26
CATALYST HEAT KNIFE FOR GAS GENERATE V.M. Khanaev, Е.S. Borisova and N.N.Kundo Boreskov Institute of catalysis Novosibirsk, Russia

CATALYST HEAT KNIFE FOR GAS GENERATE V.M. Khanaev, Е.S. Borisova and N.N.Kundo Boreskov Institute of catalysis Novosibirsk, Russia

Embed Size (px)

Citation preview

CATALYST HEAT KNIFE FOR GAS GENERATE

V.M. Khanaev, Е.S. Borisova and N.N.Kundo

Boreskov Institute of catalysis Novosibirsk, Russia

Problems

Solid – fuel composition

A new approach to controlling the combustion of solid propellants on the basis of structured catalysts (porous materials and honeycomb blocks) was proposed by Kundo N.N.

H2

CO

O2

N2

Energy(Heat, electricity, chemical energy)

The use of Catalyst allows :• To create a low-temperature compositions with a

combustion temperature of 300-1000° C  without using of  coolant with a high burning rate 

• To obtain a gas containing oxidizers or  combustible components (H2, CO) or a neutral gas (N2, CO2)

• To control operatively the combustion rate and combustion chamber pressure

The use of catalysts in combustion of solid fuels

Peculiarities  of catalytic  solid fuels combustion

• Small residence Time of catalyst particles in the flame zone 0.0001 - 0.00001 sec

• The temperature of 300 oC - 1000 oC

Action • increase the increase the combustion ratecombustion rate • providing a providing a given burning given burning rate dependence rate dependence on pressureon pressure

Catalysts • iron oxide, copper iron oxide, copper chromite, lead oxideschromite, lead oxides • Plasticizers Plasticizers (ferrocene (ferrocene derivatives)derivatives)

Reaction zone •low-low-temperature zonetemperature zone of the flame of the flame •on the surface on the surface of the of the burning sampleburning sample

Form •the form the form of dispersed of dispersed powderspowders

1 – body, 2 – water jacket , 3 - catalyst block ,4 – powdered gunpowder, 5 – propellant , 6 –

shaft , 7 - safety valve, 8 – pressure sensor.

The model gas generator scheme  with the operating burning rate control

Structured catalysts

Combustion solid high energy  compositions with catalytic knife

Pressure in the combustor verses the displacement of the propellant charge with respect to a fixed block catalyst curves 1 - the displacement of the propellant charge 2 - the pressure in the combustor.

the regime with combustion termination

the regime with variation of the burning rate

displacement

pressure pressure

displacement

Computing

Mathematical modelMathematical model

inf

f

inf

ThT

TThz

TTz

0

0

:0

:

:

1. Propellant

02

2

ffffffff Tz

Tz

GCpTCp

ssgsg

ggsgg

g

,TcρΩwccSk

cc,ccSkρdz

dcG

2

00

4

0

1

;0

1

TLzdz

dT

TThz

Tz

Rs

S

se

ss

gTTSzgTcu

cgcgpg

0:0 TTz

g

2. Structured catalyst

Conservation of energy

3.Contact area

Conservation of mass

01100 TTh

QTCpTCpTz s

egfff

ff GTh

01 gg GTh

01

sgss

Ssss TTSTwQz

TTCp

222

2

11

KineticsHNO3*NH2]-NH-C(NH)-[H2N

222

x222357

H CO OH CO

OtNt)H(1.5Ot)H-(2COxt)/2N-(5 ONCH

222

x222357

H CO OH CO

OtNt)H(1.5Ot)H-(2COxt)/2N-(5 ONCH

aminoguanidine nitrate decomposing

21x

02t

ON x

x

Catalyst combustion

222

22x2

H CO OH CO

OHN2

ONH

x

222

22x2

H CO OH CO

OHN2

ONH

x

Effect of catalyst activity Pre-exponential factor

of the reaction rate constant

• 1 –1.35*108 1/s, • 2 – 5*108 1/s, • 3 - 1.35*109 1/s , • 4 – 5*109 1/s, • 5 - 1.35*1010 1/s. Block thermal conductivity –

10 W/(m К).

0.4 0.5 0.6 0.7U, m m / sec

200

400

600

800

Blo

ck e

ntr

ance

tem

per

atu

re,

C

12

34

5

T0

Entrance gas flow

temperature

Effect of homogeneous combustion

0.5 1.0 1.5 2.0U, m m / sec

0

200

400

600

800

1000

1200

Blo

ck e

ntr

ance

tem

per

atu

re,

C

T0

t = 2

t = 1.5

t = 1

t = 0.8

T0 – gas flow temperature

at the block entrance. Catalyst thermal conductivity λ = 5 W/m K

Effect of catalyst thermal conductivity

Catalyst thermal conductivity:

•1 – 2 W |m K,

•2 - 5 W/m К,

•3 - 10 W/m К,

•4 - 15 W/m К,

•5 - 20 W/m К.

