1
Carnegie Mellon University THE ROBOTICS INSTITUTE Manual collec*on of environmental data over a large area can be a *meconsuming, costly, and even dangerous process, making it a perfect candidate for automa*on with mobile robots. Despite this clear suitability and numerous advances in robo*cs resul*ng in decreased costs, improved reliability, and increased ease of use, the problem of powering autonomous robots has proved to be an effec*ve deterrent to their widespread use in the field. Although many survey scenarios involve domains with ample ambient energy present in the form of winds or currents that could be exploited by a robot opera*ng given an appropriate strategy, past path planning research has neglected the study of energy efficient methods in these domains, in lieu of con*nued pursuit of *me and length op*mal planning algorithms. Furthermore, much of the limited work addressing this topic relies on prior knowledge of the energy distribu*on within the domain, which can be par*cularly difficult and expensive to determine, especially when moving fluids are involved. In this thesis we address the problem of planning energyefficient paths that exploit ambient energy in the absence of complete a priori knowledge of the domain. Although work on energyefficient planning con*nues, the methods developed consistently rely on a priori models of the vehicle or environment to achieve energy savings. This gap in research is par*cularly stark when energyefficient coverage path planning is considered; a significant por*on of the past work on this problem makes use of vehicle dynamics models and generally results in coverage plans that op*mize the number of turns or the velocity along the path, with just a few studies considering the harvest of ambient energy during coverage execu*on. This thesis inves*gates the development of coverage planning techniques that integrate the gathering of highly prac*cal domain knowledge with its exploita*on to achieve autonomous energy efficient informa*on gathering. To this end we improve upon exis*ng LSPIV current measurement methods and contribute a novel constraintbased coverage path planner, which given even a few fuzzy domain energy constraints and incomplete domain knowledge, is believed to produce energyefficient coverage plans that will outperform plans produced by tradi*onal methods. The addi*on of informa*on gain constraints can be used to bias the vehicle towards explora*on to acquire addi*onal domain knowledge that may further improve energyefficiency, par*cularly when ini*al domain knowledge is limited. The par*cular mo*va*ng applica*on behind this work is the dense mapping of environmental parameters in riverine environments using autonomous surface vehicles (ASVs) while exploi*ng evolving surface current knowledge to improve energyefficiency throughout the process. To address this problem, we apply our coverage planner to compute complete coverage strategies around energy and informa*on gain constraints provided by our enhanced LSPIV surface current measurement system. In order to mo*vate and validate this work, we describe and present results from its applica*on to a scenario where an ASV is deployed to survey the bathymetry in a sec*on of river using an energyefficient coverage strategy, which is ini*ally computed with incomplete surface current data and later improved by opportunis*c devia*on from the ini*al plan. Thesis Committee: John Dolan Co-chair Paul Scerri Co-chair George Kantor Mel Siegel Jordi Albó La Salle University THESIS PROPOSAL Planning for Energy-Efficient Coverage and Exploratory Deviation by Robots in Rivers Monday, May 7, 2018 1507 Newell Simon Hall 12:00 p.m. Christopher Tomaszewski Abstract

Carnegie Mellon University THE ROBOTICS …Kantor Mel Siegel Jordi Albó La Salle University THESIS PROPOSAL Planning for Energy-Efficient Coverage and Exploratory Deviation by Robots

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carnegie Mellon University THE ROBOTICS …Kantor Mel Siegel Jordi Albó La Salle University THESIS PROPOSAL Planning for Energy-Efficient Coverage and Exploratory Deviation by Robots

Carnegie Mellon University THE ROBOTICS INSTITUTE

Manual  collec*on  of  environmental  data  over  a  large  area  can  be  a  *me-­‐consuming,  costly,  and  even  dangerous  process,  making  it  a  perfect  candidate  for  automa*on  with  mobile  robots.  Despite  this  clear  suitability  and  numerous  advances  in  robo*cs  resul*ng  in  decreased  costs,  improved  reliability,  and  increased  ease  of  use,  the  problem  of  powering  autonomous  robots  has  proved  to  be  an  effec*ve  deterrent  to  their  widespread  use  in  the  field.  

