56
Carleton University, 82.5 83, Fire Dynamics II, Win ter 2003, Lecture # 11 1 Fire Dynamics II Fire Dynamics II Lecture # 11 Lecture # 11 Post-flashover Fire Post-flashover Fire Jim Mehaffey Jim Mehaffey 82.583 82.583

Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11 1 Fire Dynamics II Lecture # 11 Post-flashover Fire Jim Mehaffey 82.583

Embed Size (px)

Citation preview

  • Fire Dynamics IILecture # 11Post-flashover FireJim Mehaffey

    82.583

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Post-flashover FireOutline

    Ventilation controlled fires

    Fuel-surface controlled fires

    Model: Hot gas temperature (function of time)

    Fire resistance test

    Characterizing fire severity

    Design for resistance

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Post-flashover Fire

    Assumptions- Well-stirred reactor - Th uniform throughout enclosure

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Post-flashover FiresWood Cribs, Pallets & Stacked Furniture

    Harmathy (1972) identified two burning regimes for room fires involving wooden cribs: ventilation controlled & fuel-surface controlled

    = mass loss rate of fuel (kg s-1)

    = ventilation parameter (kg s-1)

    =

    Af = exposed surface area of fuel (m2)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Post-flashover Fires Involving Wooden Cribs

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Example Calculation of Equivalence RatioPost-flashover Fires Involving Wooden Cribs

    Post-flashover fire is ventilation-controlled if

    / Af < 0.63 kg m-2 s-1

    Eqn (11-1)

    Fuel mass loss rate is

    Eqn (11-2)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • What do we know about ventilation-controlled post-flashover fires involving wooden cribs, pallets or stacked furniture?

    Fuel mass loss rate is

    Eqn (11-2)

    Rate of entry of air into room is

    Eqn (11-3)

    Rate of exit of hot gas from room is

    Eqn (11-4)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Ventilation-controlled post-flashover fires involving wooden cribs, pallets or stacked furniture

    Equivalence ratio is

    ~ 0.92 Eqn (11-5)

    The rate of heat release of the fire is

    Eqn (11-6)

    The mass flow rate of soot out of the enclosure is

    Eqn (11-7)

    (Important for assessment of visibility outside the room)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Ventilation-controlled post-flashover fires involving wooden cribs, pallets or stacked furniture

    The mass flow rate of CO out of the enclosure is

    Eqn (11-8)

    Concentration of CO in hot gas leaving enclosure is

    Eqn (11-9)(Important for assessment of toxicity outside the room)(This is a very high and dangerous concentration)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Ventilation-controlled post-flashover fires involving wooden cribs, pallets or stacked furniture

    The mass flow rate of CO2 out of the enclosure is

    Eqn (11-10)

    Concentration of CO2 in hot gas leaving enclosure is

    Eqn (11-11)This would cause significant increased CO uptake due to hyperventilation. See slide 3-32 in Fire Dynamics I.

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Ventilation-controlled post-flashover fires involving wooden cribs, pallets or stacked furniture

    The mass flow rate of N2 out of the enclosure is

    Eqn (11-12)

    Concentration of N2 in hot gas leaving enclosure is

    Eqn (11-13)On a molar basis, air is 78% N2 and the hot gas is 65% N2. Since molecular wt of N2 is 28, molecular wt of air and the hot gas is close to 28. Therefore, the value 28.95 can be use for air and the hot gas with confidence.

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Fuel-Surface Controlled: Post-flashover Fires

    T.Z. Harmathy 1972 // wood cribs (cellulosic)Post-flashover fire is fuel-surface controlled if

    / Af 0.63 kg m-2 s-1

    Eqn (11-14)

    Fuel mass loss rate is

    Eqn (11-15)

    G = Quantity of wood in room (kg) = Af / G = specific area of wood (m2 kg-1)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • The Rate of Burning of Fuel-Surface Controlled: Post-flashover Fires

    Rate of mass loss / unit surface area of fuel is

    Eqn (11-16)

    Douglas fir:Assume = 550 kg m-3. Assume 80% converted to volatiles and 20% to charRate of advance of char front:

