28
Cauchy pairs and Cauchy matrices Alison Gordon University of Wisconsin-Madison [email protected] August 21, 2012 Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 1 / 19

Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison [email protected] August

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy pairs and Cauchy matrices

Alison Gordon

University of Wisconsin-Madison

[email protected]

August 21, 2012

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 1 / 19

Page 2: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy Pairs

Fix a field K and let V be an K-vector space with finite positive dimension.

Definition

A Cauchy pair on V is an ordered pair X ,Y ∈ End(V ) which satisfy thefollowing conditions:

(i) Both X and Y are diagonalizable.

(ii) X − Y is rank 1.

(iii) There does not exist a subspace W of V such thatXW ⊆W ,YW ⊆W ,W 6= 0,W 6= V .

We call these pairs Cauchy due to the way they arise from Cauchymatrices.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 2 / 19

Page 3: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy Matrices

Definition

A Cauchy matrix is a matrix C ∈ Matn(K) with (i,j)-entry:

Cij =1

xi − yj

for 1 ≤ i , j ≤ n, where x1, . . . , xn, y1, . . . , yn ∈ K are pairwise distinct.

Example: Taking x1 = 1, x2,= 3, x3 = 5, y1 = 0, y2 = 2, y3 = 4,1 −1 −13

13 1 −115

13 1

=

11−0

11−2

11−4

13−0

13−2

13−4

15−0

15−2

15−4

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 3 / 19

Page 4: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy Determinant Identity

Theorem (Cauchy, 1841)

Let C ∈ Matn(K) be Cauchy with Cij = 1xi−yj

. Then

det C =

∏ni=2

∏i−1j=1(xi − xj)(yj − yi )∏n

i=1

∏nj=1(xi − yj)

Note that det C 6= 0, so C is invertible.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 4 / 19

Page 5: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Displacement Equation

For the Cauchy matrix C , we define matrices X and Y as:

X =

x1 0 · · · 00 x2 · · · 0...

.... . . 0

0 0 · · · xn

Y =

y1 0 · · · 00 y2 · · · 0...

.... . . 0

0 0 · · · yn

C satisfies the displacement equation

XC − CY = J

where J is the matrix of all ones.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 5 / 19

Page 6: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Displacement Equation

For the Cauchy matrix C , we define matrices X and Y as:

X =

x1 0 · · · 00 x2 · · · 0...

.... . . 0

0 0 · · · xn

Y =

y1 0 · · · 00 y2 · · · 0...

.... . . 0

0 0 · · · yn

C satisfies the displacement equation

XC − CY = J

where J is the matrix of all ones.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 5 / 19

Page 7: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

Setup:

Let V be a K-vector space with dimension n ≥ 2.

Let C be a Cauchy matrix with (i,j)-entry 1xi−yj

for 1 ≤ i , j ≤ n.

Fix a bases BX ,BY for V such that C is the transition matrix fromBX to BY .

Define matrices X , Y as in the previous slide.

Define X ∈ End(V ) such that X acts as X with respect to BX .

Define Y ∈ End(V ) such that Y acts as Y with respect to BY .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 6 / 19

Page 8: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

Setup:

Let V be a K-vector space with dimension n ≥ 2.

Let C be a Cauchy matrix with (i,j)-entry 1xi−yj

for 1 ≤ i , j ≤ n.

Fix a bases BX ,BY for V such that C is the transition matrix fromBX to BY .

Define matrices X , Y as in the previous slide.

Define X ∈ End(V ) such that X acts as X with respect to BX .

Define Y ∈ End(V ) such that Y acts as Y with respect to BY .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 6 / 19

Page 9: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

By construction, X and Y are both diagonalizable.

With respect to BY , X acts as

C−1XC = Y + C−1J

by the displacement equation.

Thus, (X − Y ) acts as C−1J with respect to BY , so (X − Y ) is rank 1.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 7 / 19

Page 10: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

By construction, X and Y are both diagonalizable.

With respect to BY , X acts as

C−1XC = Y + C−1J

by the displacement equation.

Thus, (X − Y ) acts as C−1J with respect to BY , so (X − Y ) is rank 1.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 7 / 19

Page 11: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

Any X -invariant and Y -invariant subspace of V must be:

The span of some subset of BY and

Invariant under (X − Y ), represented by C−1J with respect to BY .

Since entries of C−1J are non-zero, (X − Y )V is not contained in thespan of any proper subset of BY . Thus, no such proper subspace exists.

Therefore (X ,Y ) is a Cauchy pair.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 8 / 19

Page 12: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Constructing Cauchy Pairs

Any X -invariant and Y -invariant subspace of V must be:

The span of some subset of BY and

Invariant under (X − Y ), represented by C−1J with respect to BY .

Since entries of C−1J are non-zero, (X − Y )V is not contained in thespan of any proper subset of BY . Thus, no such proper subspace exists.

Therefore (X ,Y ) is a Cauchy pair.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 8 / 19

Page 13: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy pairs from Cauchy matrices

Proposition

Let V be an n-dimensional K-vector space and let C ∈ Matn(K) be aCauchy matrix. Then there exists a Cauchy Pair (X,Y) with eigenbasesBX ,BY such that C is the transition matrix from BX to BY .

This proposition follows from the previous construction.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 9 / 19

Page 14: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Next Goal

The previous construction shows how a Cauchy pair arises from a Cauchymatrix.

This map, sending a Cauchy matrix to a Cauchy pair, produces a naturalcorrespondence between Cauchy matrices and Cauchy pairs.

To show this, we must find an inverse map that shows how Cauchymatrices arise from Cauchy pairs.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 10 / 19

Page 15: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Next Goal

Goal

Show that, for every Cauchy pair (X ,Y ), there exists a pair of eigenbasesfor X ,Y such that the transition matrix between them is Cauchy.

