37
CARBON NANOMATERIALS CARBON NANOMATERIALS SYNTHESES UNDER SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS NATIONAL ACADEMY OF SCIENCES OF BELARUS

CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

  • Upload
    trygg

  • View
    42

  • Download
    2

Embed Size (px)

DESCRIPTION

Belarussian. Nanotechnologies. CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK NATIONAL ACADEMY OF SCIENCES OF BELARUS. CARBON NANOTUBES FABRICATION IN DISPROPORTINATION REACTION. CO + CO  CO 2 + C E a = 5.5 eV. Reactants А + В. С + D Products. - PowerPoint PPT Presentation

Citation preview

Page 1: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

CARBON NANOMATERIALS CARBON NANOMATERIALS SYNTHESES UNDER SYNTHESES UNDER

NONEQUILIBRIUM CONDITIONSNONEQUILIBRIUM CONDITIONS

SERGUEI ZHDANOKSERGUEI ZHDANOKNATIONAL ACADEMY OF SCIENCES OF NATIONAL ACADEMY OF SCIENCES OF

BELARUSBELARUS

Page 2: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

CARBON NANOTUBES CARBON NANOTUBES FABRICATION IN FABRICATION IN

DISPROPORTINATION DISPROPORTINATION REACTIONREACTION

CO + CO CO2 + CEa = 5.5 eV

Page 3: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Reactants А + В С + D Products

v

a

a

kT

E

E eN

Энергетический выигрыш

3Vр

нер

СС

W

W

External action: electron impact (gas discharge) radiation (laser chemistry)

Ea

òåï ë î òà ðåàêöèè

ýí åðãèÿ àêòèâàö èè

âí

åøíå

åâî

çäåé

ñòâè

å Activation energy

Caloric effect

exte

rnal

actio

n

Nanomaterials Syntheses in Nonequilibrium Systems

Energy Saving

Page 4: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

VIBRATIONAL NONEQUILIBRIUM IN CO UNDER VIBRATIONAL NONEQUILIBRIUM IN CO UNDER APHVD CONDITIONSAPHVD CONDITIONS

CO(v)

CO(w)

CO(v + 1)

CO(w-1)

CO(v) + CO(w) CO(v+1) + CO(w-1)

Ev = E1v[1- E/E1 (v-1)]

Page 5: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

V-V PUMPING IN CO UNDER NONEQUILIBRIUM V-V PUMPING IN CO UNDER NONEQUILIBRIUM CONDITIONSCONDITIONS

w-1

w

v + 1v

wwvv

wwvv Q

kT

EQ ,1

,11,

1, exp

Page 6: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

NONEBOLTZMANN VIBRATIONAL NONEBOLTZMANN VIBRATIONAL DISTRIBUTION IN CO UNDER NONEQUILIBRIUM DISTRIBUTION IN CO UNDER NONEQUILIBRIUM

CONDITIONSCONDITIONS

CO(v*) + CO(v*) CO2 + CEv* + Ev* 5.5 eV

Page 7: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

1 1 0E /N , 1 0 -1 6 V cm 2

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Ele

ctro

n en

ergy

bal

ance

, %

E la stic h ea tin g A tta ch m en tV ib ra tio n s N 2 E lec tro n ic N 2V ib ra tio n s C O E lec tro n ic C OV ib ra tio n s H 2 E lec tro n ic H 2D isso c ia tio n Io n isa tio n

V ib .C O

V ib .H 2

V ib .N 2

E lec .C O

E lec .N 2

D isso c .

Ion iz .E lec .H 2

E la stic

M ix tu re: N 2 :C O :H 2 = 4 0 :20 :4 0 ; P = 1 a tm ; T = 30 0 K

Рис.1. Баланс энергии электронов в смеси N2:CO:H2 = 40:20:40; характерное значение приведенного

электрического поля ВВРАД находится в диапазоне E/N=1-4 10-16 В см2

Fig. 1. Electron energy balance for N2:CO:H2 = 40:20:40 mixture

Page 8: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

 

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

Tem

per

atu

res,

K

0 0 .5 1 1 .5 2z , cm

T N 2

T

M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :0 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

T C O

T H 2

v ib

v ib

v ib

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5V ib r a tio n a l lev e l

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Vib

rati

onal

dis

trib

utio

n fu

ncti

on, l

g(f(

v))

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :0 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

z= 0 m m

2

6

1 2

2 0

2

61 2

2 0

- N 2

- C O

Рис.2. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда

Fig.2. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis:

P=1 atm; mixture: N2:CO:H2=40:20:0; W=245 W; Q=500 Nl/h; Ldis=2 cm

Page 9: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

 

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0T

emp

erat

ure

s, K

0 0 .5 1 1 .5 2z , cm

T N 2

T

M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :1 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