    Vc = 0.85 mm min-1

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Some Comparisons

    For massive timbers in standard fire resistance testVc = 0.6 mm min-1 Rate of char advance in wood cribs is (slide 8-36)Vc = 2.2 x 10-6 D-0.6 (m s-1) Sticks of square cross and side D (m)

    D (mm) Vc (mm / min) 38 0.94 45 0.85 80 0.60

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • - Specific Area of Wood

    For Douglas fir: = 550 kg m-3

    Dimensional lumber (4 sides exposed)2x2 (38 mm x 38 mm) = 0.191 m2 kg-12x4 (38 mm x 89 mm) = 0.136 m2 kg-12x12 (38 mm x 286 mm) = 0.108 m2 kg-1

    Heavy timber column (4 sides exposed)8x8 (191 mm x 191 mm) = 0.038 m2 kg-1

    Plywood (1 side exposed)1/2 = 12.7 mm thick = 0.143 m2 kg-11/4 = 6.4 mm thick = 0.286 m2 kg-1

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • - Specific Area of Wood

    Harmathys correlation for fuel-surface controlled burning derived from experimental data for wood cribs

    Correlation is likely okay for wood cribs, stacked wood pallets & stacked wood furniture where most surfaces are shielded from radiation from hot upper layer

    For such items assume ~ 0.13 m2 kg-1 Eqn (11-17)

    Harmathys correlation for fuel-surface controlled burning and ~ 0.13 m2 kg-1 are not appropriate for scenarios involving large exposed wooden surfaces like wall panelling

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • G - Quantity of Fuel (kg)

    Quantity of fuel in a room is commonly expressed in terms of a calorifically equivalent quantity of wood

    Many surveys have been conducted to determine mass of fuel / floor area

    Definition: L = specific fire load (kg m-2)= mass of fuel / floor area

    G = L x (floor area) Eqn (11-18)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • L - Specific Fire Load (kg m-2)

    L is random variable: mean & standard deviation LHarmathy recommendations (old data)

    Assuming L follows a normal distribution

    Eqn (11-19)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    Occupancy

    (kg m-2 )

    (L (kg m-2 )

    Dwelling

    30.1

    4.4

    Office

    24.8

    8.6

    School

    17.5

    5.1

    Hospital

    25.1

    7.8

    Hotel

    14.6

    4.2

    _1109767839.unknown

  • Duration of a Post-flashover Fire

    Assume volatiles released in post-flashover phaseLittle mass loss in pre-flashover phaseDominantly glowing char in decay phase Assume total mass loss during post-flashover phase is MT = 0.8 G (kg) Eqn (11-20) Duration of post-flashover phase is

    Eqn (11-21)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Duration of a Post-flashover Fire

    For a fuel-surface controlled fire

    Eqn (11-22)

    For a ventilation controlled fire

    Eqn (11-23)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Duration of Post-flashover Fire

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    Test

    G

    kg

    Af

    m2

    V C

    or

    F S C

    Duration

    test

    min

    Duration

    theory

    min

    1

    0.92

    130

    16.9

    0.054

    VC

    18.5

    20.9

    2

    0.92

    130

    16.9

    0.054

    VC

    21

    20.9

    3

    0.92

    234

    30.4

    0.030

    VC

    28

    37.7

    4

    1.42

    234

    30.4

    0.047

    VC

    24

    24.4

    5

    2.13

    234

    30.4

    0.070

    VC?

