocroplandorperennialcropland.InthecaseofbiodieselfromelCimarrónnoiLUCwouldbeallocated,sincethepriorlanduseis“grassland”.However,evenifthedefaultiLUCfactorforoilcropsof55gCO2eqperMJ(EC,2016a,AnnexVIII,partA)isincludedtheGHGtargetsof70%reductionareme.

TheresultsusingthenewlyproposedEUREDmethodologyfor2030areindicatedinFigure16.

Page 46: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 46

Figure16:GHGemissionssavingsofbiodieselscenarioscomparedtofossilfuels(in%).

Figure16showsthatalsowiththeproposedupdateoftheEUREDDirectivetheGHGcriteriaof70%savingswillbemet.Onlyifgalleryforestiscutandafter20yearsofestablishingtheplantationstheGHGsavingsarebelow70%

4.5 Limitations

Prospective study: The oil palm plantations and biodiesel production plant are not yetestablished. Within this study realistic estimates were made and the sensitivity of keyparameters was evaluated in order to provide an indication about the expected carbonfootprintofelCimarrónbiodiesel.However,oncetheproductionsystemisimplementeditisrecommendedtoupdatethestudywithrealdata.

Directandindirectlandusechangeeffects:Thisstudyassumesthattheoilpalmplantationsareestablishedonnaturalandextensivelyusedgrassland.BesidesthedirectLUC(consideredinthisstudy)alsoindirectlandusechangemightoccurduetothereplacementofpastures.Further, it isalsopossible thatminorpartsof the60.000hacould triggeraconversionofagriculturalland.Inthepresentstudypotentialindirecteffectsofreplacinglandpasturesandagriculturallandarenotconsideredinthebaselinescenario.Itisassumedthattheindirecteffects are marginal, given the extensive use of the pastures and the huge potential ofintensifyingcurrentcattlefarming.InordertoestimatethecontributionofthepotentialiLUCeffectontheoverallresultsweincludedtheiLUCfactorproposedforoilcropsproposedbythe European commission, which represents a worst case scenario for the Colombianconditions.

Otherenvironmentalandsocio-economicindicators:AccordingtoISO14040/44acompletesetofenvironmentalindicatorneedstobeevaluatedforcomparativeassertion.Inthecaseof biofuels, several studies underlined the trade-off between GHG savings and increaseimpactssuchaseutrophication13duetofertilizerapplication,ecotoxicityduetopesticideuse,loss of biodiversity due to land transformation amongst others. The national study inColombia revealed significant impacts of biofuels if also other environmental aspects areconsidered(CUE,2012),whileotherstudiesshowbenefits(Gilroyetal.,2015).Further,also

13Eutrophication:theenrichmentofawaterbodywithnutrientswhichmayresultinanalgaegrowthandanoxygendepletion.

-100%

-50%

0%

50%

100%

150%

Baseline Grassland(highercarbon

stock)

Scrubland Galleryforests Baseline&ilUC NoLUC(after20years)

Noel.autogeneration

ExportviaCartagena

GHGsavings(%)

DifferentlandusechangescenariosDefaultScenario

OilMill-Electricityfrom

diesel

ExportviaCartagena

RED criteria70% GHG savings

Page 47: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 47

other indicators about the social and economic impacts shall be considered for informeddecisionmaking.Theimpactscanbepositive(e.g.createjobs)ornegative(e.g.landrightsofindigenous).

5 Conclusionsandrecommendations

5.1 Conclusion

• BiodieselfromelCimarrónisprojectedtofulfiltheEUREDGHGcriteriabyshowing134%lessGHGemissionascomparedto fossildiesel.This isbasedontheassumptionthat theoilpalmplantations are established on low carbon-stock grassland, that the by-products are usedoptimally (e.g. for auto generation of electricity) and that the biodiesel is exported throughVenezuela.

• TheGHGsavingpotential is sensitive to the landconversion.Only ifoilpalmplantationsareestablishedonlowcarbonland,whichismainlythecase in losLlanos,theGHGcriteriacanbemet.Ifgalleryforestarecut(forbiddenbylaw)thebiodieselproductionisnotcompliantwiththeEUREDGHGcriteria.

• Economyofscaleallowsoptimaluseandtreatmentofby-products. IntermsofGHGbalance,the treatmentof POMEandEFB is of special importancedue topotentialmethaneemissionsduringthetreatmentanddecomposition.