Although  many  survey  scenarios  involve  domains  with  ample  ambient  energy  present  in  the  form  of  winds  or  currents  that  could  be  exploited  by  a  robot  opera*ng  given  an  appropriate  strategy,  past  path  planning  research  has  neglected  the  study  of  energy-­‐efficient  methods  in  these  domains,  in  lieu  of  con*nued  pursuit  of  *me-­‐  and  length-­‐op*mal  planning  algorithms.    Furthermore,  much  of  the  limited  work  addressing  this  topic  relies  on  prior  knowledge  of  the  energy  distribu*on  within  the  domain,  which  can  be  par*cularly  difficult  and  expensive  to  determine,  especially  when  moving  fluids  are  involved.  In  this  thesis  we  address  the  problem  of  planning  energy-­‐efficient  paths  that  exploit  ambient  energy  in  the  absence  of  complete  a  priori  knowledge  of  the  domain.  

Although  work  on  energy-­‐efficient  planning  con*nues,  the  methods  developed  consistently  rely  on  a  priori  models  of  the  vehicle  or  environment  to  achieve  energy  savings.  This  gap  in  research  is  par*cularly  stark  when  energy-­‐efficient  coverage  path  planning  is  considered;  a  significant  por*on  of  the  past  work  on  this  problem  makes  use  of  vehicle  dynamics  models  and  generally  results  in  coverage  plans  that  op*mize  the  number  of  turns  or  the  velocity  along  the  path,  with  just  a  few  studies  considering  the  harvest  of  ambient  energy  during  coverage  execu*on.  This  thesis  inves*gates  the  development  of  coverage  planning  techniques  that  integrate  the  gathering  of  highly  prac*cal  domain  knowledge  with  its  exploita*on  to  achieve  autonomous  energy-­‐efficient  informa*on  gathering.  To  this  end  we  improve  upon  exis*ng  LSPIV  current  measurement  methods  and  contribute  a  novel  constraint-­‐based  coverage  path  planner,  which  given  even  a  few  fuzzy  domain  energy  constraints  and  incomplete  domain  knowledge,  is  believed  to  produce  energy-­‐efficient  coverage  plans  that  will  outperform  plans  produced  by  tradi*onal  methods.  The  addi*on  of  informa*on  gain  constraints  can  be  used  to  bias  the  vehicle  towards  explora*on  to  acquire  addi*onal  domain  knowledge  that  may  further  improve  energy-­‐efficiency,  par*cularly  when  ini*al  domain  knowledge  is  limited.

The  par*cular  mo*va*ng  applica*on  behind  this  work  is  the  dense  mapping  of  environmental  parameters  in  riverine  environments  using  autonomous  surface  vehicles  (ASVs)  while  exploi*ng  evolving  surface  current  knowledge  to  improve  energy-­‐efficiency  throughout  the  process.  To  address  this  problem,  we  apply  our  coverage  planner  to  compute  complete  coverage  strategies  around  energy  and  informa*on  gain  constraints  provided  by  our  enhanced  LSPIV  surface  current  measurement  system.  In  order  to  mo*vate  and  validate  this  work,  we  describe  and  present  results  from  its  applica*on  to  a  scenario  where  an  ASV  is  deployed  to  survey  the  bathymetry  in  a  sec*on  of  river  using  an  energy-­‐efficient  coverage  strategy,  which  is  ini*ally  computed  with  incomplete  surface  current  data  and  later  improved  by  opportunis*c  devia*on  from  the  ini*al  plan.

Thesis Committee:

John Dolan Co-chair

Paul Scerri Co-chair

George Kantor

Mel Siegel

Jordi Albó La Salle University

THESIS PROPOSAL Planning for Energy-Efficient Coverage and Exploratory Deviation by Robots in Rivers

Monday, May 7, 2018

1507 Newell Simon Hall 12:00 p.m.

Christopher Tomaszewski Abstract