    17

    16.5

    _1110028394.unknown

    _1110028524.unknown

  • Kemano

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • S-987

    Chart1

    2012.3111.47

    0.2092515.0411.74

    0.375783333315.7312.45

    0.542466666718.2114.08

    0.709833333322.2614.76

    0.876066666724.7416.5

    12426.316.63

    1.209366666723.6616.71

    1.376483333325.5518.57

    1.542716666724.7219.37

    1.709833333331.1320.89

    1.876216666728.5420.84

    22731.9320.46

    2.209816666735.2621.69

    2.376233333341.4624.03

    2.5425556.7628.48

    2.709833333382.6334.11

    2.8760833333128.3141.26

    33119056.56

    3.2096166667358.07161.46

    3.3760833333458.12319.02

    3.5424666667764.53471.01

    3.7093833333885.03794.41

    3.8758333333853.09793.87

    434718.69620.7

    4.2094166667662.63567.08

    4.3764333333697.9699.13

    4.5428333333765.8722.51

    4.7091166667749.35856.6

    4.87625726.91806.35

    538732.64785.88

    5.2096666667760.73839.49

    5.3762333333725.54794.96

    5.5425166667668.39697.06

    5.7095833333687.98713.11

    5.8758666667732.67808.66

    571757.93784.29

    6.2094666667738.53734.6

    6.3759666667751.46788.84

    6.5424833333753.91825.56

    6.7095833333739.29761.04

    6.87585734.52756.35

    604760.12797.28

    7.20945780.08785.59

    7.3757833333797.58791.54

    7.5430333333830.61817.94

    7.7095333333840.41829.27

    7.8760166667850.01845.02

    638907.31894.69

    8.2097166667820.4817.83

    8.3760833333924.27902.86

    8.5426333333966.93943.78

    8.7098166667923.15904.69

    8.8761166667959.31940.9

    671986958.75

    9.20956666671004.51975.42

    9.37591006.24976.73

    9.54246666671015.8984.78

    9.70993333331023.46991.88

    9.87631666671020.6992.63

    7041032.26996.74

    10.20941035.58999.31

    10.37583333331030.02991.73

    10.54311051.571006.35

    10.70958333331052.511008.4

    10.876051071.241019.46

    7151082.451026.24

    11.20983333331082.021030.61

    11.376151073.521020.54

    11.54273333331085.151026.12

    11.70931666671083.021027.02

    11.87601666671085.41025.87

    7261084.891029.37

    12.20966666671083.581025.79

    12.37606666671095.21035.56

    12.54248333331085.261034.39

    12.70978333331081.631035.33

    12.87626666671081.161040.08

    7381083.651042.63

    13.20971666671077.761040.5

    13.37616666671073.961039.59

    13.542451080.221040.04

    13.70991080.671041.59

    13.87638333331070.531034.59

    7491069.831032.71

    14.20981666671065.421028.58

    14.37643333331072.791028.36

    14.542851071.211027.58

    14.709451057.561019.48

    14.87578333331067.291022.18

    7601055.11014.58

    15.20968333331039.571003.01

    15.37583333331031.47997.06

    15.542851028.45991.5

    15.70971017.06975.99

    15.87651666671008.51975.68

    7671009.78980.06

    16.20968333331000.48974.8

    16.3759999.03969.8

    16.5428166667995.43970.1

    16.7091166667992.1966.02

    16.8761981.81957.5

    774981.14955.27

    17.2095968.85948.87

    17.3763333333962.87943.61

    17.5424833333951.98934.99

    17.70945944.43928.85

    17.8762833333935.85920.47

    781929.2915.52

    18.2095166667918.27904.91

    18.3763333333910.08898.89

    18.5424666667903.74892.23

    18.70945892.48883.72

    18.8765333333880.88870.69

    788841.12830.05

    19.209633333366.4667.89

    19.375866666760.3360.01

    19.542583333355.4152.9

    19.709566666745.2145.06

    19.875933333337.0539.37

    79538.1939.74

    20.20936666673940.35

    20.3764540.0240.11

    800.22121

    805.42222

    810.62323

    815.82424

    8212525

    825.42626

    829.82727

    834.22828

    838.62929

    8433030

    846.83131

    850.63232

    854.43333

    858.23434

    8623535

    865.23636

    868.43737

    871.63838

    874.83939

    8784040

    880.84141

    883.64242

    886.44343

    889.24444

    8924545

    894.64646

    897.24747

    899.84848

    902.44949

    9055050

    907.25151

    909.45252

    911.65353

    913.85454

    9165555

    918.25656

    920.45757

    922.65858

    924.85959

    9276060

    Living Room Fires - Duplex

    ASTM E 119 & CAN/ULC-S101

    Time (min)

    Temperature (oC)