T C O

T H 2

v ib

v ib

v ib

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5V ib r a tio n a l le v e l

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Vib

rati

onal

dis

trib

utio

n fu

ncti

on, l

g(f(

v))

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :1 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

z = 0 m m

26

1 2

2 0

2

1 2

2 0

6

- N 2

- C O

Рис.3. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда

Fig.3. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis:

P=1 atm; mixture: N2:CO:H2=40:20:1; W=245 W; Q=500 Nl/h; Ldis=2 cm

Page 10: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

 

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

Tem

per

atu

res,

K

0 0 .5 1 1 .5 2z , cm

T N 2

T

M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :4 0 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

T C O

T H 2

v ib

v ib

v ib

0 5 1 0 1 5V ib r a tio n a l le v e l

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Vib

rati

onal

dis

trib

utio

n fu

ncti

on, l

g(f(

v))

-1 0

-9

-8

-7

-6

-5

-4

-3

-2

-1

0M ix tu re: N 2 :C O :H 2 = 4 0 :2 0 :4 0 ; W = 2 4 5 W ; Q = 5 0 0 N l/h

z = 0 m m

2

61 2

2 0

2

- N 2

- C O

Рис.4. Изменение поступательной и колебательных температур и эволюция колебательных функций распределения CO и N2 вдоль оси разряда]

Fig. 4. Distribution of translational and vibrational temperatures and evolution of vibrational distribution functions of CO and N2 along the discharge axis:

P=1 atm; mixture: N2:CO:H2=40:20:40; W=245 W; Q=500 Nl/h; Ldis=2 cm

Page 11: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Atmospheric-pressure high-voltage discharge (APHVD) Atmospheric-pressure high-voltage discharge (APHVD)

DesignationDesignation

• Carbon nanomaterials Carbon nanomaterials fabricationfabrication

Входгазовой

смесиАнод

Перемещаемыйкатод

Кварцеваятрубка

Выход водородаи других продук-тов конверсии

- 2 6 кВ

Page 12: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Fig. 1. Diagram of experimental setup:

Page 13: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

APHVD for carbon nanomaterials synthesis APHVD for carbon nanomaterials synthesis

Page 14: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Current, mА

Voltage, kV

b)

2

2,5

3

3,5

4

4,5

40 60 80 100 120 140 160 180 200

30 mm

20 mm

Interelectrode Gap

2

2,5

3

3,5

4

4,5

40 60 80 100120140160180 200

30 mm

20 mm

a)

Current, mА

Voltage, kV

Interelectrode Gap

Voltage-current characteristics of APHVD:

a) Methane-air mixture;

b) Gas mixture after methane-to-hydrogen conversion device.

Page 15: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

CARBON NANOTUBES FABRICATION UNDER CARBON NANOTUBES FABRICATION UNDER NONEQUILIBRIUM CONDITIONS IN APHVDNONEQUILIBRIUM CONDITIONS IN APHVD

CO(v) + CO(w) CO2 + CEv + Ew 5.5 eV

Page 16: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Reactants А + В С + D Products

Ea

)( 0 TTk

E

E

a

aeN

Recuperation process: - energy exchange through «intermediate agent» (filtrational superadiabatic combustion)

T0

Energy saving

105

oTT

T

activationenergy

Caloric effect of reaction

Thermally Nonequilibrium Processes for CO productionThermally Nonequilibrium Processes for CO production

Page 17: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Hydrocarbons to Hydrogen-CO conversion under nonequilibrium Hydrocarbons to Hydrogen-CO conversion under nonequilibrium superadiabatic filtration combustion superadiabatic filtration combustion

Page 18: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Filtration combustion reator Filtration combustion reator

1. Kerosene/air atomizer;2. Mixing chamber;3. Spark-plug;4. Quartz reactor with ceramic

bed;5. Electric heater;6. Condenser;7. Condensate trap.

1

2

3

4

5

6 7

Page 19: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

HH22, CO, CH, CO, CH44, CO, CO22 content in products of incomplete kerosene content in products of incomplete kerosene

oxidation reaction oxidation reaction

1 – теоретически оптимальное значение степени эквивалентности для реакции неполного окисления

1

CH4

CO2

2.0 2.4 2.8 3.2 3.6 4.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Мол

ьная

дол

я

1

H2

CO

Мол

ьная

дол

я

2.0 2.4 2.8 3.2 3.6 4.0

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Степень эквивалентностиСтепень эквивалентности

Page 20: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Effect of equivalence ratio on kerosene-to-hydrogen conversion Effect of equivalence ratio on kerosene-to-hydrogen conversion efficiency efficiency

Сте

пен

ь к

онве

рси

и к

ерос

ин

а в

водо

род

Степень эквивалентности

2.0 2.5 3.0 3.5 4.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Page 21: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Fig.3. TEM image of several ropes of nanofibres. Scale bar 100 nm. Graphite cathode. Gas mixture after methane-to-hydrogen conversion device.