First, we need to establish a few facts about Cauchy pairs.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 11 / 19

Page 16: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Eigenvalues of Cauchy pairs

Lemma

Let (X ,Y ) be a Cauchy pair on V . Then X and Y have no commoneigenvalues.

To prove this, it suffices to show that for an eigenbasis {vi}ni=1 for X ,

W = span{vi |(λI − X )vi 6= 0}

is X - and Y -invariant, whenever λ is a eigenvalue for Y .

Thus, if λ is an eigenvalue for Y , it cannot be an eigenvalue for X .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 12 / 19

Page 17: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Eigenvalues of Cauchy pairs

Lemma

Let (X ,Y ) be a Cauchy pair on V . Then X and Y have no commoneigenvalues.

To prove this, it suffices to show that for an eigenbasis {vi}ni=1 for X ,

W = span{vi |(λI − X )vi 6= 0}

is X - and Y -invariant, whenever λ is a eigenvalue for Y .

Thus, if λ is an eigenvalue for Y , it cannot be an eigenvalue for X .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 12 / 19

Page 18: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Eigenvalues of Cauchy pairs

Lemma

Let (X ,Y ) be a Cauchy pair on V . Then X and Y are bothmultiplicity-free.

These two lemmas show that, for a Cauchy pair (X ,Y ), the eigenvalues ofX and the eigenvalues of Y form a set of 2n pairwise distinct scalars.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 13 / 19

Page 19: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Eigenvalues of Cauchy pairs

Lemma

Let (X ,Y ) be a Cauchy pair on V . Then X and Y are bothmultiplicity-free.

These two lemmas show that, for a Cauchy pair (X ,Y ), the eigenvalues ofX and the eigenvalues of Y form a set of 2n pairwise distinct scalars.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 13 / 19

Page 20: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Notation

Fix a Cauchy pair (X ,Y ) on V .

Let {xi}ni=1 and {yi}ni=1 be orderings of the eigenvalues of X and Y ,respectively.

Fix a basis of eigenvectors {vi}ni=1 for X such thatn∑i=j

vj ∈ (X − Y )V .

We call such a basis a normalized eigenbasis for X .

Then there exist scalars {αi}ni=1 such that (X − Y )vi = αi

n∑j=1

vj .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 14 / 19

Page 21: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Notation

Fix a Cauchy pair (X ,Y ) on V .

Let {xi}ni=1 and {yi}ni=1 be orderings of the eigenvalues of X and Y ,respectively.

Fix a basis of eigenvectors {vi}ni=1 for X such thatn∑i=j

vj ∈ (X − Y )V .

We call such a basis a normalized eigenbasis for X .

Then there exist scalars {αi}ni=1 such that (X − Y )vi = αi

n∑j=1

vj .

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 14 / 19

Page 22: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

The scalars αi

The scalars {αi}ni=1 have the following interesting connection with theeigenvalues of X ,Y :

Lemma

For 1 ≤ j ≤ n,n∑

i=1

αi

xi − yj= 1

For 1 ≤ j ≤ n, we define

wj =n∑

i=1

1

xi − yjvi

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 15 / 19

Page 23: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

The scalars αi

The scalars {αi}ni=1 have the following interesting connection with theeigenvalues of X ,Y :

Lemma

For 1 ≤ j ≤ n,n∑

i=1

αi

xi − yj= 1

For 1 ≤ j ≤ n, we define

wj =n∑

i=1

1

xi − yjvi

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 15 / 19

Page 24: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

An eigenbasis for Y

Proposition

For 1 ≤ i ≤ n, the vector wi is an eigenvector for Y with eigenvalue yi .Thus, {wi}ni=1 is an eigenbasis for Y .

Corollary

The transition matrix from {vi}ni=1 to {wi}ni=1 is Cauchy with (i , j)-entry1

xi−yj

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 16 / 19

Page 25: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Cauchy transition matrices

Theorem

Let V be an n-dimensional K-vector space and let (X ,Y ) be a CauchyPair on V . Then there exist an eigenbasis BX for X and an eigenbasisBY for Y such that the transition matrix from BX to BY is Cauchy.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 17 / 19

Page 26: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

A bijection between Cauchy pairs and Cauchy matrices

In conclusion, we have shown that:

Given a Cauchy matrix C , there exists a Cauchy pair (X ,Y ) for whichC is the transition matrix between eigenbases for X and Y .

Given a Cauchy pair (X ,Y ), there exists a Cauchy matrix C which isa transition matrix between eigenbases for X and Y .

Together, this gives a bijection, up to normalization, between the class ofCauchy matrices and the class of Cauchy pairs.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 18 / 19

Page 27: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

A bijection between Cauchy pairs and Cauchy matrices

In conclusion, we have shown that:

Given a Cauchy matrix C , there exists a Cauchy pair (X ,Y ) for whichC is the transition matrix between eigenbases for X and Y .

Given a Cauchy pair (X ,Y ), there exists a Cauchy matrix C which isa transition matrix between eigenbases for X and Y .

Together, this gives a bijection, up to normalization, between the class ofCauchy matrices and the class of Cauchy pairs.

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 18 / 19

Page 28: Cauchy pairs and Cauchy matrices - math.sjtu.edu.cnmath.sjtu.edu.cn/Conference/SCAC/slide/AlisonGordon.pdf · Alison Gordon University of Wisconsin-Madison gordon@math.wisc.edu August

Thank You!

Alison Gordon (Wisconsin) Cauchy pairs and Cauchy matrices August 21, 2012 19 / 19