    Fire Exposures

    Sheet1

    0.020.012.3111.471010.586

    0.215.0411.741020.555

    0.415.7312.451030.547

    0.518.2114.081040.548

    0.722.2614.761050.59

    0.924.7416.51060.564

    1.0124.026.316.631070.59

    1.223.6616.711080.562

    1.425.5518.571090.589

    1.524.7219.371100.563

    1.731.1320.891110.59

    1.928.5420.841120.573

    2.0227.031.9320.461130.553

    2.235.2621.691140.589

    2.441.4624.031150.574

    2.556.7628.481160.553

    2.782.6334.111170.59

    2.9128.3141.261180.565

    3.0331.019056.561190.55

    3.2358.07161.461200.577

    3.4458.12319.021210.565

    3.5764.53471.011220.548

    3.7885.03794.411230.563

    3.9853.09793.871240.55

    4.0434.0718.69620.71250.579

    4.2662.63567.081260.565

    4.4697.9699.131270.586

    4.5765.8722.511280.57

    4.7749.35856.61290.547

    4.9726.91806.351300.575

    5.0538.0732.64785.881310.559

    5.2760.73839.491320.58

    5.4725.54794.961330.574

    5.5668.39697.061340.551

    5.7687.98713.111350.575

    5.9732.67808.661360.552

    6.0571.0757.93784.291370.589

    6.2738.53734.61380.568

    6.4751.46788.841390.558

    6.5753.91825.561400.549

    6.7739.29761.041410.575

    6.9734.52756.351420.551

    7.0604.0760.12797.281430.583

    7.2780.08785.591440.567

    7.4797.58791.541450.547

    7.5830.61817.941460.582

    7.7840.41829.271470.572

    7.9850.01845.021480.561

    8.0638.0907.31894.691490.547

    8.2820.4817.831500.583

    8.4924.27902.861510.565

    8.5966.93943.781520.558

    8.7923.15904.691530.589

    8.9959.31940.91540.567

    9.0671.0986958.751550.55

    9.21004.51975.421560.574

    9.41006.24976.731570.554

    9.51015.8984.781580.548

    9.71023.46991.881590.596

    9.91020.6992.631600.579

    10.0704.01032.26996.741610.582

    10.21035.58999.311620.564

    10.41030.02991.731630.55

    10.51051.571006.351640.586

    10.71052.511008.41650.575

    10.91071.241019.461660.563

    11.0715.01082.451026.241670.554

    11.21082.021030.611680.59

    11.41073.521020.541690.569

    11.51085.151026.121700.564

    11.71083.021027.021710.559

    11.91085.41025.871720.561

    12.0726.01084.891029.371730.549

    12.21083.581025.791740.58

    12.41095.21035.561750.564

    12.51085.261034.391760.549

    12.71081.631035.331770.587

    12.91081.161040.081780.576

    13.0738.01083.651042.631790.568

    13.21077.761040.51800.583

    13.41073.961039.591810.57

    13.51080.221040.041820.547

    13.71080.671041.591830.594

    13.91070.531034.591840.583

    14.0749.01069.831032.711850.579

    14.21065.421028.581860.589

    14.41072.791028.361870.586

    14.51071.211027.581880.571

    14.71057.561019.481890.567

    14.91067.291022.181900.547

    15.0760.01055.11014.581910.55

    15.21039.571003.011920.581

    15.41031.47997.061930.55

    15.51028.45991.51940.571

    15.71017.06975.991950.582

    15.91008.51975.681960.591

    16.0767.01009.78980.061970.561

    16.21000.48974.81980.581

    16.4999.03969.81990.554

    16.5995.43970.12000.569

    02016.7992.1966.022010.547

    1123.616.9981.81957.52020.566

    2227.217.0774.0981.14955.272030.547

    3330.817.2968.85948.872040.57

    4434.417.4962.87943.612050.58

    553817.5951.98934.992060.549

    6571.217.7944.43928.852070.567

    7604.417.9935.85920.472080.577

    8637.618.0781.0929.2915.522090.591

    9670.818.2918.27904.912100.571

    1070418.4910.08898.892110.58

    11715.218.5903.74892.232120.548

    12726.418.7892.48883.722130.567

    13737.618.9880.88870.692140.592

    14748.819.0788.0841.12830.052150.567

    1576019.266.4667.892160.578

    1676719.460.3360.012170.552

    1777419.555.4152.92180.555

    1878119.745.2145.062190.574

    1978819.937.0539.372200.556

    2079520.0795.038.1939.742210.584

    21800.220.23940.352220.562

    22805.420.440.0240.112230.587

    23810.621800.2

    24815.822805.4

    2582123810.6

    26825.424815.8

    27829.825821

    28834.226825.4

    29838.627829.8

    3084328834.2

    31846.829838.6

    32850.630843

    33854.431846.8

    34858.232850.6

    3586233854.4

    36865.234858.2

    37868.435862

    38871.636865.2

    39874.837868.4

    4087838871.6

    41880.839874.8

    42883.640878

    43886.441880.8

    44889.242883.6

    4589243886.4

    46894.644889.2

    47897.245892

    48899.846894.6

    49902.447897.2