• CompliancewiththeproposedupdateoftheEUREDdirectivefor2030.BiodieselproductionofelCimarrónwillalsobecompliantwiththeproposedGHGcriteriaof70%savingsforinstallationsstartingoperationafter1January2021.

5.2 Recommendationandnextsteps

It is recommended todesign and implement the futurebiodiesel systemof el Cimarróntakingtheclimaterelevantfactorsintoaccount.Theseinclude

• Establishingoilpalmplantationsonlyon lowcarbonstock landandavoid indirect landuse

risks,bynotexpandingonagriculturallandandkeepingabufferzonearoundgalleryforests.

Further, indirect land use effects can be mitigated if Prestige continues to produce the

displacedcropsandcattle,butwithanincreasedefficiency.Intensificationleadstoahigher

productivityandthuslesslandisrequiredtoproducethesameamountofproducts.

• Efficient treatment of POME and EFB for composting, using a technology which avoids

methaneemissionsduetoaerationandturning.

• OptimizethetransportationofthebiofueltoEuropebyusingshortroutes(viaVenezuela)and

bargeasatransportationmeans

Itisrecommendedthatotherenvironmentalandsocio-economicimpactsandbenefitsareconsideredfordecisionmaking.Ofspecialimportancearesocialandenvironmentalaspectsrelatedtolanduse.

ItisrecommendedthattheperformanceofthebiodieselproductionsysteminelCimarrónis monitored and that the carbon footprint study is updated frequently and that thedevelopmentoftheEUREDdirectiveiscloselyfollowed.

Page 48: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 48

6 Reference

AMELLARRIETA,A.,CHEJNEJANNA,F.,LOPEZLÓPEZ,D.,FORERO,C.,&HERRERA,B.(2016).CONSULTORÍATÉCNICAPARAELFORTALECIMIENTOYMEJORADELABASEDEDATOSDEFACTORESDEEMISIÓNDELOSCOMBUSTIBLESCOLOMBIANOS-FECOC.

Anaya,J.A.,Chuvieco,E.,&Palacios-Orueta,A.(2009).AbovegroundbiomassassessmentinColombia:Aremotesensingapproach.ForestEcologyandManagement,257(4),1237–1246.https://doi.org/DOI:10.1016/j.foreco.2008.11.016

BSI.(2011).PAS2050:2011-Specificationfortheassessmentofthelifecyclegreenhousegasemissionsofgoodsandservices.

Castanheira, É. G., Acevedo, H., & Freire, F. (2014). Greenhouse gas intensity of palm oilproducedinColombiaaddressingalternativelandusechangeandfertilizationscenarios.Applied Energy, 114, 958–967.https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2013.09.010

Castanheira, É. G., & Freire, F. (2016). Environmental life cycle assessment of biodieselproduced with palm oil from Colombia. The International Journal of Life CycleAssessment,1–14.article.https://doi.org/10.1007/s11367-016-1097-6

CUE. (2012).Evaluaciondelciclodevidade lacadenadeprouccióndebiocombustiblesenColombia.Medellin,Colombia.

Daigle, J.-Y., & Gautreau-Daigle, H. (2001). CANADIAN PEAT HARVESTING AND THEENVIRONMENT.

EC.(2010).CommissiondecisiononguidelinesforthecalculationoflandcarbonstocksforthepurposeofAnnexVtoDirective2009/28/EC.

EC. (2016a).Annexes to the Proposal for a Directive of the European Parliament and theCouncilonthepromotionoftheuseofenergyfromrenewablesources(recast).Brussels,Belgium.

EC.(2016b).ProposalforaDIRECTIVEOFTHEEUROPEANPARLIAMENTANDOFTHECOUNCILon the promotion of the use of energy from renewable sources (recast). Brussels,Belgium.

EU-Commission.(2008).Directive2008/30/ECoftheEuropeanParliamentandoftheCouncilonthepromotionoftheuseofenergyfromrenewablesources.OfficialJournaloftheEuropeanUnion,61.

Gilroy,J.J.,Prescott,G.W.,Cardenas,J.S.,Castañeda,P.G.delP.,Sánchez,A.,Rojas-Murcia,L.E.,…Edwards,D.P.(2015).MinimizingthebiodiversityimpactofNeotropicaloilpalmdevelopment. Global Change Biology, 21(4), 1531–1540.https://doi.org/10.1111/gcb.12696

ISO. (2006a).14040 - Environmentalmanagement - Life cycle assessment - Principles andframework.Geneve,Switzerland:InternationalStandardOrganisation.