Fig. 4. TEM image of several ropes of nanofibres. Scale bar -100 nm. Zirconium cathode. Methane-air mixture.

Page 22: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Fig. 5. TEM image of multi-walled nanotubes. Scale bar - 50 nm. Zirconium cathode. Gas mixture after methane-to-hydrogen conversion device.

.

Page 23: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

PROCESS SCALE-UPPROCESS SCALE-UP

• SCALE-UP OF HYDROCARBONS TO CO-HYDROGEN CONVERSION

• SCALE-UP OF THE ATMOSPHERIC PRESSURE DISCHARGE

Page 24: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Hydrogen –CO mixtures Production Facility

Page 25: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Plasma Hall accelerator for carbon nanomaterials fabricationPlasma Hall accelerator for carbon nanomaterials fabrication

i

ifz = j*Br

B

e

e

j

Физическая модель

Page 26: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK
Page 27: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Plasma Hall accelerator for carbon nanomaterials fabricationPlasma Hall accelerator for carbon nanomaterials fabrication

Page 28: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK
Page 29: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK
Page 30: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

CARBON NANOMATERIALS FABRICATED CARBON NANOMATERIALS FABRICATED UNDER NONEQUILIBRIUM CONDITIONSUNDER NONEQUILIBRIUM CONDITIONS

Page 31: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

0

10

20

30

40

50

60

70

0 50 100 150 200 250

Деформация, %

Нап

ряж

ение

, МП

а

а

0.5% CNM

1% CNM

3

4

1

2

COMPOSITES WITH CARBON NANOMATERIALSCOMPOSITES WITH CARBON NANOMATERIALS

Fig.2. Strain curves:1 – initial PA-6;2 – PA-6 stabilized with 0.15 mass % of irganox B-11713 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 0.5 mass %4 – Stabilized PA-6 filled with carbon nanomaterial (CNM) – 1 mass %

- up to 20% increase of strength parameters during stretching - broadening of strain range (from ~14% to 18-22%) to the instant of forced ductility development (neck formation), i.e. ability to withstand higher strains at load close to yield point.- reduction of tensile strain (4-6 times) (it is related to the presence of large (up to 20 m) particles of SiO2)

A

B

Fig. 1. Photo of polymer specimens:A – initial material, polyamide (PA-6);

B – composite obtained by adding 0.5% carbon nanomaterial to initial PA-6.

Strain,%

Ten

sion

, MP

a

Page 32: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

POLYAMIDE FILMSPOLYAMIDE FILMS

Polyamide (PA-6) films filled with 0,1 % carbon

nanomaterial before and after thermal treatment at 185 ˚C

Strength limit, МПа

Before thermal treatment

After thermal treatment

Initial PA-6

PA-6 filled with nanomaterial

Relative extension near point of break

Page 33: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

NEUTRAL OPTICAL FILTERSNEUTRAL OPTICAL FILTERS

Filter with CNM

Ordinary filter

400 750

Tra

nsm

issi

on f

acto

r d

evia

tion

, T

, %

Filters with CNM

K =

91%

K =

82%K

= 6

9%

K =

1% K =

4%

K =

4 0

%

K =

54%

Ordinary filters

Fig. 2. Transmission factor vs wave length

K = 4% K = 69% K = 91%

Fig. 1. Pictures of neutral optical filters with CNM additives

Fig. 3. Transmission factor deviation T for filters with different light-transmission factor T

Page 34: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

Carbon Nanotubes Applications in Atomic Force Microscope

Page 35: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK
Page 36: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

OUR AFM DEVISES

NEW

E-mail [email protected]

NANOTOP is an atomic force microscope (AFM)

in a complex with hardware and software necessary to

analyse topography and micromechanical properties

of a surface with nanometer resolution

A design of Nanotechnologyof Lab. Of HMTI NASB

Manufactured by Chemical Physics Technologies Ltd.

NANOTESTER-LV

+Video System

(SNU Precision Co.)

NANOTOP-203 NANOTOP-204

Page 37: CARBON NANOMATERIALS SYNTHESES UNDER NONEQUILIBRIUM CONDITIONS SERGUEI ZHDANOK

ConclusionsConclusionsNonequilibrium atmospheric pressure plasma based technologies were developed for mass production of carbon nanomaterials;

Energy cost of MWCNT production was reduced to 100 kWh/kg based on the natural gas as the raw material;

The reliable operation of experimental facility with MWCNT production up to 10g/h based on different hydrocarbons as the raw materials was demonstrated;

The design of the pilot plant with MWCNT production up to 100g/h is ready for commercialization.