    5090548899.8

    51907.249902.4

    52909.450905

    53911.651907.2

    54913.852909.4

    5591653911.6

    56918.254913.8

    57920.455916

    58922.656918.2

    59924.857920.4

    6092758922.6

    59924.8

    60927

    Sheet2

    Sheet3

    Sheet4

  • Time-averaged Temperatures in Room FiresExperimental data from SFPE handbook

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Post-flashover Fires Involving Wood, PMMA & PE

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Burning rate in post-flashover fires involving fuels with exposed surfaces is enhanced by radiationLarge burning rates inhibit inflow of air so increase equivalence ratio reduced heat release (inside)Heat release rate still can be ventilation-controlled

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Traditional Design for Fire Resistance

    Basic Objective: Provide sufficient time for escape

    Strategy # 1 - Compartmentation: Inhibit fire spread: enclose compartments with fire resistant separations

    Strategy # 2 - Structural Fire Protection: Delay collapse of structure: make elements fire resistant

    Functional Requirement: Assemblies must perform acceptably when exposed to design fire & design load

    Acceptance Criterion (Not clearly stated): Fire separations & structural members must perform intended functions for duration of fire

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Physical Model - Post-flashover Fire

    The Fire Resistance Test

    Physical (as opposed to mathematical) model of a post-flashover fireInitial development ~ 1908

    Standard Fire Resistance Tests

    CAN/ULC-S101, Standard methods of fire endurance tests of building construction materialsCAN/ULC-S101 = ASTM E119(Determination of loads is different)ISO 834 = international standard

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Standard Temperature-time Curve: CAN/ULC-S101 or ASTM E119

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Performance RequirementsSeparating Element1. Specimen remains in place2. No passage of hot gas / flame3. T < 140C (average unexposed side)T < 180C (single point, unexposed side)4. Hose-stream Test

    Load-bearing Element1. Specimen supports design load

    Fire-resistance RatingTime specimen meets performance requirements

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Principle for Establishing Fire Resistance Requirements for Buildings

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Principle for Establishing Fire Resistance Requirements for Buildings

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • NBCC RequirementsCompartmentationFire separations often must be fire ratedFire separations between public corridors & suites in small buildings require fire-resistance rating of 3/4Fire separations between public corridors & suites in large buildings require fire-resistance rating of 1 hour

    Structural Fire ProtectionFloors and structural elements supporting floors often must be ratedIn small buildings: fire-resistance rating of 3/4 or 1 hIn large buildings: fire-resistance rating of 2 h

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Performance-based Design for Fire ResistanceDesign Fire Scenarios

    Buildings with High Degree of CompartmentationExamples: Apartment & office buildingsScenario: Post-flashover fire (no suppression)Design Fire: A credible but severe post-flashover fire

    Buildings with Large Open SpacesExamples: Warehouses & FactoriesScenario: Localized fire (diffusion flame)Design Fire: A credible but severe localized fire

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Model for Post-flashover Fire SeverityJapanese Parametric Model Basic Assumptions

    Ventilation: Assume unprotected openings are open Assume fire-rated closures remain intact

    Heat Release: Heat released in post-flashover phase Maximum possible value from t=0

    Fuel Load: Total fuel load is consumed

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Japanese Parametric Modelfor Ventilation Controlled Fires

    Temperature of fire gases: Th(t) (K)

    Th(t) - To = t1/6 Eqn (11-24)

    where = a constant (K s-1/6) t = time since ignition (s)

    Eqn (11-25)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110109404.unknown

  • A = area of openings (windows) (m2)

    h = height of openings (windows) (m)