ISO.(2006b).14044-Environmentalmanagement-Lifecycleassessment-Requirementsandguidelines(misc,2nded.).Geneva,CH:InternationalOrganizationforStandardization.

Page 49: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 49

ISO.(2013).ISOTS/14067 :Greenhousegases--Carbonfootprintofproducts--Requirementsandguidelinesforquantificationandcommunication.

Leuenberger, M., & Huber-Hotz, A. (2006). Botschaft zur Änderung desMineralölsteuergesetzes(techreport).Bern.

NanaYaw,A.(2008).LIFECYLEASSESSMENTOFMARGARINEPRODUCTIONFROMPALMOILIN GHANA A Thesis submitted to the Department of Chemical Engineering , KwameNkrumahUniversityofScienceandtechnology.

Penny,T.,Fisher,K.,&Collins,M.(2012).GHGProtocolProductLifeCycleAccountingandReportingStandardSectorGuidance forPharmaceuticalandMedicalDeviceProductsPilot Testing Draft August 2012 GHG Protocol Product Life Cycle Accounting andReporting Standard Sector Guidance for Pharmace. London, UK: EnvironmentalResourcesManagementLimited.

RSB.(2008).RoundtableonSustainableBiofuels:GlobalPrinciplesandcriteriaforsustainablebiofuelsproduction.VersionZero(Report).Lausanne:EPFL.

RSPO.(2005).PrinciplesandCriteriaforSustainablePalmOilProduction.(R.T.onS.P.Oil,Ed.).

WWF. (2014). Identifying Highly Biodiverse Savannas based on the European UnionRenewableEnergyDirective(SuLuMap).

Page 50: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 50

7 Annex

7.1 AnnexI–CarbonFootprintofCPOsoldinEurope

TheCPOcanalsobesoldontheinternationalmarketinsteadofoilmightbeaninterestingbusinessopportunityforPrestigeColombiaifsoldontheinternationalmarket.

Table17:CarbonFootprintofCPO(gCO2eq/kgCPO)shippedtoEurope

Stage Amount Unit Source

Landtransformation -1841 gCO2/kgCPO Thisstudy

Cultivation 316 gCO2/kgCPO Thisstudy

OilExtraction 14 gCO2/kgCPO Thisstudy

TransporttoEurope 192 gCO2/kgCPO Thisstudy

Total -1319 gCO2/kgCPO

Thecarbonfootprintisdominatedbythecarbonsequestrationduringoilpalmcultivation,whilethemainemissionresultfromcultivationandtransportation.Thecarbonfootprintisinthe same range as published in other literature for CPO in Colombia (Daigle&Gautreau-Daigle, 2001)(Castanheira,Acevedo,&Freire,2014).Castanheiraet al. (2014)publishedarangefrom-0.4to–1.7kgCO2eqkg1palmoiliftheoilpalmiscultivatedonformersavannaland.

7.2 AnnexII–CarbonFootprintofMargarinesoldinVenezuela

Themargarine production frompalm stearin and palm kernel oilmight be an interestingbusinessopportunityforPrestigeColombiaifsoldontheVenezuelanmarket.

Margarineproductionprocessinvolvesthedeodorisation,bleachingandinter-esterificationofoil.ThecarbonfootprintdataformargarineproductionfromCPOistakenfromliterature(Nana Yaw, 2008). For each kg ofmargarine 1.0525 kg of CPO are used and the carbonfootprintisspecifiedinTable18.

Table18:CarbonFootprintofMargarine(kgCO2eq/kgmargarine),includingpackaging

Stage Amount Unit SourceLandtransformation -1938.0 gCO2/kgmargarine ThisstudyCultivation 332.8 gCO2/kgmargarine ThisstudyOilExtraction 14.6 gCO2/kgmargarine Thisstudy

Oilrefinement 4.1 gCO2/kgmargarine(NanaYaw,2008).

Margarineproduction 30.5 gCO2/kgmargarine

(NanaYaw,2008).

TransporttoVenezuela 103.2 gCO2/kgmargarine EstimateTotal -1452.7 gCO2/kgmargarine

Page 51: Carbon Footprint of Biodiesel from El Cimarrón, Colombiaresgrow.com/onewebmedia/Prestige_report_Quantis_20170315b.pdf · Quantis Carbon Footprint of Biodiesel from Prestige March

Quantis CarbonFootprintofBiodieselfromPrestige

March14,2017 51

ThemargarineproductioncausesrelativelylowGHGemissionscomparedtotheoilpalmcultivationandthetransportationphase.