Entrance gas flow

temperature

0.2 0.4 0.6U, mm/sec

0

200

400

600

800

1000

1200

Blo

ck

en

tra

nc

e t

em

pe

ratu

re,

C

1 2 3 4

5

T0

Dependence of maximal fuel burning rate

on the catalyst thermal conductivity

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U m

ax, m

m/s

ec

1

2

λ, W / (m K)

Block sizes (for square cannel):•1 – cannel diameter = 1.2 mm, wall thickness = 0.255 mm•2 – cannel diameter = 5 mm, wall thickness = 2 mm

Combustion process dynamic

distance

Temperature

0 2 4 6 8time, sec

0.0

0.2

0.4

0.6

0.8

1.0

h, m

m

1

2

3

Effect of catalyst initial heating

Initial catalytic block temperature:

• 1 – 12000C,• 2 – 9500C,• 3 – 9000C (stationary

combustion regime couldn’t be obtained).

h is the distance between catalyst and burning fuel. The initial distance was 1 mm for all cases.Catalyst thermal conductivity λ = 10 W/m K, t = 1, U = 0.9 mm/s

Effect of the initial distance between catalytic block and the surface of burning

fuel •h is the distance between catalyst and fuel. Initial distance was 0.5 mm (curve 1), 1 mm (curve 2) and 2 mm (curve 3, steady state regime couldn’t be obtained).•The initial catalyst temperature was 10000C for all cases.

Catalyst and fuel (the part close to contact zone)

temperature profiles in various time moments

0 – t = 0 s, 1 – t = 0.001 s,2 – t = 0.005 s, 3 – t = 0.01 s,4 – t = 0.05 s, 5 – t = 0.1 s,6 – t = 0.4 s, 7 – t = 1 s,8 – t = 36 s (steady state regime)

0 – t = 0, 1 – t = 1.5 s,

2 – t = 2 s, 3 – t = 4 s

4 - t = 7 s, 5 – t = 10 s,

6 – t = 36 s (steady state regime).

Gas generation process dynamics

(decreasing of the fuel burning rate)

0 10 20 30time, sec

0.0

0.4

0.8

1.2

G, k

g/(

m2

sec)

0 200 400 600 800 1000time, sec

0.0

0.1

0.2

0.3

G, k

g/(

m2

sec)

0 200 400 600time, sec

0.0

0.4

0.8

1.2

G, k

g/(

m2

sec)

Gas generation process dynamics (increasing of the fuel burning rate)

0 2 4 6 8 10time, sec

0.0

0.4

0.8

1.2

G, k

g/(

m2

sec)

Conclusions• Catalytic knife ensures controlled combustion

and forms the basis for the development of low-temperature gas generators.

• Mathematical modeling of combustion of a typical condensed substance heated to high temperatures by a catalyst block is performed.

• The proposed model can be used to describe correctly steady-state and dynamic regimes. An increase in the catalytic activity, as well as an increase in the thermal conductivity of the catalyst, is found to increase the range of real-time control of the burning rate of the condensed substance.

Kundo N.N.

Спасибо за внимание!

Конверсия на различных блоках (с учетом теплопотерь

излучением)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.01

3

Безразмерная длина блока

Кон

верс

ия

• Диаметр канала – 1.2 мм, толщина стенки – 0.255 мм; (кривые 1, 3)

• Диаметр канала – 5 мм, толщина стенки – 2 мм (кривые 2, 4).

Возможности применения контактного каталитического горения твердых топлив

1. Создание низкотемпературных газогенераторов с оперативным (командным) управлением газопроизводительностью и давлением. Применение для наддува емкостей, трапов, спасательных средств.

2. Применение газогенератора с регулируемым давлением и высокой производительностью (1,0-1,5 нм3 газа на 1 кг топлива) для установок аварийного всплытия, вытеснения воды.

3. Использование газогенератора с регулируемым газорасходом и давлением для регулируемой подачи топлива и окислителя в системе ЖРД.

4. Применение длительно хранимых стабильных ТРТ контактного каталитического горения для двигателей ориентации, стыковки, перемещения в космосе с возможностью многократного включения и выключения двигателя.

5. Использование каталитического газогенератора в пусковых устройствах для запуска газотурбинных двигателей, для раскрутки коленчатого вала ДВС, при аварийной остановке основного двигателя.

6. Применение составов, генерирующих горючий восстановительный газ для комбинированных РД.7. Применение газогенераторов, обеспечивающих получение окислительного газа для

комбинированного РД.8. Получение горячего топливного газа для обеспечения работы двигателя (например,

газотурбинного) с применением дожигания воздухом.9. Получение водородного топливного газа для обеспечения работы прямоточного реактивного

двигателя.10.Создание объектов на основе комбинации порометаллического носителя, обладающего

каталитическими свойствами, с твердым топливом для использования их в качестве ложных целей, которые интенсивно излучают в инфракрасной области.