    AT = total area of boundaries (m2)

    k = thermal conductivity boundaries (kW m-1 K-1)

    = density of boundaries (kg m-3)

    c = specific heat of boundaries (kJ K-1 kg-1)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Duration of post-flashover fire: tD (s)

    Eqn (11-26)

    L = fuel load (kg m-2)

    AF = area of the floor (m2)

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110109956.unknown

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    Japanese Parametric Model

    Model Validation

    Test

    G = L AF

    (kg)

    Ah

    (m5/2)

    AT

    (m2)

    kc

    (kJ m-2 s-1/2 K-1)

    (K s-1/6)

    tD

    (s)

    1

    130

    0.92

    45.24

    0.868

    252

    1570

    2

    130

    0.92

    45.24

    0.334

    346

    1570

    3

    233

    0.92

    45.24

    0.666

    275

    2814

    4

    233

    1.42

    44.96

    0.666

    318

    1823

    5

    233

    2.13

    44.61

    0.666

    365

    1215

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Japanese Parametric Model

    Option 1: Response of Assembly Predicted Using Mathematical Model

    Fire characterized by temperature-time curve generated by Japanese parametric model.

    Load carried by structural members taken directly from structural analysis (Part 4 of the NBCC).

    A fire-resistance model is used to predict thermal and structural response of each assembly.

    Do fire separations and structural members meet the acceptance criteria?

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Japanese Parametric Model

    Option 2: Response of Assembly Predicted Using Physical Model

    Heat absorbed by unit surface area of fire separations or structural members in post-flashover fire: q (kJ m-2)

    Eqn (11-27)

    For ISO 834: = 230 K s-1/6 For ASTM E119: = 229 K s-1/6

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110114384.unknown

  • Normalized Heat Load Concept(Harmathy & Mehaffey)

    Compartment fire of duration tD is equivalent in severity to an ISO 834 fire test of duration teq in which same heat is absorbed per unit area

    Eqn (11-28)Assembly fire resistance rating teq is acceptableAdvantage of Option 2: Existing fire resistance ratings can still be usedDrawback of Option 2: Fire-resistance ratings are determined using max load not actual design load

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110114718.unknown

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Design ConsiderationsFuel LoadUse 95th percentile in fuel load distribution: Eqn (11-19)VentilationAssume unprotected openings are openAssume fire-rated closures remain intactIf several vents at approximately the same elevation Eqn (11-29)

    Compartment BoundariesBoundaries do not include internal partitionsIf there is more than one boundary material

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Example - Design for Fire ResistancePrevent Fire Spread from an Office Suite

    Room Dimensions: 6.0 m x 4.0 m x 2.4 m (height)

    Floor Area: 6.0 m x 4.0 m = 24 m2

    Window Dimensions: 4.0 m x 1.5 m (height)

    Fuel Load: 95th percentile Eqn (11-19)

    L95 = L + 1.64 L = (24.8 + 1.64 x 8.6) kg m-2 = 38.9 kg m-2

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Ventilation: Window breaks & door remains intact

    Compartment boundaries

    = [ceiling + walls - vents][gypsum bd] + [floor][n.w. concrete]

    = [6x4 + 6x2.4x2 + 4x2.4x2 - 1.5x4] x 0.742 + [6 x 4] x [2.192]

    = 101.58 kJ s-1/2 K-1

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

  • Japanese Parametric Model

    Temperature of fire gases: Th(t) (K)

    Th(t) - To = t1/6 Eqn (11-24)

    where (K s-1/6) characterises the fire

    Eqn (11-25)

    \ = 3 x 293 x [ 7.35 / 101.58 ]1/3 = 366 K s-1/6

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110109404.unknown

  • Japanese Parametric Model

    Duration of post-flashover fire: tD (s)

    Eqn (11-26)

    \ tD = 38.9 x 24 / [ 0.09 x 7.35 ] = 1411 s = 23.5 min

    Duration of equivalent fire resistance test: teq

    Eqn (11-28)

    \ teq = [366 / 230]3/2 x 23.5 min = 47.2 min

    Carleton University, 82.583, Fire Dynamics II, Winter 2003, Lecture # 11

    _1110109956.unknown

    _1110114718.unknown